xref: /openbmc/linux/arch/arm64/mm/fault.c (revision 8d08a4c1)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35 
36 #include <asm/bug.h>
37 #include <asm/cpufeature.h>
38 #include <asm/exception.h>
39 #include <asm/debug-monitors.h>
40 #include <asm/esr.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 
46 #include <acpi/ghes.h>
47 
48 struct fault_info {
49 	int	(*fn)(unsigned long addr, unsigned int esr,
50 		      struct pt_regs *regs);
51 	int	sig;
52 	int	code;
53 	const char *name;
54 };
55 
56 static const struct fault_info fault_info[];
57 
58 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
59 {
60 	return fault_info + (esr & 63);
61 }
62 
63 #ifdef CONFIG_KPROBES
64 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
65 {
66 	int ret = 0;
67 
68 	/* kprobe_running() needs smp_processor_id() */
69 	if (!user_mode(regs)) {
70 		preempt_disable();
71 		if (kprobe_running() && kprobe_fault_handler(regs, esr))
72 			ret = 1;
73 		preempt_enable();
74 	}
75 
76 	return ret;
77 }
78 #else
79 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
80 {
81 	return 0;
82 }
83 #endif
84 
85 /*
86  * Dump out the page tables associated with 'addr' in the currently active mm.
87  */
88 void show_pte(unsigned long addr)
89 {
90 	struct mm_struct *mm;
91 	pgd_t *pgd;
92 
93 	if (addr < TASK_SIZE) {
94 		/* TTBR0 */
95 		mm = current->active_mm;
96 		if (mm == &init_mm) {
97 			pr_alert("[%016lx] user address but active_mm is swapper\n",
98 				 addr);
99 			return;
100 		}
101 	} else if (addr >= VA_START) {
102 		/* TTBR1 */
103 		mm = &init_mm;
104 	} else {
105 		pr_alert("[%016lx] address between user and kernel address ranges\n",
106 			 addr);
107 		return;
108 	}
109 
110 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
111 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
112 		 VA_BITS, mm->pgd);
113 	pgd = pgd_offset(mm, addr);
114 	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
115 
116 	do {
117 		pud_t *pud;
118 		pmd_t *pmd;
119 		pte_t *pte;
120 
121 		if (pgd_none(*pgd) || pgd_bad(*pgd))
122 			break;
123 
124 		pud = pud_offset(pgd, addr);
125 		pr_cont(", *pud=%016llx", pud_val(*pud));
126 		if (pud_none(*pud) || pud_bad(*pud))
127 			break;
128 
129 		pmd = pmd_offset(pud, addr);
130 		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
131 		if (pmd_none(*pmd) || pmd_bad(*pmd))
132 			break;
133 
134 		pte = pte_offset_map(pmd, addr);
135 		pr_cont(", *pte=%016llx", pte_val(*pte));
136 		pte_unmap(pte);
137 	} while(0);
138 
139 	pr_cont("\n");
140 }
141 
142 #ifdef CONFIG_ARM64_HW_AFDBM
143 /*
144  * This function sets the access flags (dirty, accessed), as well as write
145  * permission, and only to a more permissive setting.
146  *
147  * It needs to cope with hardware update of the accessed/dirty state by other
148  * agents in the system and can safely skip the __sync_icache_dcache() call as,
149  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
150  *
151  * Returns whether or not the PTE actually changed.
152  */
153 int ptep_set_access_flags(struct vm_area_struct *vma,
154 			  unsigned long address, pte_t *ptep,
155 			  pte_t entry, int dirty)
156 {
157 	pteval_t old_pteval;
158 	unsigned int tmp;
159 
160 	if (pte_same(*ptep, entry))
161 		return 0;
162 
163 	/* only preserve the access flags and write permission */
164 	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
165 
166 	/*
167 	 * PTE_RDONLY is cleared by default in the asm below, so set it in
168 	 * back if necessary (read-only or clean PTE).
169 	 */
170 	if (!pte_write(entry) || !pte_sw_dirty(entry))
171 		pte_val(entry) |= PTE_RDONLY;
172 
173 	/*
174 	 * Setting the flags must be done atomically to avoid racing with the
175 	 * hardware update of the access/dirty state.
176 	 */
177 	asm volatile("//	ptep_set_access_flags\n"
178 	"	prfm	pstl1strm, %2\n"
179 	"1:	ldxr	%0, %2\n"
180 	"	and	%0, %0, %3		// clear PTE_RDONLY\n"
181 	"	orr	%0, %0, %4		// set flags\n"
182 	"	stxr	%w1, %0, %2\n"
183 	"	cbnz	%w1, 1b\n"
184 	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
185 	: "L" (~PTE_RDONLY), "r" (pte_val(entry)));
186 
187 	flush_tlb_fix_spurious_fault(vma, address);
188 	return 1;
189 }
190 #endif
191 
192 static bool is_el1_instruction_abort(unsigned int esr)
193 {
194 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
195 }
196 
197 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
198 				       unsigned long addr)
199 {
200 	unsigned int ec       = ESR_ELx_EC(esr);
201 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
202 
203 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
204 		return false;
205 
206 	if (fsc_type == ESR_ELx_FSC_PERM)
207 		return true;
208 
209 	if (addr < USER_DS && system_uses_ttbr0_pan())
210 		return fsc_type == ESR_ELx_FSC_FAULT &&
211 			(regs->pstate & PSR_PAN_BIT);
212 
213 	return false;
214 }
215 
216 /*
217  * The kernel tried to access some page that wasn't present.
218  */
219 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
220 			      struct pt_regs *regs)
221 {
222 	const char *msg;
223 
224 	/*
225 	 * Are we prepared to handle this kernel fault?
226 	 * We are almost certainly not prepared to handle instruction faults.
227 	 */
228 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
229 		return;
230 
231 	/*
232 	 * No handler, we'll have to terminate things with extreme prejudice.
233 	 */
234 	bust_spinlocks(1);
235 
236 	if (is_permission_fault(esr, regs, addr)) {
237 		if (esr & ESR_ELx_WNR)
238 			msg = "write to read-only memory";
239 		else
240 			msg = "read from unreadable memory";
241 	} else if (addr < PAGE_SIZE) {
242 		msg = "NULL pointer dereference";
243 	} else {
244 		msg = "paging request";
245 	}
246 
247 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
248 		 addr);
249 
250 	show_pte(addr);
251 	die("Oops", regs, esr);
252 	bust_spinlocks(0);
253 	do_exit(SIGKILL);
254 }
255 
256 /*
257  * Something tried to access memory that isn't in our memory map. User mode
258  * accesses just cause a SIGSEGV
259  */
260 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
261 			    unsigned int esr, unsigned int sig, int code,
262 			    struct pt_regs *regs, int fault)
263 {
264 	struct siginfo si;
265 	const struct fault_info *inf;
266 	unsigned int lsb = 0;
267 
268 	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
269 		inf = esr_to_fault_info(esr);
270 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
271 			tsk->comm, task_pid_nr(tsk), inf->name, sig,
272 			addr, esr);
273 		print_vma_addr(KERN_CONT ", in ", regs->pc);
274 		pr_cont("\n");
275 		__show_regs(regs);
276 	}
277 
278 	tsk->thread.fault_address = addr;
279 	tsk->thread.fault_code = esr;
280 	si.si_signo = sig;
281 	si.si_errno = 0;
282 	si.si_code = code;
283 	si.si_addr = (void __user *)addr;
284 	/*
285 	 * Either small page or large page may be poisoned.
286 	 * In other words, VM_FAULT_HWPOISON_LARGE and
287 	 * VM_FAULT_HWPOISON are mutually exclusive.
288 	 */
289 	if (fault & VM_FAULT_HWPOISON_LARGE)
290 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
291 	else if (fault & VM_FAULT_HWPOISON)
292 		lsb = PAGE_SHIFT;
293 	si.si_addr_lsb = lsb;
294 
295 	force_sig_info(sig, &si, tsk);
296 }
297 
298 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
299 {
300 	struct task_struct *tsk = current;
301 	const struct fault_info *inf;
302 
303 	/*
304 	 * If we are in kernel mode at this point, we have no context to
305 	 * handle this fault with.
306 	 */
307 	if (user_mode(regs)) {
308 		inf = esr_to_fault_info(esr);
309 		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
310 	} else
311 		__do_kernel_fault(addr, esr, regs);
312 }
313 
314 #define VM_FAULT_BADMAP		0x010000
315 #define VM_FAULT_BADACCESS	0x020000
316 
317 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
318 			   unsigned int mm_flags, unsigned long vm_flags,
319 			   struct task_struct *tsk)
320 {
321 	struct vm_area_struct *vma;
322 	int fault;
323 
324 	vma = find_vma(mm, addr);
325 	fault = VM_FAULT_BADMAP;
326 	if (unlikely(!vma))
327 		goto out;
328 	if (unlikely(vma->vm_start > addr))
329 		goto check_stack;
330 
331 	/*
332 	 * Ok, we have a good vm_area for this memory access, so we can handle
333 	 * it.
334 	 */
335 good_area:
336 	/*
337 	 * Check that the permissions on the VMA allow for the fault which
338 	 * occurred.
339 	 */
340 	if (!(vma->vm_flags & vm_flags)) {
341 		fault = VM_FAULT_BADACCESS;
342 		goto out;
343 	}
344 
345 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
346 
347 check_stack:
348 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
349 		goto good_area;
350 out:
351 	return fault;
352 }
353 
354 static bool is_el0_instruction_abort(unsigned int esr)
355 {
356 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
357 }
358 
359 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
360 				   struct pt_regs *regs)
361 {
362 	struct task_struct *tsk;
363 	struct mm_struct *mm;
364 	int fault, sig, code, major = 0;
365 	unsigned long vm_flags = VM_READ | VM_WRITE;
366 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
367 
368 	if (notify_page_fault(regs, esr))
369 		return 0;
370 
371 	tsk = current;
372 	mm  = tsk->mm;
373 
374 	/*
375 	 * If we're in an interrupt or have no user context, we must not take
376 	 * the fault.
377 	 */
378 	if (faulthandler_disabled() || !mm)
379 		goto no_context;
380 
381 	if (user_mode(regs))
382 		mm_flags |= FAULT_FLAG_USER;
383 
384 	if (is_el0_instruction_abort(esr)) {
385 		vm_flags = VM_EXEC;
386 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
387 		vm_flags = VM_WRITE;
388 		mm_flags |= FAULT_FLAG_WRITE;
389 	}
390 
391 	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
392 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
393 		if (regs->orig_addr_limit == KERNEL_DS)
394 			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
395 
396 		if (is_el1_instruction_abort(esr))
397 			die("Attempting to execute userspace memory", regs, esr);
398 
399 		if (!search_exception_tables(regs->pc))
400 			die("Accessing user space memory outside uaccess.h routines", regs, esr);
401 	}
402 
403 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
404 
405 	/*
406 	 * As per x86, we may deadlock here. However, since the kernel only
407 	 * validly references user space from well defined areas of the code,
408 	 * we can bug out early if this is from code which shouldn't.
409 	 */
410 	if (!down_read_trylock(&mm->mmap_sem)) {
411 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
412 			goto no_context;
413 retry:
414 		down_read(&mm->mmap_sem);
415 	} else {
416 		/*
417 		 * The above down_read_trylock() might have succeeded in which
418 		 * case, we'll have missed the might_sleep() from down_read().
419 		 */
420 		might_sleep();
421 #ifdef CONFIG_DEBUG_VM
422 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
423 			goto no_context;
424 #endif
425 	}
426 
427 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
428 	major |= fault & VM_FAULT_MAJOR;
429 
430 	if (fault & VM_FAULT_RETRY) {
431 		/*
432 		 * If we need to retry but a fatal signal is pending,
433 		 * handle the signal first. We do not need to release
434 		 * the mmap_sem because it would already be released
435 		 * in __lock_page_or_retry in mm/filemap.c.
436 		 */
437 		if (fatal_signal_pending(current))
438 			return 0;
439 
440 		/*
441 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
442 		 * starvation.
443 		 */
444 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
445 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
446 			mm_flags |= FAULT_FLAG_TRIED;
447 			goto retry;
448 		}
449 	}
450 	up_read(&mm->mmap_sem);
451 
452 	/*
453 	 * Handle the "normal" (no error) case first.
454 	 */
455 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
456 			      VM_FAULT_BADACCESS)))) {
457 		/*
458 		 * Major/minor page fault accounting is only done
459 		 * once. If we go through a retry, it is extremely
460 		 * likely that the page will be found in page cache at
461 		 * that point.
462 		 */
463 		if (major) {
464 			tsk->maj_flt++;
465 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
466 				      addr);
467 		} else {
468 			tsk->min_flt++;
469 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
470 				      addr);
471 		}
472 
473 		return 0;
474 	}
475 
476 	/*
477 	 * If we are in kernel mode at this point, we have no context to
478 	 * handle this fault with.
479 	 */
480 	if (!user_mode(regs))
481 		goto no_context;
482 
483 	if (fault & VM_FAULT_OOM) {
484 		/*
485 		 * We ran out of memory, call the OOM killer, and return to
486 		 * userspace (which will retry the fault, or kill us if we got
487 		 * oom-killed).
488 		 */
489 		pagefault_out_of_memory();
490 		return 0;
491 	}
492 
493 	if (fault & VM_FAULT_SIGBUS) {
494 		/*
495 		 * We had some memory, but were unable to successfully fix up
496 		 * this page fault.
497 		 */
498 		sig = SIGBUS;
499 		code = BUS_ADRERR;
500 	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
501 		sig = SIGBUS;
502 		code = BUS_MCEERR_AR;
503 	} else {
504 		/*
505 		 * Something tried to access memory that isn't in our memory
506 		 * map.
507 		 */
508 		sig = SIGSEGV;
509 		code = fault == VM_FAULT_BADACCESS ?
510 			SEGV_ACCERR : SEGV_MAPERR;
511 	}
512 
513 	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
514 	return 0;
515 
516 no_context:
517 	__do_kernel_fault(addr, esr, regs);
518 	return 0;
519 }
520 
521 /*
522  * First Level Translation Fault Handler
523  *
524  * We enter here because the first level page table doesn't contain a valid
525  * entry for the address.
526  *
527  * If the address is in kernel space (>= TASK_SIZE), then we are probably
528  * faulting in the vmalloc() area.
529  *
530  * If the init_task's first level page tables contains the relevant entry, we
531  * copy the it to this task.  If not, we send the process a signal, fixup the
532  * exception, or oops the kernel.
533  *
534  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
535  * or a critical region, and should only copy the information from the master
536  * page table, nothing more.
537  */
538 static int __kprobes do_translation_fault(unsigned long addr,
539 					  unsigned int esr,
540 					  struct pt_regs *regs)
541 {
542 	if (addr < TASK_SIZE)
543 		return do_page_fault(addr, esr, regs);
544 
545 	do_bad_area(addr, esr, regs);
546 	return 0;
547 }
548 
549 static int do_alignment_fault(unsigned long addr, unsigned int esr,
550 			      struct pt_regs *regs)
551 {
552 	do_bad_area(addr, esr, regs);
553 	return 0;
554 }
555 
556 /*
557  * This abort handler always returns "fault".
558  */
559 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
560 {
561 	return 1;
562 }
563 
564 /*
565  * This abort handler deals with Synchronous External Abort.
566  * It calls notifiers, and then returns "fault".
567  */
568 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
569 {
570 	struct siginfo info;
571 	const struct fault_info *inf;
572 	int ret = 0;
573 
574 	inf = esr_to_fault_info(esr);
575 	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
576 		inf->name, esr, addr);
577 
578 	/*
579 	 * Synchronous aborts may interrupt code which had interrupts masked.
580 	 * Before calling out into the wider kernel tell the interested
581 	 * subsystems.
582 	 */
583 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
584 		if (interrupts_enabled(regs))
585 			nmi_enter();
586 
587 		ret = ghes_notify_sea();
588 
589 		if (interrupts_enabled(regs))
590 			nmi_exit();
591 	}
592 
593 	info.si_signo = SIGBUS;
594 	info.si_errno = 0;
595 	info.si_code  = 0;
596 	if (esr & ESR_ELx_FnV)
597 		info.si_addr = NULL;
598 	else
599 		info.si_addr  = (void __user *)addr;
600 	arm64_notify_die("", regs, &info, esr);
601 
602 	return ret;
603 }
604 
605 static const struct fault_info fault_info[] = {
606 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
607 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
608 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
609 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
610 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
611 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
612 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
613 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
614 	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
615 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
616 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
617 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
618 	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
619 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
620 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
621 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
622 	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
623 	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
624 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
625 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
626 	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
627 	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
628 	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
629 	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
630 	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },
631 	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
632 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
633 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
634 	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},
635 	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},
636 	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},
637 	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},
638 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
639 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
640 	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
641 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
642 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
643 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
644 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
645 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
646 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
647 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
648 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
649 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
650 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
651 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
652 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
653 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
654 	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
655 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
656 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
657 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
658 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
659 	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
660 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
661 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
662 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
663 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
664 	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
665 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
666 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
667 	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
668 	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
669 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
670 };
671 
672 /*
673  * Handle Synchronous External Aborts that occur in a guest kernel.
674  *
675  * The return value will be zero if the SEA was successfully handled
676  * and non-zero if there was an error processing the error or there was
677  * no error to process.
678  */
679 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
680 {
681 	int ret = -ENOENT;
682 
683 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
684 		ret = ghes_notify_sea();
685 
686 	return ret;
687 }
688 
689 /*
690  * Dispatch a data abort to the relevant handler.
691  */
692 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
693 					 struct pt_regs *regs)
694 {
695 	const struct fault_info *inf = esr_to_fault_info(esr);
696 	struct siginfo info;
697 
698 	if (!inf->fn(addr, esr, regs))
699 		return;
700 
701 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
702 		 inf->name, esr, addr);
703 
704 	info.si_signo = inf->sig;
705 	info.si_errno = 0;
706 	info.si_code  = inf->code;
707 	info.si_addr  = (void __user *)addr;
708 	arm64_notify_die("", regs, &info, esr);
709 }
710 
711 /*
712  * Handle stack alignment exceptions.
713  */
714 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
715 					   unsigned int esr,
716 					   struct pt_regs *regs)
717 {
718 	struct siginfo info;
719 	struct task_struct *tsk = current;
720 
721 	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
722 		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
723 				    tsk->comm, task_pid_nr(tsk),
724 				    esr_get_class_string(esr), (void *)regs->pc,
725 				    (void *)regs->sp);
726 
727 	info.si_signo = SIGBUS;
728 	info.si_errno = 0;
729 	info.si_code  = BUS_ADRALN;
730 	info.si_addr  = (void __user *)addr;
731 	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
732 }
733 
734 int __init early_brk64(unsigned long addr, unsigned int esr,
735 		       struct pt_regs *regs);
736 
737 /*
738  * __refdata because early_brk64 is __init, but the reference to it is
739  * clobbered at arch_initcall time.
740  * See traps.c and debug-monitors.c:debug_traps_init().
741  */
742 static struct fault_info __refdata debug_fault_info[] = {
743 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
744 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
745 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
746 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
747 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
748 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
749 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
750 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
751 };
752 
753 void __init hook_debug_fault_code(int nr,
754 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
755 				  int sig, int code, const char *name)
756 {
757 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
758 
759 	debug_fault_info[nr].fn		= fn;
760 	debug_fault_info[nr].sig	= sig;
761 	debug_fault_info[nr].code	= code;
762 	debug_fault_info[nr].name	= name;
763 }
764 
765 asmlinkage int __exception do_debug_exception(unsigned long addr,
766 					      unsigned int esr,
767 					      struct pt_regs *regs)
768 {
769 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
770 	struct siginfo info;
771 	int rv;
772 
773 	/*
774 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
775 	 * already disabled to preserve the last enabled/disabled addresses.
776 	 */
777 	if (interrupts_enabled(regs))
778 		trace_hardirqs_off();
779 
780 	if (!inf->fn(addr, esr, regs)) {
781 		rv = 1;
782 	} else {
783 		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
784 			 inf->name, esr, addr);
785 
786 		info.si_signo = inf->sig;
787 		info.si_errno = 0;
788 		info.si_code  = inf->code;
789 		info.si_addr  = (void __user *)addr;
790 		arm64_notify_die("", regs, &info, 0);
791 		rv = 0;
792 	}
793 
794 	if (interrupts_enabled(regs))
795 		trace_hardirqs_on();
796 
797 	return rv;
798 }
799 NOKPROBE_SYMBOL(do_debug_exception);
800 
801 #ifdef CONFIG_ARM64_PAN
802 int cpu_enable_pan(void *__unused)
803 {
804 	/*
805 	 * We modify PSTATE. This won't work from irq context as the PSTATE
806 	 * is discarded once we return from the exception.
807 	 */
808 	WARN_ON_ONCE(in_interrupt());
809 
810 	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
811 	asm(SET_PSTATE_PAN(1));
812 	return 0;
813 }
814 #endif /* CONFIG_ARM64_PAN */
815