1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/kfence.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/hardirq.h> 17 #include <linux/init.h> 18 #include <linux/kasan.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/page-flags.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/highmem.h> 25 #include <linux/perf_event.h> 26 #include <linux/preempt.h> 27 #include <linux/hugetlb.h> 28 29 #include <asm/acpi.h> 30 #include <asm/bug.h> 31 #include <asm/cmpxchg.h> 32 #include <asm/cpufeature.h> 33 #include <asm/exception.h> 34 #include <asm/daifflags.h> 35 #include <asm/debug-monitors.h> 36 #include <asm/esr.h> 37 #include <asm/kprobes.h> 38 #include <asm/mte.h> 39 #include <asm/processor.h> 40 #include <asm/sysreg.h> 41 #include <asm/system_misc.h> 42 #include <asm/tlbflush.h> 43 #include <asm/traps.h> 44 45 struct fault_info { 46 int (*fn)(unsigned long far, unsigned long esr, 47 struct pt_regs *regs); 48 int sig; 49 int code; 50 const char *name; 51 }; 52 53 static const struct fault_info fault_info[]; 54 static struct fault_info debug_fault_info[]; 55 56 static inline const struct fault_info *esr_to_fault_info(unsigned long esr) 57 { 58 return fault_info + (esr & ESR_ELx_FSC); 59 } 60 61 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr) 62 { 63 return debug_fault_info + DBG_ESR_EVT(esr); 64 } 65 66 static void data_abort_decode(unsigned long esr) 67 { 68 pr_alert("Data abort info:\n"); 69 70 if (esr & ESR_ELx_ISV) { 71 pr_alert(" Access size = %u byte(s)\n", 72 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 73 pr_alert(" SSE = %lu, SRT = %lu\n", 74 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 75 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 76 pr_alert(" SF = %lu, AR = %lu\n", 77 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 78 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 79 } else { 80 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 81 } 82 83 pr_alert(" CM = %lu, WnR = %lu\n", 84 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 85 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 86 } 87 88 static void mem_abort_decode(unsigned long esr) 89 { 90 pr_alert("Mem abort info:\n"); 91 92 pr_alert(" ESR = 0x%016lx\n", esr); 93 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 94 ESR_ELx_EC(esr), esr_get_class_string(esr), 95 (esr & ESR_ELx_IL) ? 32 : 16); 96 pr_alert(" SET = %lu, FnV = %lu\n", 97 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 98 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 99 pr_alert(" EA = %lu, S1PTW = %lu\n", 100 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 101 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 102 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), 103 esr_to_fault_info(esr)->name); 104 105 if (esr_is_data_abort(esr)) 106 data_abort_decode(esr); 107 } 108 109 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 110 { 111 /* Either init_pg_dir or swapper_pg_dir */ 112 if (mm == &init_mm) 113 return __pa_symbol(mm->pgd); 114 115 return (unsigned long)virt_to_phys(mm->pgd); 116 } 117 118 /* 119 * Dump out the page tables associated with 'addr' in the currently active mm. 120 */ 121 static void show_pte(unsigned long addr) 122 { 123 struct mm_struct *mm; 124 pgd_t *pgdp; 125 pgd_t pgd; 126 127 if (is_ttbr0_addr(addr)) { 128 /* TTBR0 */ 129 mm = current->active_mm; 130 if (mm == &init_mm) { 131 pr_alert("[%016lx] user address but active_mm is swapper\n", 132 addr); 133 return; 134 } 135 } else if (is_ttbr1_addr(addr)) { 136 /* TTBR1 */ 137 mm = &init_mm; 138 } else { 139 pr_alert("[%016lx] address between user and kernel address ranges\n", 140 addr); 141 return; 142 } 143 144 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 145 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 146 vabits_actual, mm_to_pgd_phys(mm)); 147 pgdp = pgd_offset(mm, addr); 148 pgd = READ_ONCE(*pgdp); 149 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 150 151 do { 152 p4d_t *p4dp, p4d; 153 pud_t *pudp, pud; 154 pmd_t *pmdp, pmd; 155 pte_t *ptep, pte; 156 157 if (pgd_none(pgd) || pgd_bad(pgd)) 158 break; 159 160 p4dp = p4d_offset(pgdp, addr); 161 p4d = READ_ONCE(*p4dp); 162 pr_cont(", p4d=%016llx", p4d_val(p4d)); 163 if (p4d_none(p4d) || p4d_bad(p4d)) 164 break; 165 166 pudp = pud_offset(p4dp, addr); 167 pud = READ_ONCE(*pudp); 168 pr_cont(", pud=%016llx", pud_val(pud)); 169 if (pud_none(pud) || pud_bad(pud)) 170 break; 171 172 pmdp = pmd_offset(pudp, addr); 173 pmd = READ_ONCE(*pmdp); 174 pr_cont(", pmd=%016llx", pmd_val(pmd)); 175 if (pmd_none(pmd) || pmd_bad(pmd)) 176 break; 177 178 ptep = pte_offset_map(pmdp, addr); 179 pte = READ_ONCE(*ptep); 180 pr_cont(", pte=%016llx", pte_val(pte)); 181 pte_unmap(ptep); 182 } while(0); 183 184 pr_cont("\n"); 185 } 186 187 /* 188 * This function sets the access flags (dirty, accessed), as well as write 189 * permission, and only to a more permissive setting. 190 * 191 * It needs to cope with hardware update of the accessed/dirty state by other 192 * agents in the system and can safely skip the __sync_icache_dcache() call as, 193 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 194 * 195 * Returns whether or not the PTE actually changed. 196 */ 197 int ptep_set_access_flags(struct vm_area_struct *vma, 198 unsigned long address, pte_t *ptep, 199 pte_t entry, int dirty) 200 { 201 pteval_t old_pteval, pteval; 202 pte_t pte = READ_ONCE(*ptep); 203 204 if (pte_same(pte, entry)) 205 return 0; 206 207 /* only preserve the access flags and write permission */ 208 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 209 210 /* 211 * Setting the flags must be done atomically to avoid racing with the 212 * hardware update of the access/dirty state. The PTE_RDONLY bit must 213 * be set to the most permissive (lowest value) of *ptep and entry 214 * (calculated as: a & b == ~(~a | ~b)). 215 */ 216 pte_val(entry) ^= PTE_RDONLY; 217 pteval = pte_val(pte); 218 do { 219 old_pteval = pteval; 220 pteval ^= PTE_RDONLY; 221 pteval |= pte_val(entry); 222 pteval ^= PTE_RDONLY; 223 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 224 } while (pteval != old_pteval); 225 226 /* Invalidate a stale read-only entry */ 227 if (dirty) 228 flush_tlb_page(vma, address); 229 return 1; 230 } 231 232 static bool is_el1_instruction_abort(unsigned long esr) 233 { 234 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 235 } 236 237 static bool is_el1_data_abort(unsigned long esr) 238 { 239 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; 240 } 241 242 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, 243 struct pt_regs *regs) 244 { 245 unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE; 246 247 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) 248 return false; 249 250 if (fsc_type == ESR_ELx_FSC_PERM) 251 return true; 252 253 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 254 return fsc_type == ESR_ELx_FSC_FAULT && 255 (regs->pstate & PSR_PAN_BIT); 256 257 return false; 258 } 259 260 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 261 unsigned long esr, 262 struct pt_regs *regs) 263 { 264 unsigned long flags; 265 u64 par, dfsc; 266 267 if (!is_el1_data_abort(esr) || 268 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) 269 return false; 270 271 local_irq_save(flags); 272 asm volatile("at s1e1r, %0" :: "r" (addr)); 273 isb(); 274 par = read_sysreg_par(); 275 local_irq_restore(flags); 276 277 /* 278 * If we now have a valid translation, treat the translation fault as 279 * spurious. 280 */ 281 if (!(par & SYS_PAR_EL1_F)) 282 return true; 283 284 /* 285 * If we got a different type of fault from the AT instruction, 286 * treat the translation fault as spurious. 287 */ 288 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 289 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; 290 } 291 292 static void die_kernel_fault(const char *msg, unsigned long addr, 293 unsigned long esr, struct pt_regs *regs) 294 { 295 bust_spinlocks(1); 296 297 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 298 addr); 299 300 kasan_non_canonical_hook(addr); 301 302 mem_abort_decode(esr); 303 304 show_pte(addr); 305 die("Oops", regs, esr); 306 bust_spinlocks(0); 307 make_task_dead(SIGKILL); 308 } 309 310 #ifdef CONFIG_KASAN_HW_TAGS 311 static void report_tag_fault(unsigned long addr, unsigned long esr, 312 struct pt_regs *regs) 313 { 314 /* 315 * SAS bits aren't set for all faults reported in EL1, so we can't 316 * find out access size. 317 */ 318 bool is_write = !!(esr & ESR_ELx_WNR); 319 kasan_report(addr, 0, is_write, regs->pc); 320 } 321 #else 322 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 323 static inline void report_tag_fault(unsigned long addr, unsigned long esr, 324 struct pt_regs *regs) { } 325 #endif 326 327 static void do_tag_recovery(unsigned long addr, unsigned long esr, 328 struct pt_regs *regs) 329 { 330 331 report_tag_fault(addr, esr, regs); 332 333 /* 334 * Disable MTE Tag Checking on the local CPU for the current EL. 335 * It will be done lazily on the other CPUs when they will hit a 336 * tag fault. 337 */ 338 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 339 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); 340 isb(); 341 } 342 343 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) 344 { 345 unsigned long fsc = esr & ESR_ELx_FSC; 346 347 if (!is_el1_data_abort(esr)) 348 return false; 349 350 if (fsc == ESR_ELx_FSC_MTE) 351 return true; 352 353 return false; 354 } 355 356 static void __do_kernel_fault(unsigned long addr, unsigned long esr, 357 struct pt_regs *regs) 358 { 359 const char *msg; 360 361 /* 362 * Are we prepared to handle this kernel fault? 363 * We are almost certainly not prepared to handle instruction faults. 364 */ 365 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 366 return; 367 368 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 369 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 370 return; 371 372 if (is_el1_mte_sync_tag_check_fault(esr)) { 373 do_tag_recovery(addr, esr, regs); 374 375 return; 376 } 377 378 if (is_el1_permission_fault(addr, esr, regs)) { 379 if (esr & ESR_ELx_WNR) 380 msg = "write to read-only memory"; 381 else if (is_el1_instruction_abort(esr)) 382 msg = "execute from non-executable memory"; 383 else 384 msg = "read from unreadable memory"; 385 } else if (addr < PAGE_SIZE) { 386 msg = "NULL pointer dereference"; 387 } else { 388 if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) 389 return; 390 391 msg = "paging request"; 392 } 393 394 die_kernel_fault(msg, addr, esr, regs); 395 } 396 397 static void set_thread_esr(unsigned long address, unsigned long esr) 398 { 399 current->thread.fault_address = address; 400 401 /* 402 * If the faulting address is in the kernel, we must sanitize the ESR. 403 * From userspace's point of view, kernel-only mappings don't exist 404 * at all, so we report them as level 0 translation faults. 405 * (This is not quite the way that "no mapping there at all" behaves: 406 * an alignment fault not caused by the memory type would take 407 * precedence over translation fault for a real access to empty 408 * space. Unfortunately we can't easily distinguish "alignment fault 409 * not caused by memory type" from "alignment fault caused by memory 410 * type", so we ignore this wrinkle and just return the translation 411 * fault.) 412 */ 413 if (!is_ttbr0_addr(current->thread.fault_address)) { 414 switch (ESR_ELx_EC(esr)) { 415 case ESR_ELx_EC_DABT_LOW: 416 /* 417 * These bits provide only information about the 418 * faulting instruction, which userspace knows already. 419 * We explicitly clear bits which are architecturally 420 * RES0 in case they are given meanings in future. 421 * We always report the ESR as if the fault was taken 422 * to EL1 and so ISV and the bits in ISS[23:14] are 423 * clear. (In fact it always will be a fault to EL1.) 424 */ 425 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 426 ESR_ELx_CM | ESR_ELx_WNR; 427 esr |= ESR_ELx_FSC_FAULT; 428 break; 429 case ESR_ELx_EC_IABT_LOW: 430 /* 431 * Claim a level 0 translation fault. 432 * All other bits are architecturally RES0 for faults 433 * reported with that DFSC value, so we clear them. 434 */ 435 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 436 esr |= ESR_ELx_FSC_FAULT; 437 break; 438 default: 439 /* 440 * This should never happen (entry.S only brings us 441 * into this code for insn and data aborts from a lower 442 * exception level). Fail safe by not providing an ESR 443 * context record at all. 444 */ 445 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); 446 esr = 0; 447 break; 448 } 449 } 450 451 current->thread.fault_code = esr; 452 } 453 454 static void do_bad_area(unsigned long far, unsigned long esr, 455 struct pt_regs *regs) 456 { 457 unsigned long addr = untagged_addr(far); 458 459 /* 460 * If we are in kernel mode at this point, we have no context to 461 * handle this fault with. 462 */ 463 if (user_mode(regs)) { 464 const struct fault_info *inf = esr_to_fault_info(esr); 465 466 set_thread_esr(addr, esr); 467 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 468 } else { 469 __do_kernel_fault(addr, esr, regs); 470 } 471 } 472 473 #define VM_FAULT_BADMAP 0x010000 474 #define VM_FAULT_BADACCESS 0x020000 475 476 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, 477 unsigned int mm_flags, unsigned long vm_flags, 478 struct pt_regs *regs) 479 { 480 struct vm_area_struct *vma = find_vma(mm, addr); 481 482 if (unlikely(!vma)) 483 return VM_FAULT_BADMAP; 484 485 /* 486 * Ok, we have a good vm_area for this memory access, so we can handle 487 * it. 488 */ 489 if (unlikely(vma->vm_start > addr)) { 490 if (!(vma->vm_flags & VM_GROWSDOWN)) 491 return VM_FAULT_BADMAP; 492 if (expand_stack(vma, addr)) 493 return VM_FAULT_BADMAP; 494 } 495 496 /* 497 * Check that the permissions on the VMA allow for the fault which 498 * occurred. 499 */ 500 if (!(vma->vm_flags & vm_flags)) 501 return VM_FAULT_BADACCESS; 502 return handle_mm_fault(vma, addr, mm_flags, regs); 503 } 504 505 static bool is_el0_instruction_abort(unsigned long esr) 506 { 507 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 508 } 509 510 /* 511 * Note: not valid for EL1 DC IVAC, but we never use that such that it 512 * should fault. EL0 cannot issue DC IVAC (undef). 513 */ 514 static bool is_write_abort(unsigned long esr) 515 { 516 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 517 } 518 519 static int __kprobes do_page_fault(unsigned long far, unsigned long esr, 520 struct pt_regs *regs) 521 { 522 const struct fault_info *inf; 523 struct mm_struct *mm = current->mm; 524 vm_fault_t fault; 525 unsigned long vm_flags; 526 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 527 unsigned long addr = untagged_addr(far); 528 529 if (kprobe_page_fault(regs, esr)) 530 return 0; 531 532 /* 533 * If we're in an interrupt or have no user context, we must not take 534 * the fault. 535 */ 536 if (faulthandler_disabled() || !mm) 537 goto no_context; 538 539 if (user_mode(regs)) 540 mm_flags |= FAULT_FLAG_USER; 541 542 /* 543 * vm_flags tells us what bits we must have in vma->vm_flags 544 * for the fault to be benign, __do_page_fault() would check 545 * vma->vm_flags & vm_flags and returns an error if the 546 * intersection is empty 547 */ 548 if (is_el0_instruction_abort(esr)) { 549 /* It was exec fault */ 550 vm_flags = VM_EXEC; 551 mm_flags |= FAULT_FLAG_INSTRUCTION; 552 } else if (is_write_abort(esr)) { 553 /* It was write fault */ 554 vm_flags = VM_WRITE; 555 mm_flags |= FAULT_FLAG_WRITE; 556 } else { 557 /* It was read fault */ 558 vm_flags = VM_READ; 559 /* Write implies read */ 560 vm_flags |= VM_WRITE; 561 /* If EPAN is absent then exec implies read */ 562 if (!cpus_have_const_cap(ARM64_HAS_EPAN)) 563 vm_flags |= VM_EXEC; 564 } 565 566 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 567 if (is_el1_instruction_abort(esr)) 568 die_kernel_fault("execution of user memory", 569 addr, esr, regs); 570 571 if (!search_exception_tables(regs->pc)) 572 die_kernel_fault("access to user memory outside uaccess routines", 573 addr, esr, regs); 574 } 575 576 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 577 578 /* 579 * As per x86, we may deadlock here. However, since the kernel only 580 * validly references user space from well defined areas of the code, 581 * we can bug out early if this is from code which shouldn't. 582 */ 583 if (!mmap_read_trylock(mm)) { 584 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 585 goto no_context; 586 retry: 587 mmap_read_lock(mm); 588 } else { 589 /* 590 * The above mmap_read_trylock() might have succeeded in which 591 * case, we'll have missed the might_sleep() from down_read(). 592 */ 593 might_sleep(); 594 #ifdef CONFIG_DEBUG_VM 595 if (!user_mode(regs) && !search_exception_tables(regs->pc)) { 596 mmap_read_unlock(mm); 597 goto no_context; 598 } 599 #endif 600 } 601 602 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs); 603 604 /* Quick path to respond to signals */ 605 if (fault_signal_pending(fault, regs)) { 606 if (!user_mode(regs)) 607 goto no_context; 608 return 0; 609 } 610 611 /* The fault is fully completed (including releasing mmap lock) */ 612 if (fault & VM_FAULT_COMPLETED) 613 return 0; 614 615 if (fault & VM_FAULT_RETRY) { 616 mm_flags |= FAULT_FLAG_TRIED; 617 goto retry; 618 } 619 mmap_read_unlock(mm); 620 621 /* 622 * Handle the "normal" (no error) case first. 623 */ 624 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 625 VM_FAULT_BADACCESS)))) 626 return 0; 627 628 /* 629 * If we are in kernel mode at this point, we have no context to 630 * handle this fault with. 631 */ 632 if (!user_mode(regs)) 633 goto no_context; 634 635 if (fault & VM_FAULT_OOM) { 636 /* 637 * We ran out of memory, call the OOM killer, and return to 638 * userspace (which will retry the fault, or kill us if we got 639 * oom-killed). 640 */ 641 pagefault_out_of_memory(); 642 return 0; 643 } 644 645 inf = esr_to_fault_info(esr); 646 set_thread_esr(addr, esr); 647 if (fault & VM_FAULT_SIGBUS) { 648 /* 649 * We had some memory, but were unable to successfully fix up 650 * this page fault. 651 */ 652 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 653 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 654 unsigned int lsb; 655 656 lsb = PAGE_SHIFT; 657 if (fault & VM_FAULT_HWPOISON_LARGE) 658 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 659 660 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 661 } else { 662 /* 663 * Something tried to access memory that isn't in our memory 664 * map. 665 */ 666 arm64_force_sig_fault(SIGSEGV, 667 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, 668 far, inf->name); 669 } 670 671 return 0; 672 673 no_context: 674 __do_kernel_fault(addr, esr, regs); 675 return 0; 676 } 677 678 static int __kprobes do_translation_fault(unsigned long far, 679 unsigned long esr, 680 struct pt_regs *regs) 681 { 682 unsigned long addr = untagged_addr(far); 683 684 if (is_ttbr0_addr(addr)) 685 return do_page_fault(far, esr, regs); 686 687 do_bad_area(far, esr, regs); 688 return 0; 689 } 690 691 static int do_alignment_fault(unsigned long far, unsigned long esr, 692 struct pt_regs *regs) 693 { 694 do_bad_area(far, esr, regs); 695 return 0; 696 } 697 698 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) 699 { 700 return 1; /* "fault" */ 701 } 702 703 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) 704 { 705 const struct fault_info *inf; 706 unsigned long siaddr; 707 708 inf = esr_to_fault_info(esr); 709 710 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 711 /* 712 * APEI claimed this as a firmware-first notification. 713 * Some processing deferred to task_work before ret_to_user(). 714 */ 715 return 0; 716 } 717 718 if (esr & ESR_ELx_FnV) { 719 siaddr = 0; 720 } else { 721 /* 722 * The architecture specifies that the tag bits of FAR_EL1 are 723 * UNKNOWN for synchronous external aborts. Mask them out now 724 * so that userspace doesn't see them. 725 */ 726 siaddr = untagged_addr(far); 727 } 728 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 729 730 return 0; 731 } 732 733 static int do_tag_check_fault(unsigned long far, unsigned long esr, 734 struct pt_regs *regs) 735 { 736 /* 737 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 738 * for tag check faults. Set them to corresponding bits in the untagged 739 * address. 740 */ 741 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 742 do_bad_area(far, esr, regs); 743 return 0; 744 } 745 746 static const struct fault_info fault_info[] = { 747 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 748 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 749 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 750 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 751 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 752 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 753 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 754 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 755 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, 756 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 757 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 758 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 759 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, 760 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 761 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 762 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 763 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 764 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 765 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 766 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, 767 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 768 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 769 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 770 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 771 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 772 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 773 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 774 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, 775 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 776 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 777 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 778 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 779 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 780 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 781 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 782 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 783 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 784 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 785 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 786 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 787 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 788 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, 789 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 790 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, 791 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 792 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 793 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 794 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 795 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 796 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 797 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 798 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 799 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 800 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 801 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 802 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 803 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 804 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 805 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 806 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 807 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 808 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 809 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 810 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 811 }; 812 813 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) 814 { 815 const struct fault_info *inf = esr_to_fault_info(esr); 816 unsigned long addr = untagged_addr(far); 817 818 if (!inf->fn(far, esr, regs)) 819 return; 820 821 if (!user_mode(regs)) 822 die_kernel_fault(inf->name, addr, esr, regs); 823 824 /* 825 * At this point we have an unrecognized fault type whose tag bits may 826 * have been defined as UNKNOWN. Therefore we only expose the untagged 827 * address to the signal handler. 828 */ 829 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 830 } 831 NOKPROBE_SYMBOL(do_mem_abort); 832 833 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) 834 { 835 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 836 addr, esr); 837 } 838 NOKPROBE_SYMBOL(do_sp_pc_abort); 839 840 int __init early_brk64(unsigned long addr, unsigned long esr, 841 struct pt_regs *regs); 842 843 /* 844 * __refdata because early_brk64 is __init, but the reference to it is 845 * clobbered at arch_initcall time. 846 * See traps.c and debug-monitors.c:debug_traps_init(). 847 */ 848 static struct fault_info __refdata debug_fault_info[] = { 849 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 850 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 851 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 852 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 853 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 854 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 855 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 856 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 857 }; 858 859 void __init hook_debug_fault_code(int nr, 860 int (*fn)(unsigned long, unsigned long, struct pt_regs *), 861 int sig, int code, const char *name) 862 { 863 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 864 865 debug_fault_info[nr].fn = fn; 866 debug_fault_info[nr].sig = sig; 867 debug_fault_info[nr].code = code; 868 debug_fault_info[nr].name = name; 869 } 870 871 /* 872 * In debug exception context, we explicitly disable preemption despite 873 * having interrupts disabled. 874 * This serves two purposes: it makes it much less likely that we would 875 * accidentally schedule in exception context and it will force a warning 876 * if we somehow manage to schedule by accident. 877 */ 878 static void debug_exception_enter(struct pt_regs *regs) 879 { 880 preempt_disable(); 881 882 /* This code is a bit fragile. Test it. */ 883 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 884 } 885 NOKPROBE_SYMBOL(debug_exception_enter); 886 887 static void debug_exception_exit(struct pt_regs *regs) 888 { 889 preempt_enable_no_resched(); 890 } 891 NOKPROBE_SYMBOL(debug_exception_exit); 892 893 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr, 894 struct pt_regs *regs) 895 { 896 const struct fault_info *inf = esr_to_debug_fault_info(esr); 897 unsigned long pc = instruction_pointer(regs); 898 899 debug_exception_enter(regs); 900 901 if (user_mode(regs) && !is_ttbr0_addr(pc)) 902 arm64_apply_bp_hardening(); 903 904 if (inf->fn(addr_if_watchpoint, esr, regs)) { 905 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); 906 } 907 908 debug_exception_exit(regs); 909 } 910 NOKPROBE_SYMBOL(do_debug_exception); 911 912 /* 913 * Used during anonymous page fault handling. 914 */ 915 struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, 916 unsigned long vaddr) 917 { 918 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; 919 920 /* 921 * If the page is mapped with PROT_MTE, initialise the tags at the 922 * point of allocation and page zeroing as this is usually faster than 923 * separate DC ZVA and STGM. 924 */ 925 if (vma->vm_flags & VM_MTE) 926 flags |= __GFP_ZEROTAGS; 927 928 return alloc_page_vma(flags, vma, vaddr); 929 } 930 931 void tag_clear_highpage(struct page *page) 932 { 933 mte_zero_clear_page_tags(page_address(page)); 934 set_bit(PG_mte_tagged, &page->flags); 935 } 936