xref: /openbmc/linux/arch/arm64/mm/fault.c (revision 9e3bd0f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
26 
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kasan.h>
36 #include <asm/sysreg.h>
37 #include <asm/system_misc.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <asm/traps.h>
41 
42 struct fault_info {
43 	int	(*fn)(unsigned long addr, unsigned int esr,
44 		      struct pt_regs *regs);
45 	int	sig;
46 	int	code;
47 	const char *name;
48 };
49 
50 static const struct fault_info fault_info[];
51 static struct fault_info debug_fault_info[];
52 
53 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
54 {
55 	return fault_info + (esr & ESR_ELx_FSC);
56 }
57 
58 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
59 {
60 	return debug_fault_info + DBG_ESR_EVT(esr);
61 }
62 
63 static void data_abort_decode(unsigned int esr)
64 {
65 	pr_alert("Data abort info:\n");
66 
67 	if (esr & ESR_ELx_ISV) {
68 		pr_alert("  Access size = %u byte(s)\n",
69 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
70 		pr_alert("  SSE = %lu, SRT = %lu\n",
71 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
72 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
73 		pr_alert("  SF = %lu, AR = %lu\n",
74 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
75 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
76 	} else {
77 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
78 	}
79 
80 	pr_alert("  CM = %lu, WnR = %lu\n",
81 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
82 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
83 }
84 
85 static void mem_abort_decode(unsigned int esr)
86 {
87 	pr_alert("Mem abort info:\n");
88 
89 	pr_alert("  ESR = 0x%08x\n", esr);
90 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
91 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
92 		 (esr & ESR_ELx_IL) ? 32 : 16);
93 	pr_alert("  SET = %lu, FnV = %lu\n",
94 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
95 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
96 	pr_alert("  EA = %lu, S1PTW = %lu\n",
97 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
98 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
99 
100 	if (esr_is_data_abort(esr))
101 		data_abort_decode(esr);
102 }
103 
104 static inline bool is_ttbr0_addr(unsigned long addr)
105 {
106 	/* entry assembly clears tags for TTBR0 addrs */
107 	return addr < TASK_SIZE;
108 }
109 
110 static inline bool is_ttbr1_addr(unsigned long addr)
111 {
112 	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
113 	return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
114 }
115 
116 /*
117  * Dump out the page tables associated with 'addr' in the currently active mm.
118  */
119 static void show_pte(unsigned long addr)
120 {
121 	struct mm_struct *mm;
122 	pgd_t *pgdp;
123 	pgd_t pgd;
124 
125 	if (is_ttbr0_addr(addr)) {
126 		/* TTBR0 */
127 		mm = current->active_mm;
128 		if (mm == &init_mm) {
129 			pr_alert("[%016lx] user address but active_mm is swapper\n",
130 				 addr);
131 			return;
132 		}
133 	} else if (is_ttbr1_addr(addr)) {
134 		/* TTBR1 */
135 		mm = &init_mm;
136 	} else {
137 		pr_alert("[%016lx] address between user and kernel address ranges\n",
138 			 addr);
139 		return;
140 	}
141 
142 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
143 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
144 		 vabits_actual, (unsigned long)virt_to_phys(mm->pgd));
145 	pgdp = pgd_offset(mm, addr);
146 	pgd = READ_ONCE(*pgdp);
147 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
148 
149 	do {
150 		pud_t *pudp, pud;
151 		pmd_t *pmdp, pmd;
152 		pte_t *ptep, pte;
153 
154 		if (pgd_none(pgd) || pgd_bad(pgd))
155 			break;
156 
157 		pudp = pud_offset(pgdp, addr);
158 		pud = READ_ONCE(*pudp);
159 		pr_cont(", pud=%016llx", pud_val(pud));
160 		if (pud_none(pud) || pud_bad(pud))
161 			break;
162 
163 		pmdp = pmd_offset(pudp, addr);
164 		pmd = READ_ONCE(*pmdp);
165 		pr_cont(", pmd=%016llx", pmd_val(pmd));
166 		if (pmd_none(pmd) || pmd_bad(pmd))
167 			break;
168 
169 		ptep = pte_offset_map(pmdp, addr);
170 		pte = READ_ONCE(*ptep);
171 		pr_cont(", pte=%016llx", pte_val(pte));
172 		pte_unmap(ptep);
173 	} while(0);
174 
175 	pr_cont("\n");
176 }
177 
178 /*
179  * This function sets the access flags (dirty, accessed), as well as write
180  * permission, and only to a more permissive setting.
181  *
182  * It needs to cope with hardware update of the accessed/dirty state by other
183  * agents in the system and can safely skip the __sync_icache_dcache() call as,
184  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
185  *
186  * Returns whether or not the PTE actually changed.
187  */
188 int ptep_set_access_flags(struct vm_area_struct *vma,
189 			  unsigned long address, pte_t *ptep,
190 			  pte_t entry, int dirty)
191 {
192 	pteval_t old_pteval, pteval;
193 	pte_t pte = READ_ONCE(*ptep);
194 
195 	if (pte_same(pte, entry))
196 		return 0;
197 
198 	/* only preserve the access flags and write permission */
199 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
200 
201 	/*
202 	 * Setting the flags must be done atomically to avoid racing with the
203 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
204 	 * be set to the most permissive (lowest value) of *ptep and entry
205 	 * (calculated as: a & b == ~(~a | ~b)).
206 	 */
207 	pte_val(entry) ^= PTE_RDONLY;
208 	pteval = pte_val(pte);
209 	do {
210 		old_pteval = pteval;
211 		pteval ^= PTE_RDONLY;
212 		pteval |= pte_val(entry);
213 		pteval ^= PTE_RDONLY;
214 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
215 	} while (pteval != old_pteval);
216 
217 	flush_tlb_fix_spurious_fault(vma, address);
218 	return 1;
219 }
220 
221 static bool is_el1_instruction_abort(unsigned int esr)
222 {
223 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
224 }
225 
226 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
227 					   struct pt_regs *regs)
228 {
229 	unsigned int ec       = ESR_ELx_EC(esr);
230 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
231 
232 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
233 		return false;
234 
235 	if (fsc_type == ESR_ELx_FSC_PERM)
236 		return true;
237 
238 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
239 		return fsc_type == ESR_ELx_FSC_FAULT &&
240 			(regs->pstate & PSR_PAN_BIT);
241 
242 	return false;
243 }
244 
245 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
246 							unsigned int esr,
247 							struct pt_regs *regs)
248 {
249 	unsigned long flags;
250 	u64 par, dfsc;
251 
252 	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
253 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
254 		return false;
255 
256 	local_irq_save(flags);
257 	asm volatile("at s1e1r, %0" :: "r" (addr));
258 	isb();
259 	par = read_sysreg(par_el1);
260 	local_irq_restore(flags);
261 
262 	if (!(par & SYS_PAR_EL1_F))
263 		return false;
264 
265 	/*
266 	 * If we got a different type of fault from the AT instruction,
267 	 * treat the translation fault as spurious.
268 	 */
269 	dfsc = FIELD_PREP(SYS_PAR_EL1_FST, par);
270 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
271 }
272 
273 static void die_kernel_fault(const char *msg, unsigned long addr,
274 			     unsigned int esr, struct pt_regs *regs)
275 {
276 	bust_spinlocks(1);
277 
278 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
279 		 addr);
280 
281 	mem_abort_decode(esr);
282 
283 	show_pte(addr);
284 	die("Oops", regs, esr);
285 	bust_spinlocks(0);
286 	do_exit(SIGKILL);
287 }
288 
289 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
290 			      struct pt_regs *regs)
291 {
292 	const char *msg;
293 
294 	/*
295 	 * Are we prepared to handle this kernel fault?
296 	 * We are almost certainly not prepared to handle instruction faults.
297 	 */
298 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
299 		return;
300 
301 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
302 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
303 		return;
304 
305 	if (is_el1_permission_fault(addr, esr, regs)) {
306 		if (esr & ESR_ELx_WNR)
307 			msg = "write to read-only memory";
308 		else
309 			msg = "read from unreadable memory";
310 	} else if (addr < PAGE_SIZE) {
311 		msg = "NULL pointer dereference";
312 	} else {
313 		msg = "paging request";
314 	}
315 
316 	die_kernel_fault(msg, addr, esr, regs);
317 }
318 
319 static void set_thread_esr(unsigned long address, unsigned int esr)
320 {
321 	current->thread.fault_address = address;
322 
323 	/*
324 	 * If the faulting address is in the kernel, we must sanitize the ESR.
325 	 * From userspace's point of view, kernel-only mappings don't exist
326 	 * at all, so we report them as level 0 translation faults.
327 	 * (This is not quite the way that "no mapping there at all" behaves:
328 	 * an alignment fault not caused by the memory type would take
329 	 * precedence over translation fault for a real access to empty
330 	 * space. Unfortunately we can't easily distinguish "alignment fault
331 	 * not caused by memory type" from "alignment fault caused by memory
332 	 * type", so we ignore this wrinkle and just return the translation
333 	 * fault.)
334 	 */
335 	if (!is_ttbr0_addr(current->thread.fault_address)) {
336 		switch (ESR_ELx_EC(esr)) {
337 		case ESR_ELx_EC_DABT_LOW:
338 			/*
339 			 * These bits provide only information about the
340 			 * faulting instruction, which userspace knows already.
341 			 * We explicitly clear bits which are architecturally
342 			 * RES0 in case they are given meanings in future.
343 			 * We always report the ESR as if the fault was taken
344 			 * to EL1 and so ISV and the bits in ISS[23:14] are
345 			 * clear. (In fact it always will be a fault to EL1.)
346 			 */
347 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
348 				ESR_ELx_CM | ESR_ELx_WNR;
349 			esr |= ESR_ELx_FSC_FAULT;
350 			break;
351 		case ESR_ELx_EC_IABT_LOW:
352 			/*
353 			 * Claim a level 0 translation fault.
354 			 * All other bits are architecturally RES0 for faults
355 			 * reported with that DFSC value, so we clear them.
356 			 */
357 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
358 			esr |= ESR_ELx_FSC_FAULT;
359 			break;
360 		default:
361 			/*
362 			 * This should never happen (entry.S only brings us
363 			 * into this code for insn and data aborts from a lower
364 			 * exception level). Fail safe by not providing an ESR
365 			 * context record at all.
366 			 */
367 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
368 			esr = 0;
369 			break;
370 		}
371 	}
372 
373 	current->thread.fault_code = esr;
374 }
375 
376 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
377 {
378 	/*
379 	 * If we are in kernel mode at this point, we have no context to
380 	 * handle this fault with.
381 	 */
382 	if (user_mode(regs)) {
383 		const struct fault_info *inf = esr_to_fault_info(esr);
384 
385 		set_thread_esr(addr, esr);
386 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
387 				      inf->name);
388 	} else {
389 		__do_kernel_fault(addr, esr, regs);
390 	}
391 }
392 
393 #define VM_FAULT_BADMAP		0x010000
394 #define VM_FAULT_BADACCESS	0x020000
395 
396 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
397 			   unsigned int mm_flags, unsigned long vm_flags)
398 {
399 	struct vm_area_struct *vma = find_vma(mm, addr);
400 
401 	if (unlikely(!vma))
402 		return VM_FAULT_BADMAP;
403 
404 	/*
405 	 * Ok, we have a good vm_area for this memory access, so we can handle
406 	 * it.
407 	 */
408 	if (unlikely(vma->vm_start > addr)) {
409 		if (!(vma->vm_flags & VM_GROWSDOWN))
410 			return VM_FAULT_BADMAP;
411 		if (expand_stack(vma, addr))
412 			return VM_FAULT_BADMAP;
413 	}
414 
415 	/*
416 	 * Check that the permissions on the VMA allow for the fault which
417 	 * occurred.
418 	 */
419 	if (!(vma->vm_flags & vm_flags))
420 		return VM_FAULT_BADACCESS;
421 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
422 }
423 
424 static bool is_el0_instruction_abort(unsigned int esr)
425 {
426 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
427 }
428 
429 /*
430  * Note: not valid for EL1 DC IVAC, but we never use that such that it
431  * should fault. EL0 cannot issue DC IVAC (undef).
432  */
433 static bool is_write_abort(unsigned int esr)
434 {
435 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
436 }
437 
438 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
439 				   struct pt_regs *regs)
440 {
441 	const struct fault_info *inf;
442 	struct mm_struct *mm = current->mm;
443 	vm_fault_t fault, major = 0;
444 	unsigned long vm_flags = VM_READ | VM_WRITE;
445 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
446 
447 	if (kprobe_page_fault(regs, esr))
448 		return 0;
449 
450 	/*
451 	 * If we're in an interrupt or have no user context, we must not take
452 	 * the fault.
453 	 */
454 	if (faulthandler_disabled() || !mm)
455 		goto no_context;
456 
457 	if (user_mode(regs))
458 		mm_flags |= FAULT_FLAG_USER;
459 
460 	if (is_el0_instruction_abort(esr)) {
461 		vm_flags = VM_EXEC;
462 		mm_flags |= FAULT_FLAG_INSTRUCTION;
463 	} else if (is_write_abort(esr)) {
464 		vm_flags = VM_WRITE;
465 		mm_flags |= FAULT_FLAG_WRITE;
466 	}
467 
468 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
469 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
470 		if (regs->orig_addr_limit == KERNEL_DS)
471 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
472 					 addr, esr, regs);
473 
474 		if (is_el1_instruction_abort(esr))
475 			die_kernel_fault("execution of user memory",
476 					 addr, esr, regs);
477 
478 		if (!search_exception_tables(regs->pc))
479 			die_kernel_fault("access to user memory outside uaccess routines",
480 					 addr, esr, regs);
481 	}
482 
483 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
484 
485 	/*
486 	 * As per x86, we may deadlock here. However, since the kernel only
487 	 * validly references user space from well defined areas of the code,
488 	 * we can bug out early if this is from code which shouldn't.
489 	 */
490 	if (!down_read_trylock(&mm->mmap_sem)) {
491 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
492 			goto no_context;
493 retry:
494 		down_read(&mm->mmap_sem);
495 	} else {
496 		/*
497 		 * The above down_read_trylock() might have succeeded in which
498 		 * case, we'll have missed the might_sleep() from down_read().
499 		 */
500 		might_sleep();
501 #ifdef CONFIG_DEBUG_VM
502 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
503 			up_read(&mm->mmap_sem);
504 			goto no_context;
505 		}
506 #endif
507 	}
508 
509 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
510 	major |= fault & VM_FAULT_MAJOR;
511 
512 	if (fault & VM_FAULT_RETRY) {
513 		/*
514 		 * If we need to retry but a fatal signal is pending,
515 		 * handle the signal first. We do not need to release
516 		 * the mmap_sem because it would already be released
517 		 * in __lock_page_or_retry in mm/filemap.c.
518 		 */
519 		if (fatal_signal_pending(current)) {
520 			if (!user_mode(regs))
521 				goto no_context;
522 			return 0;
523 		}
524 
525 		/*
526 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
527 		 * starvation.
528 		 */
529 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
530 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
531 			mm_flags |= FAULT_FLAG_TRIED;
532 			goto retry;
533 		}
534 	}
535 	up_read(&mm->mmap_sem);
536 
537 	/*
538 	 * Handle the "normal" (no error) case first.
539 	 */
540 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
541 			      VM_FAULT_BADACCESS)))) {
542 		/*
543 		 * Major/minor page fault accounting is only done
544 		 * once. If we go through a retry, it is extremely
545 		 * likely that the page will be found in page cache at
546 		 * that point.
547 		 */
548 		if (major) {
549 			current->maj_flt++;
550 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
551 				      addr);
552 		} else {
553 			current->min_flt++;
554 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
555 				      addr);
556 		}
557 
558 		return 0;
559 	}
560 
561 	/*
562 	 * If we are in kernel mode at this point, we have no context to
563 	 * handle this fault with.
564 	 */
565 	if (!user_mode(regs))
566 		goto no_context;
567 
568 	if (fault & VM_FAULT_OOM) {
569 		/*
570 		 * We ran out of memory, call the OOM killer, and return to
571 		 * userspace (which will retry the fault, or kill us if we got
572 		 * oom-killed).
573 		 */
574 		pagefault_out_of_memory();
575 		return 0;
576 	}
577 
578 	inf = esr_to_fault_info(esr);
579 	set_thread_esr(addr, esr);
580 	if (fault & VM_FAULT_SIGBUS) {
581 		/*
582 		 * We had some memory, but were unable to successfully fix up
583 		 * this page fault.
584 		 */
585 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
586 				      inf->name);
587 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
588 		unsigned int lsb;
589 
590 		lsb = PAGE_SHIFT;
591 		if (fault & VM_FAULT_HWPOISON_LARGE)
592 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
593 
594 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
595 				       inf->name);
596 	} else {
597 		/*
598 		 * Something tried to access memory that isn't in our memory
599 		 * map.
600 		 */
601 		arm64_force_sig_fault(SIGSEGV,
602 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
603 				      (void __user *)addr,
604 				      inf->name);
605 	}
606 
607 	return 0;
608 
609 no_context:
610 	__do_kernel_fault(addr, esr, regs);
611 	return 0;
612 }
613 
614 static int __kprobes do_translation_fault(unsigned long addr,
615 					  unsigned int esr,
616 					  struct pt_regs *regs)
617 {
618 	if (is_ttbr0_addr(addr))
619 		return do_page_fault(addr, esr, regs);
620 
621 	do_bad_area(addr, esr, regs);
622 	return 0;
623 }
624 
625 static int do_alignment_fault(unsigned long addr, unsigned int esr,
626 			      struct pt_regs *regs)
627 {
628 	do_bad_area(addr, esr, regs);
629 	return 0;
630 }
631 
632 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
633 {
634 	return 1; /* "fault" */
635 }
636 
637 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
638 {
639 	const struct fault_info *inf;
640 	void __user *siaddr;
641 
642 	inf = esr_to_fault_info(esr);
643 
644 	/*
645 	 * Return value ignored as we rely on signal merging.
646 	 * Future patches will make this more robust.
647 	 */
648 	apei_claim_sea(regs);
649 
650 	if (esr & ESR_ELx_FnV)
651 		siaddr = NULL;
652 	else
653 		siaddr  = (void __user *)addr;
654 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
655 
656 	return 0;
657 }
658 
659 static const struct fault_info fault_info[] = {
660 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
661 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
662 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
663 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
664 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
665 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
666 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
667 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
668 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
669 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
670 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
671 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
672 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
673 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
674 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
675 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
676 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
677 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
678 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
679 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
680 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
681 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
682 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
683 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
684 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
685 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
686 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
687 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
688 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
689 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
690 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
691 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
692 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
693 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
694 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
695 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
696 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
697 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
698 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
699 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
700 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
701 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
702 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
703 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
704 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
705 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
706 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
707 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
708 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
709 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
710 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
711 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
712 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
713 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
714 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
715 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
716 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
717 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
718 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
719 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
720 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
721 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
722 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
723 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
724 };
725 
726 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
727 					 struct pt_regs *regs)
728 {
729 	const struct fault_info *inf = esr_to_fault_info(esr);
730 
731 	if (!inf->fn(addr, esr, regs))
732 		return;
733 
734 	if (!user_mode(regs)) {
735 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
736 		mem_abort_decode(esr);
737 		show_pte(addr);
738 	}
739 
740 	arm64_notify_die(inf->name, regs,
741 			 inf->sig, inf->code, (void __user *)addr, esr);
742 }
743 
744 asmlinkage void __exception do_el0_irq_bp_hardening(void)
745 {
746 	/* PC has already been checked in entry.S */
747 	arm64_apply_bp_hardening();
748 }
749 
750 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
751 						   unsigned int esr,
752 						   struct pt_regs *regs)
753 {
754 	/*
755 	 * We've taken an instruction abort from userspace and not yet
756 	 * re-enabled IRQs. If the address is a kernel address, apply
757 	 * BP hardening prior to enabling IRQs and pre-emption.
758 	 */
759 	if (!is_ttbr0_addr(addr))
760 		arm64_apply_bp_hardening();
761 
762 	local_daif_restore(DAIF_PROCCTX);
763 	do_mem_abort(addr, esr, regs);
764 }
765 
766 
767 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
768 					   unsigned int esr,
769 					   struct pt_regs *regs)
770 {
771 	if (user_mode(regs)) {
772 		if (!is_ttbr0_addr(instruction_pointer(regs)))
773 			arm64_apply_bp_hardening();
774 		local_daif_restore(DAIF_PROCCTX);
775 	}
776 
777 	arm64_notify_die("SP/PC alignment exception", regs,
778 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
779 }
780 
781 int __init early_brk64(unsigned long addr, unsigned int esr,
782 		       struct pt_regs *regs);
783 
784 /*
785  * __refdata because early_brk64 is __init, but the reference to it is
786  * clobbered at arch_initcall time.
787  * See traps.c and debug-monitors.c:debug_traps_init().
788  */
789 static struct fault_info __refdata debug_fault_info[] = {
790 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
791 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
792 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
793 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
794 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
795 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
796 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
797 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
798 };
799 
800 void __init hook_debug_fault_code(int nr,
801 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
802 				  int sig, int code, const char *name)
803 {
804 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
805 
806 	debug_fault_info[nr].fn		= fn;
807 	debug_fault_info[nr].sig	= sig;
808 	debug_fault_info[nr].code	= code;
809 	debug_fault_info[nr].name	= name;
810 }
811 
812 /*
813  * In debug exception context, we explicitly disable preemption despite
814  * having interrupts disabled.
815  * This serves two purposes: it makes it much less likely that we would
816  * accidentally schedule in exception context and it will force a warning
817  * if we somehow manage to schedule by accident.
818  */
819 static void debug_exception_enter(struct pt_regs *regs)
820 {
821 	/*
822 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
823 	 * already disabled to preserve the last enabled/disabled addresses.
824 	 */
825 	if (interrupts_enabled(regs))
826 		trace_hardirqs_off();
827 
828 	if (user_mode(regs)) {
829 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
830 	} else {
831 		/*
832 		 * We might have interrupted pretty much anything.  In
833 		 * fact, if we're a debug exception, we can even interrupt
834 		 * NMI processing. We don't want this code makes in_nmi()
835 		 * to return true, but we need to notify RCU.
836 		 */
837 		rcu_nmi_enter();
838 	}
839 
840 	preempt_disable();
841 
842 	/* This code is a bit fragile.  Test it. */
843 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
844 }
845 NOKPROBE_SYMBOL(debug_exception_enter);
846 
847 static void debug_exception_exit(struct pt_regs *regs)
848 {
849 	preempt_enable_no_resched();
850 
851 	if (!user_mode(regs))
852 		rcu_nmi_exit();
853 
854 	if (interrupts_enabled(regs))
855 		trace_hardirqs_on();
856 }
857 NOKPROBE_SYMBOL(debug_exception_exit);
858 
859 #ifdef CONFIG_ARM64_ERRATUM_1463225
860 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
861 
862 static int __exception
863 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
864 {
865 	if (user_mode(regs))
866 		return 0;
867 
868 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
869 		return 0;
870 
871 	/*
872 	 * We've taken a dummy step exception from the kernel to ensure
873 	 * that interrupts are re-enabled on the syscall path. Return back
874 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
875 	 * masked so that we can safely restore the mdscr and get on with
876 	 * handling the syscall.
877 	 */
878 	regs->pstate |= PSR_D_BIT;
879 	return 1;
880 }
881 #else
882 static int __exception
883 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
884 {
885 	return 0;
886 }
887 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
888 
889 asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
890 					       unsigned int esr,
891 					       struct pt_regs *regs)
892 {
893 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
894 	unsigned long pc = instruction_pointer(regs);
895 
896 	if (cortex_a76_erratum_1463225_debug_handler(regs))
897 		return;
898 
899 	debug_exception_enter(regs);
900 
901 	if (user_mode(regs) && !is_ttbr0_addr(pc))
902 		arm64_apply_bp_hardening();
903 
904 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
905 		arm64_notify_die(inf->name, regs,
906 				 inf->sig, inf->code, (void __user *)pc, esr);
907 	}
908 
909 	debug_exception_exit(regs);
910 }
911 NOKPROBE_SYMBOL(do_debug_exception);
912