xref: /openbmc/linux/arch/arm64/mm/fault.c (revision 74ee0477)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35 
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 
47 #include <acpi/ghes.h>
48 
49 struct fault_info {
50 	int	(*fn)(unsigned long addr, unsigned int esr,
51 		      struct pt_regs *regs);
52 	int	sig;
53 	int	code;
54 	const char *name;
55 };
56 
57 static const struct fault_info fault_info[];
58 
59 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
60 {
61 	return fault_info + (esr & 63);
62 }
63 
64 #ifdef CONFIG_KPROBES
65 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
66 {
67 	int ret = 0;
68 
69 	/* kprobe_running() needs smp_processor_id() */
70 	if (!user_mode(regs)) {
71 		preempt_disable();
72 		if (kprobe_running() && kprobe_fault_handler(regs, esr))
73 			ret = 1;
74 		preempt_enable();
75 	}
76 
77 	return ret;
78 }
79 #else
80 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
81 {
82 	return 0;
83 }
84 #endif
85 
86 static void data_abort_decode(unsigned int esr)
87 {
88 	pr_alert("Data abort info:\n");
89 
90 	if (esr & ESR_ELx_ISV) {
91 		pr_alert("  Access size = %u byte(s)\n",
92 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
93 		pr_alert("  SSE = %lu, SRT = %lu\n",
94 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
95 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
96 		pr_alert("  SF = %lu, AR = %lu\n",
97 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
98 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
99 	} else {
100 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
101 	}
102 
103 	pr_alert("  CM = %lu, WnR = %lu\n",
104 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
105 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
106 }
107 
108 /*
109  * Decode mem abort information
110  */
111 static void mem_abort_decode(unsigned int esr)
112 {
113 	pr_alert("Mem abort info:\n");
114 
115 	pr_alert("  Exception class = %s, IL = %u bits\n",
116 		 esr_get_class_string(esr),
117 		 (esr & ESR_ELx_IL) ? 32 : 16);
118 	pr_alert("  SET = %lu, FnV = %lu\n",
119 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
120 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
121 	pr_alert("  EA = %lu, S1PTW = %lu\n",
122 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
123 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
124 
125 	if (esr_is_data_abort(esr))
126 		data_abort_decode(esr);
127 }
128 
129 /*
130  * Dump out the page tables associated with 'addr' in the currently active mm.
131  */
132 void show_pte(unsigned long addr)
133 {
134 	struct mm_struct *mm;
135 	pgd_t *pgd;
136 
137 	if (addr < TASK_SIZE) {
138 		/* TTBR0 */
139 		mm = current->active_mm;
140 		if (mm == &init_mm) {
141 			pr_alert("[%016lx] user address but active_mm is swapper\n",
142 				 addr);
143 			return;
144 		}
145 	} else if (addr >= VA_START) {
146 		/* TTBR1 */
147 		mm = &init_mm;
148 	} else {
149 		pr_alert("[%016lx] address between user and kernel address ranges\n",
150 			 addr);
151 		return;
152 	}
153 
154 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
155 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156 		 VA_BITS, mm->pgd);
157 	pgd = pgd_offset(mm, addr);
158 	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
159 
160 	do {
161 		pud_t *pud;
162 		pmd_t *pmd;
163 		pte_t *pte;
164 
165 		if (pgd_none(*pgd) || pgd_bad(*pgd))
166 			break;
167 
168 		pud = pud_offset(pgd, addr);
169 		pr_cont(", *pud=%016llx", pud_val(*pud));
170 		if (pud_none(*pud) || pud_bad(*pud))
171 			break;
172 
173 		pmd = pmd_offset(pud, addr);
174 		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
175 		if (pmd_none(*pmd) || pmd_bad(*pmd))
176 			break;
177 
178 		pte = pte_offset_map(pmd, addr);
179 		pr_cont(", *pte=%016llx", pte_val(*pte));
180 		pte_unmap(pte);
181 	} while(0);
182 
183 	pr_cont("\n");
184 }
185 
186 /*
187  * This function sets the access flags (dirty, accessed), as well as write
188  * permission, and only to a more permissive setting.
189  *
190  * It needs to cope with hardware update of the accessed/dirty state by other
191  * agents in the system and can safely skip the __sync_icache_dcache() call as,
192  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
193  *
194  * Returns whether or not the PTE actually changed.
195  */
196 int ptep_set_access_flags(struct vm_area_struct *vma,
197 			  unsigned long address, pte_t *ptep,
198 			  pte_t entry, int dirty)
199 {
200 	pteval_t old_pteval, pteval;
201 
202 	if (pte_same(*ptep, entry))
203 		return 0;
204 
205 	/* only preserve the access flags and write permission */
206 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
207 
208 	/*
209 	 * Setting the flags must be done atomically to avoid racing with the
210 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
211 	 * be set to the most permissive (lowest value) of *ptep and entry
212 	 * (calculated as: a & b == ~(~a | ~b)).
213 	 */
214 	pte_val(entry) ^= PTE_RDONLY;
215 	pteval = READ_ONCE(pte_val(*ptep));
216 	do {
217 		old_pteval = pteval;
218 		pteval ^= PTE_RDONLY;
219 		pteval |= pte_val(entry);
220 		pteval ^= PTE_RDONLY;
221 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
222 	} while (pteval != old_pteval);
223 
224 	flush_tlb_fix_spurious_fault(vma, address);
225 	return 1;
226 }
227 
228 static bool is_el1_instruction_abort(unsigned int esr)
229 {
230 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
231 }
232 
233 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
234 				       unsigned long addr)
235 {
236 	unsigned int ec       = ESR_ELx_EC(esr);
237 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
238 
239 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
240 		return false;
241 
242 	if (fsc_type == ESR_ELx_FSC_PERM)
243 		return true;
244 
245 	if (addr < USER_DS && system_uses_ttbr0_pan())
246 		return fsc_type == ESR_ELx_FSC_FAULT &&
247 			(regs->pstate & PSR_PAN_BIT);
248 
249 	return false;
250 }
251 
252 /*
253  * The kernel tried to access some page that wasn't present.
254  */
255 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
256 			      struct pt_regs *regs)
257 {
258 	const char *msg;
259 
260 	/*
261 	 * Are we prepared to handle this kernel fault?
262 	 * We are almost certainly not prepared to handle instruction faults.
263 	 */
264 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
265 		return;
266 
267 	/*
268 	 * No handler, we'll have to terminate things with extreme prejudice.
269 	 */
270 	bust_spinlocks(1);
271 
272 	if (is_permission_fault(esr, regs, addr)) {
273 		if (esr & ESR_ELx_WNR)
274 			msg = "write to read-only memory";
275 		else
276 			msg = "read from unreadable memory";
277 	} else if (addr < PAGE_SIZE) {
278 		msg = "NULL pointer dereference";
279 	} else {
280 		msg = "paging request";
281 	}
282 
283 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
284 		 addr);
285 
286 	mem_abort_decode(esr);
287 
288 	show_pte(addr);
289 	die("Oops", regs, esr);
290 	bust_spinlocks(0);
291 	do_exit(SIGKILL);
292 }
293 
294 /*
295  * Something tried to access memory that isn't in our memory map. User mode
296  * accesses just cause a SIGSEGV
297  */
298 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
299 			    unsigned int esr, unsigned int sig, int code,
300 			    struct pt_regs *regs, int fault)
301 {
302 	struct siginfo si;
303 	const struct fault_info *inf;
304 	unsigned int lsb = 0;
305 
306 	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
307 		inf = esr_to_fault_info(esr);
308 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
309 			tsk->comm, task_pid_nr(tsk), inf->name, sig,
310 			addr, esr);
311 		print_vma_addr(KERN_CONT ", in ", regs->pc);
312 		pr_cont("\n");
313 		__show_regs(regs);
314 	}
315 
316 	tsk->thread.fault_address = addr;
317 	tsk->thread.fault_code = esr;
318 	si.si_signo = sig;
319 	si.si_errno = 0;
320 	si.si_code = code;
321 	si.si_addr = (void __user *)addr;
322 	/*
323 	 * Either small page or large page may be poisoned.
324 	 * In other words, VM_FAULT_HWPOISON_LARGE and
325 	 * VM_FAULT_HWPOISON are mutually exclusive.
326 	 */
327 	if (fault & VM_FAULT_HWPOISON_LARGE)
328 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
329 	else if (fault & VM_FAULT_HWPOISON)
330 		lsb = PAGE_SHIFT;
331 	si.si_addr_lsb = lsb;
332 
333 	force_sig_info(sig, &si, tsk);
334 }
335 
336 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
337 {
338 	struct task_struct *tsk = current;
339 	const struct fault_info *inf;
340 
341 	/*
342 	 * If we are in kernel mode at this point, we have no context to
343 	 * handle this fault with.
344 	 */
345 	if (user_mode(regs)) {
346 		inf = esr_to_fault_info(esr);
347 		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
348 	} else
349 		__do_kernel_fault(addr, esr, regs);
350 }
351 
352 #define VM_FAULT_BADMAP		0x010000
353 #define VM_FAULT_BADACCESS	0x020000
354 
355 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
356 			   unsigned int mm_flags, unsigned long vm_flags,
357 			   struct task_struct *tsk)
358 {
359 	struct vm_area_struct *vma;
360 	int fault;
361 
362 	vma = find_vma(mm, addr);
363 	fault = VM_FAULT_BADMAP;
364 	if (unlikely(!vma))
365 		goto out;
366 	if (unlikely(vma->vm_start > addr))
367 		goto check_stack;
368 
369 	/*
370 	 * Ok, we have a good vm_area for this memory access, so we can handle
371 	 * it.
372 	 */
373 good_area:
374 	/*
375 	 * Check that the permissions on the VMA allow for the fault which
376 	 * occurred.
377 	 */
378 	if (!(vma->vm_flags & vm_flags)) {
379 		fault = VM_FAULT_BADACCESS;
380 		goto out;
381 	}
382 
383 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
384 
385 check_stack:
386 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
387 		goto good_area;
388 out:
389 	return fault;
390 }
391 
392 static bool is_el0_instruction_abort(unsigned int esr)
393 {
394 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
395 }
396 
397 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
398 				   struct pt_regs *regs)
399 {
400 	struct task_struct *tsk;
401 	struct mm_struct *mm;
402 	int fault, sig, code, major = 0;
403 	unsigned long vm_flags = VM_READ | VM_WRITE;
404 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
405 
406 	if (notify_page_fault(regs, esr))
407 		return 0;
408 
409 	tsk = current;
410 	mm  = tsk->mm;
411 
412 	/*
413 	 * If we're in an interrupt or have no user context, we must not take
414 	 * the fault.
415 	 */
416 	if (faulthandler_disabled() || !mm)
417 		goto no_context;
418 
419 	if (user_mode(regs))
420 		mm_flags |= FAULT_FLAG_USER;
421 
422 	if (is_el0_instruction_abort(esr)) {
423 		vm_flags = VM_EXEC;
424 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
425 		vm_flags = VM_WRITE;
426 		mm_flags |= FAULT_FLAG_WRITE;
427 	}
428 
429 	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
430 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
431 		if (regs->orig_addr_limit == KERNEL_DS)
432 			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
433 
434 		if (is_el1_instruction_abort(esr))
435 			die("Attempting to execute userspace memory", regs, esr);
436 
437 		if (!search_exception_tables(regs->pc))
438 			die("Accessing user space memory outside uaccess.h routines", regs, esr);
439 	}
440 
441 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
442 
443 	/*
444 	 * As per x86, we may deadlock here. However, since the kernel only
445 	 * validly references user space from well defined areas of the code,
446 	 * we can bug out early if this is from code which shouldn't.
447 	 */
448 	if (!down_read_trylock(&mm->mmap_sem)) {
449 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
450 			goto no_context;
451 retry:
452 		down_read(&mm->mmap_sem);
453 	} else {
454 		/*
455 		 * The above down_read_trylock() might have succeeded in which
456 		 * case, we'll have missed the might_sleep() from down_read().
457 		 */
458 		might_sleep();
459 #ifdef CONFIG_DEBUG_VM
460 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
461 			goto no_context;
462 #endif
463 	}
464 
465 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
466 	major |= fault & VM_FAULT_MAJOR;
467 
468 	if (fault & VM_FAULT_RETRY) {
469 		/*
470 		 * If we need to retry but a fatal signal is pending,
471 		 * handle the signal first. We do not need to release
472 		 * the mmap_sem because it would already be released
473 		 * in __lock_page_or_retry in mm/filemap.c.
474 		 */
475 		if (fatal_signal_pending(current)) {
476 			if (!user_mode(regs))
477 				goto no_context;
478 			return 0;
479 		}
480 
481 		/*
482 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
483 		 * starvation.
484 		 */
485 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
486 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
487 			mm_flags |= FAULT_FLAG_TRIED;
488 			goto retry;
489 		}
490 	}
491 	up_read(&mm->mmap_sem);
492 
493 	/*
494 	 * Handle the "normal" (no error) case first.
495 	 */
496 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
497 			      VM_FAULT_BADACCESS)))) {
498 		/*
499 		 * Major/minor page fault accounting is only done
500 		 * once. If we go through a retry, it is extremely
501 		 * likely that the page will be found in page cache at
502 		 * that point.
503 		 */
504 		if (major) {
505 			tsk->maj_flt++;
506 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
507 				      addr);
508 		} else {
509 			tsk->min_flt++;
510 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
511 				      addr);
512 		}
513 
514 		return 0;
515 	}
516 
517 	/*
518 	 * If we are in kernel mode at this point, we have no context to
519 	 * handle this fault with.
520 	 */
521 	if (!user_mode(regs))
522 		goto no_context;
523 
524 	if (fault & VM_FAULT_OOM) {
525 		/*
526 		 * We ran out of memory, call the OOM killer, and return to
527 		 * userspace (which will retry the fault, or kill us if we got
528 		 * oom-killed).
529 		 */
530 		pagefault_out_of_memory();
531 		return 0;
532 	}
533 
534 	if (fault & VM_FAULT_SIGBUS) {
535 		/*
536 		 * We had some memory, but were unable to successfully fix up
537 		 * this page fault.
538 		 */
539 		sig = SIGBUS;
540 		code = BUS_ADRERR;
541 	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
542 		sig = SIGBUS;
543 		code = BUS_MCEERR_AR;
544 	} else {
545 		/*
546 		 * Something tried to access memory that isn't in our memory
547 		 * map.
548 		 */
549 		sig = SIGSEGV;
550 		code = fault == VM_FAULT_BADACCESS ?
551 			SEGV_ACCERR : SEGV_MAPERR;
552 	}
553 
554 	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
555 	return 0;
556 
557 no_context:
558 	__do_kernel_fault(addr, esr, regs);
559 	return 0;
560 }
561 
562 /*
563  * First Level Translation Fault Handler
564  *
565  * We enter here because the first level page table doesn't contain a valid
566  * entry for the address.
567  *
568  * If the address is in kernel space (>= TASK_SIZE), then we are probably
569  * faulting in the vmalloc() area.
570  *
571  * If the init_task's first level page tables contains the relevant entry, we
572  * copy the it to this task.  If not, we send the process a signal, fixup the
573  * exception, or oops the kernel.
574  *
575  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
576  * or a critical region, and should only copy the information from the master
577  * page table, nothing more.
578  */
579 static int __kprobes do_translation_fault(unsigned long addr,
580 					  unsigned int esr,
581 					  struct pt_regs *regs)
582 {
583 	if (addr < TASK_SIZE)
584 		return do_page_fault(addr, esr, regs);
585 
586 	do_bad_area(addr, esr, regs);
587 	return 0;
588 }
589 
590 static int do_alignment_fault(unsigned long addr, unsigned int esr,
591 			      struct pt_regs *regs)
592 {
593 	do_bad_area(addr, esr, regs);
594 	return 0;
595 }
596 
597 /*
598  * This abort handler always returns "fault".
599  */
600 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
601 {
602 	return 1;
603 }
604 
605 /*
606  * This abort handler deals with Synchronous External Abort.
607  * It calls notifiers, and then returns "fault".
608  */
609 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
610 {
611 	struct siginfo info;
612 	const struct fault_info *inf;
613 	int ret = 0;
614 
615 	inf = esr_to_fault_info(esr);
616 	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
617 		inf->name, esr, addr);
618 
619 	/*
620 	 * Synchronous aborts may interrupt code which had interrupts masked.
621 	 * Before calling out into the wider kernel tell the interested
622 	 * subsystems.
623 	 */
624 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
625 		if (interrupts_enabled(regs))
626 			nmi_enter();
627 
628 		ret = ghes_notify_sea();
629 
630 		if (interrupts_enabled(regs))
631 			nmi_exit();
632 	}
633 
634 	info.si_signo = SIGBUS;
635 	info.si_errno = 0;
636 	info.si_code  = 0;
637 	if (esr & ESR_ELx_FnV)
638 		info.si_addr = NULL;
639 	else
640 		info.si_addr  = (void __user *)addr;
641 	arm64_notify_die("", regs, &info, esr);
642 
643 	return ret;
644 }
645 
646 static const struct fault_info fault_info[] = {
647 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
648 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
649 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
650 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
651 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
652 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
653 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
654 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
655 	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
656 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
657 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
658 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
659 	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
660 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
661 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
662 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
663 	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
664 	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
665 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
666 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
667 	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
668 	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
669 	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
670 	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
671 	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },
672 	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
673 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
674 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
675 	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},
676 	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},
677 	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},
678 	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},
679 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
680 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
681 	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
682 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
683 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
684 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
685 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
686 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
687 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
688 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
689 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
690 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
691 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
692 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
693 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
694 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
695 	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
696 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
697 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
698 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
699 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
700 	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
701 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
702 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
703 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
704 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
705 	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
706 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
707 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
708 	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
709 	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
710 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
711 };
712 
713 /*
714  * Handle Synchronous External Aborts that occur in a guest kernel.
715  *
716  * The return value will be zero if the SEA was successfully handled
717  * and non-zero if there was an error processing the error or there was
718  * no error to process.
719  */
720 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
721 {
722 	int ret = -ENOENT;
723 
724 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
725 		ret = ghes_notify_sea();
726 
727 	return ret;
728 }
729 
730 /*
731  * Dispatch a data abort to the relevant handler.
732  */
733 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
734 					 struct pt_regs *regs)
735 {
736 	const struct fault_info *inf = esr_to_fault_info(esr);
737 	struct siginfo info;
738 
739 	if (!inf->fn(addr, esr, regs))
740 		return;
741 
742 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
743 		 inf->name, esr, addr);
744 
745 	mem_abort_decode(esr);
746 
747 	info.si_signo = inf->sig;
748 	info.si_errno = 0;
749 	info.si_code  = inf->code;
750 	info.si_addr  = (void __user *)addr;
751 	arm64_notify_die("", regs, &info, esr);
752 }
753 
754 /*
755  * Handle stack alignment exceptions.
756  */
757 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
758 					   unsigned int esr,
759 					   struct pt_regs *regs)
760 {
761 	struct siginfo info;
762 	struct task_struct *tsk = current;
763 
764 	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
765 		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
766 				    tsk->comm, task_pid_nr(tsk),
767 				    esr_get_class_string(esr), (void *)regs->pc,
768 				    (void *)regs->sp);
769 
770 	info.si_signo = SIGBUS;
771 	info.si_errno = 0;
772 	info.si_code  = BUS_ADRALN;
773 	info.si_addr  = (void __user *)addr;
774 	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
775 }
776 
777 int __init early_brk64(unsigned long addr, unsigned int esr,
778 		       struct pt_regs *regs);
779 
780 /*
781  * __refdata because early_brk64 is __init, but the reference to it is
782  * clobbered at arch_initcall time.
783  * See traps.c and debug-monitors.c:debug_traps_init().
784  */
785 static struct fault_info __refdata debug_fault_info[] = {
786 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
787 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
788 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
789 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
790 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
791 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
792 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
793 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
794 };
795 
796 void __init hook_debug_fault_code(int nr,
797 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
798 				  int sig, int code, const char *name)
799 {
800 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
801 
802 	debug_fault_info[nr].fn		= fn;
803 	debug_fault_info[nr].sig	= sig;
804 	debug_fault_info[nr].code	= code;
805 	debug_fault_info[nr].name	= name;
806 }
807 
808 asmlinkage int __exception do_debug_exception(unsigned long addr,
809 					      unsigned int esr,
810 					      struct pt_regs *regs)
811 {
812 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
813 	struct siginfo info;
814 	int rv;
815 
816 	/*
817 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
818 	 * already disabled to preserve the last enabled/disabled addresses.
819 	 */
820 	if (interrupts_enabled(regs))
821 		trace_hardirqs_off();
822 
823 	if (!inf->fn(addr, esr, regs)) {
824 		rv = 1;
825 	} else {
826 		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
827 			 inf->name, esr, addr);
828 
829 		info.si_signo = inf->sig;
830 		info.si_errno = 0;
831 		info.si_code  = inf->code;
832 		info.si_addr  = (void __user *)addr;
833 		arm64_notify_die("", regs, &info, 0);
834 		rv = 0;
835 	}
836 
837 	if (interrupts_enabled(regs))
838 		trace_hardirqs_on();
839 
840 	return rv;
841 }
842 NOKPROBE_SYMBOL(do_debug_exception);
843 
844 #ifdef CONFIG_ARM64_PAN
845 int cpu_enable_pan(void *__unused)
846 {
847 	/*
848 	 * We modify PSTATE. This won't work from irq context as the PSTATE
849 	 * is discarded once we return from the exception.
850 	 */
851 	WARN_ON_ONCE(in_interrupt());
852 
853 	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
854 	asm(SET_PSTATE_PAN(1));
855 	return 0;
856 }
857 #endif /* CONFIG_ARM64_PAN */
858