xref: /openbmc/linux/arch/arm64/mm/fault.c (revision 65417d9f)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35 
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 
47 #include <acpi/ghes.h>
48 
49 struct fault_info {
50 	int	(*fn)(unsigned long addr, unsigned int esr,
51 		      struct pt_regs *regs);
52 	int	sig;
53 	int	code;
54 	const char *name;
55 };
56 
57 static const struct fault_info fault_info[];
58 
59 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
60 {
61 	return fault_info + (esr & 63);
62 }
63 
64 #ifdef CONFIG_KPROBES
65 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
66 {
67 	int ret = 0;
68 
69 	/* kprobe_running() needs smp_processor_id() */
70 	if (!user_mode(regs)) {
71 		preempt_disable();
72 		if (kprobe_running() && kprobe_fault_handler(regs, esr))
73 			ret = 1;
74 		preempt_enable();
75 	}
76 
77 	return ret;
78 }
79 #else
80 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
81 {
82 	return 0;
83 }
84 #endif
85 
86 static void data_abort_decode(unsigned int esr)
87 {
88 	pr_alert("Data abort info:\n");
89 
90 	if (esr & ESR_ELx_ISV) {
91 		pr_alert("  Access size = %u byte(s)\n",
92 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
93 		pr_alert("  SSE = %lu, SRT = %lu\n",
94 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
95 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
96 		pr_alert("  SF = %lu, AR = %lu\n",
97 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
98 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
99 	} else {
100 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
101 	}
102 
103 	pr_alert("  CM = %lu, WnR = %lu\n",
104 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
105 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
106 }
107 
108 static void mem_abort_decode(unsigned int esr)
109 {
110 	pr_alert("Mem abort info:\n");
111 
112 	pr_alert("  ESR = 0x%08x\n", esr);
113 	pr_alert("  Exception class = %s, IL = %u bits\n",
114 		 esr_get_class_string(esr),
115 		 (esr & ESR_ELx_IL) ? 32 : 16);
116 	pr_alert("  SET = %lu, FnV = %lu\n",
117 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
118 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
119 	pr_alert("  EA = %lu, S1PTW = %lu\n",
120 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
121 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
122 
123 	if (esr_is_data_abort(esr))
124 		data_abort_decode(esr);
125 }
126 
127 /*
128  * Dump out the page tables associated with 'addr' in the currently active mm.
129  */
130 void show_pte(unsigned long addr)
131 {
132 	struct mm_struct *mm;
133 	pgd_t *pgd;
134 
135 	if (addr < TASK_SIZE) {
136 		/* TTBR0 */
137 		mm = current->active_mm;
138 		if (mm == &init_mm) {
139 			pr_alert("[%016lx] user address but active_mm is swapper\n",
140 				 addr);
141 			return;
142 		}
143 	} else if (addr >= VA_START) {
144 		/* TTBR1 */
145 		mm = &init_mm;
146 	} else {
147 		pr_alert("[%016lx] address between user and kernel address ranges\n",
148 			 addr);
149 		return;
150 	}
151 
152 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
153 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
154 		 VA_BITS, mm->pgd);
155 	pgd = pgd_offset(mm, addr);
156 	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
157 
158 	do {
159 		pud_t *pud;
160 		pmd_t *pmd;
161 		pte_t *pte;
162 
163 		if (pgd_none(*pgd) || pgd_bad(*pgd))
164 			break;
165 
166 		pud = pud_offset(pgd, addr);
167 		pr_cont(", *pud=%016llx", pud_val(*pud));
168 		if (pud_none(*pud) || pud_bad(*pud))
169 			break;
170 
171 		pmd = pmd_offset(pud, addr);
172 		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
173 		if (pmd_none(*pmd) || pmd_bad(*pmd))
174 			break;
175 
176 		pte = pte_offset_map(pmd, addr);
177 		pr_cont(", *pte=%016llx", pte_val(*pte));
178 		pte_unmap(pte);
179 	} while(0);
180 
181 	pr_cont("\n");
182 }
183 
184 /*
185  * This function sets the access flags (dirty, accessed), as well as write
186  * permission, and only to a more permissive setting.
187  *
188  * It needs to cope with hardware update of the accessed/dirty state by other
189  * agents in the system and can safely skip the __sync_icache_dcache() call as,
190  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
191  *
192  * Returns whether or not the PTE actually changed.
193  */
194 int ptep_set_access_flags(struct vm_area_struct *vma,
195 			  unsigned long address, pte_t *ptep,
196 			  pte_t entry, int dirty)
197 {
198 	pteval_t old_pteval, pteval;
199 
200 	if (pte_same(*ptep, entry))
201 		return 0;
202 
203 	/* only preserve the access flags and write permission */
204 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
205 
206 	/*
207 	 * Setting the flags must be done atomically to avoid racing with the
208 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
209 	 * be set to the most permissive (lowest value) of *ptep and entry
210 	 * (calculated as: a & b == ~(~a | ~b)).
211 	 */
212 	pte_val(entry) ^= PTE_RDONLY;
213 	pteval = READ_ONCE(pte_val(*ptep));
214 	do {
215 		old_pteval = pteval;
216 		pteval ^= PTE_RDONLY;
217 		pteval |= pte_val(entry);
218 		pteval ^= PTE_RDONLY;
219 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
220 	} while (pteval != old_pteval);
221 
222 	flush_tlb_fix_spurious_fault(vma, address);
223 	return 1;
224 }
225 
226 static bool is_el1_instruction_abort(unsigned int esr)
227 {
228 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
229 }
230 
231 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
232 				       unsigned long addr)
233 {
234 	unsigned int ec       = ESR_ELx_EC(esr);
235 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
236 
237 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
238 		return false;
239 
240 	if (fsc_type == ESR_ELx_FSC_PERM)
241 		return true;
242 
243 	if (addr < USER_DS && system_uses_ttbr0_pan())
244 		return fsc_type == ESR_ELx_FSC_FAULT &&
245 			(regs->pstate & PSR_PAN_BIT);
246 
247 	return false;
248 }
249 
250 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
251 			      struct pt_regs *regs)
252 {
253 	const char *msg;
254 
255 	/*
256 	 * Are we prepared to handle this kernel fault?
257 	 * We are almost certainly not prepared to handle instruction faults.
258 	 */
259 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
260 		return;
261 
262 	bust_spinlocks(1);
263 
264 	if (is_permission_fault(esr, regs, addr)) {
265 		if (esr & ESR_ELx_WNR)
266 			msg = "write to read-only memory";
267 		else
268 			msg = "read from unreadable memory";
269 	} else if (addr < PAGE_SIZE) {
270 		msg = "NULL pointer dereference";
271 	} else {
272 		msg = "paging request";
273 	}
274 
275 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
276 		 addr);
277 
278 	mem_abort_decode(esr);
279 
280 	show_pte(addr);
281 	die("Oops", regs, esr);
282 	bust_spinlocks(0);
283 	do_exit(SIGKILL);
284 }
285 
286 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
287 			    unsigned int esr, unsigned int sig, int code,
288 			    struct pt_regs *regs, int fault)
289 {
290 	struct siginfo si;
291 	const struct fault_info *inf;
292 	unsigned int lsb = 0;
293 
294 	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
295 		inf = esr_to_fault_info(esr);
296 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
297 			tsk->comm, task_pid_nr(tsk), inf->name, sig,
298 			addr, esr);
299 		print_vma_addr(KERN_CONT ", in ", regs->pc);
300 		pr_cont("\n");
301 		__show_regs(regs);
302 	}
303 
304 	tsk->thread.fault_address = addr;
305 	tsk->thread.fault_code = esr;
306 	si.si_signo = sig;
307 	si.si_errno = 0;
308 	si.si_code = code;
309 	si.si_addr = (void __user *)addr;
310 	/*
311 	 * Either small page or large page may be poisoned.
312 	 * In other words, VM_FAULT_HWPOISON_LARGE and
313 	 * VM_FAULT_HWPOISON are mutually exclusive.
314 	 */
315 	if (fault & VM_FAULT_HWPOISON_LARGE)
316 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
317 	else if (fault & VM_FAULT_HWPOISON)
318 		lsb = PAGE_SHIFT;
319 	si.si_addr_lsb = lsb;
320 
321 	force_sig_info(sig, &si, tsk);
322 }
323 
324 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
325 {
326 	struct task_struct *tsk = current;
327 	const struct fault_info *inf;
328 
329 	/*
330 	 * If we are in kernel mode at this point, we have no context to
331 	 * handle this fault with.
332 	 */
333 	if (user_mode(regs)) {
334 		inf = esr_to_fault_info(esr);
335 		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
336 	} else
337 		__do_kernel_fault(addr, esr, regs);
338 }
339 
340 #define VM_FAULT_BADMAP		0x010000
341 #define VM_FAULT_BADACCESS	0x020000
342 
343 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
344 			   unsigned int mm_flags, unsigned long vm_flags,
345 			   struct task_struct *tsk)
346 {
347 	struct vm_area_struct *vma;
348 	int fault;
349 
350 	vma = find_vma(mm, addr);
351 	fault = VM_FAULT_BADMAP;
352 	if (unlikely(!vma))
353 		goto out;
354 	if (unlikely(vma->vm_start > addr))
355 		goto check_stack;
356 
357 	/*
358 	 * Ok, we have a good vm_area for this memory access, so we can handle
359 	 * it.
360 	 */
361 good_area:
362 	/*
363 	 * Check that the permissions on the VMA allow for the fault which
364 	 * occurred.
365 	 */
366 	if (!(vma->vm_flags & vm_flags)) {
367 		fault = VM_FAULT_BADACCESS;
368 		goto out;
369 	}
370 
371 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
372 
373 check_stack:
374 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
375 		goto good_area;
376 out:
377 	return fault;
378 }
379 
380 static bool is_el0_instruction_abort(unsigned int esr)
381 {
382 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
383 }
384 
385 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
386 				   struct pt_regs *regs)
387 {
388 	struct task_struct *tsk;
389 	struct mm_struct *mm;
390 	int fault, sig, code, major = 0;
391 	unsigned long vm_flags = VM_READ | VM_WRITE;
392 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
393 
394 	if (notify_page_fault(regs, esr))
395 		return 0;
396 
397 	tsk = current;
398 	mm  = tsk->mm;
399 
400 	/*
401 	 * If we're in an interrupt or have no user context, we must not take
402 	 * the fault.
403 	 */
404 	if (faulthandler_disabled() || !mm)
405 		goto no_context;
406 
407 	if (user_mode(regs))
408 		mm_flags |= FAULT_FLAG_USER;
409 
410 	if (is_el0_instruction_abort(esr)) {
411 		vm_flags = VM_EXEC;
412 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
413 		vm_flags = VM_WRITE;
414 		mm_flags |= FAULT_FLAG_WRITE;
415 	}
416 
417 	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
418 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
419 		if (regs->orig_addr_limit == KERNEL_DS)
420 			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
421 
422 		if (is_el1_instruction_abort(esr))
423 			die("Attempting to execute userspace memory", regs, esr);
424 
425 		if (!search_exception_tables(regs->pc))
426 			die("Accessing user space memory outside uaccess.h routines", regs, esr);
427 	}
428 
429 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
430 
431 	/*
432 	 * As per x86, we may deadlock here. However, since the kernel only
433 	 * validly references user space from well defined areas of the code,
434 	 * we can bug out early if this is from code which shouldn't.
435 	 */
436 	if (!down_read_trylock(&mm->mmap_sem)) {
437 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
438 			goto no_context;
439 retry:
440 		down_read(&mm->mmap_sem);
441 	} else {
442 		/*
443 		 * The above down_read_trylock() might have succeeded in which
444 		 * case, we'll have missed the might_sleep() from down_read().
445 		 */
446 		might_sleep();
447 #ifdef CONFIG_DEBUG_VM
448 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
449 			goto no_context;
450 #endif
451 	}
452 
453 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
454 	major |= fault & VM_FAULT_MAJOR;
455 
456 	if (fault & VM_FAULT_RETRY) {
457 		/*
458 		 * If we need to retry but a fatal signal is pending,
459 		 * handle the signal first. We do not need to release
460 		 * the mmap_sem because it would already be released
461 		 * in __lock_page_or_retry in mm/filemap.c.
462 		 */
463 		if (fatal_signal_pending(current)) {
464 			if (!user_mode(regs))
465 				goto no_context;
466 			return 0;
467 		}
468 
469 		/*
470 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
471 		 * starvation.
472 		 */
473 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
474 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
475 			mm_flags |= FAULT_FLAG_TRIED;
476 			goto retry;
477 		}
478 	}
479 	up_read(&mm->mmap_sem);
480 
481 	/*
482 	 * Handle the "normal" (no error) case first.
483 	 */
484 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
485 			      VM_FAULT_BADACCESS)))) {
486 		/*
487 		 * Major/minor page fault accounting is only done
488 		 * once. If we go through a retry, it is extremely
489 		 * likely that the page will be found in page cache at
490 		 * that point.
491 		 */
492 		if (major) {
493 			tsk->maj_flt++;
494 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
495 				      addr);
496 		} else {
497 			tsk->min_flt++;
498 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
499 				      addr);
500 		}
501 
502 		return 0;
503 	}
504 
505 	/*
506 	 * If we are in kernel mode at this point, we have no context to
507 	 * handle this fault with.
508 	 */
509 	if (!user_mode(regs))
510 		goto no_context;
511 
512 	if (fault & VM_FAULT_OOM) {
513 		/*
514 		 * We ran out of memory, call the OOM killer, and return to
515 		 * userspace (which will retry the fault, or kill us if we got
516 		 * oom-killed).
517 		 */
518 		pagefault_out_of_memory();
519 		return 0;
520 	}
521 
522 	if (fault & VM_FAULT_SIGBUS) {
523 		/*
524 		 * We had some memory, but were unable to successfully fix up
525 		 * this page fault.
526 		 */
527 		sig = SIGBUS;
528 		code = BUS_ADRERR;
529 	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
530 		sig = SIGBUS;
531 		code = BUS_MCEERR_AR;
532 	} else {
533 		/*
534 		 * Something tried to access memory that isn't in our memory
535 		 * map.
536 		 */
537 		sig = SIGSEGV;
538 		code = fault == VM_FAULT_BADACCESS ?
539 			SEGV_ACCERR : SEGV_MAPERR;
540 	}
541 
542 	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
543 	return 0;
544 
545 no_context:
546 	__do_kernel_fault(addr, esr, regs);
547 	return 0;
548 }
549 
550 static int __kprobes do_translation_fault(unsigned long addr,
551 					  unsigned int esr,
552 					  struct pt_regs *regs)
553 {
554 	if (addr < TASK_SIZE)
555 		return do_page_fault(addr, esr, regs);
556 
557 	do_bad_area(addr, esr, regs);
558 	return 0;
559 }
560 
561 static int do_alignment_fault(unsigned long addr, unsigned int esr,
562 			      struct pt_regs *regs)
563 {
564 	do_bad_area(addr, esr, regs);
565 	return 0;
566 }
567 
568 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
569 {
570 	return 1; /* "fault" */
571 }
572 
573 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
574 {
575 	struct siginfo info;
576 	const struct fault_info *inf;
577 	int ret = 0;
578 
579 	inf = esr_to_fault_info(esr);
580 	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
581 		inf->name, esr, addr);
582 
583 	/*
584 	 * Synchronous aborts may interrupt code which had interrupts masked.
585 	 * Before calling out into the wider kernel tell the interested
586 	 * subsystems.
587 	 */
588 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
589 		if (interrupts_enabled(regs))
590 			nmi_enter();
591 
592 		ret = ghes_notify_sea();
593 
594 		if (interrupts_enabled(regs))
595 			nmi_exit();
596 	}
597 
598 	info.si_signo = SIGBUS;
599 	info.si_errno = 0;
600 	info.si_code  = 0;
601 	if (esr & ESR_ELx_FnV)
602 		info.si_addr = NULL;
603 	else
604 		info.si_addr  = (void __user *)addr;
605 	arm64_notify_die("", regs, &info, esr);
606 
607 	return ret;
608 }
609 
610 static const struct fault_info fault_info[] = {
611 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
612 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
613 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
614 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
615 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
616 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
617 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
618 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
619 	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
620 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
621 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
622 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
623 	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
624 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
625 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
626 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
627 	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
628 	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
629 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
630 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
631 	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
632 	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
633 	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
634 	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
635 	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },	// Reserved when RAS is implemented
636 	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
637 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
638 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
639 	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
640 	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
641 	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
642 	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
643 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
644 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
645 	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
646 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
647 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
648 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
649 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
650 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
651 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
652 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
653 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
654 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
655 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
656 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
657 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
658 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
659 	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
660 	{ do_bad,		SIGBUS,  0,		"Unsupported atomic hardware update fault"	},
661 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
662 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
663 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
664 	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
665 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
666 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
667 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
668 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
669 	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
670 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
671 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
672 	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
673 	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
674 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
675 };
676 
677 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
678 {
679 	int ret = -ENOENT;
680 
681 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
682 		ret = ghes_notify_sea();
683 
684 	return ret;
685 }
686 
687 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
688 					 struct pt_regs *regs)
689 {
690 	const struct fault_info *inf = esr_to_fault_info(esr);
691 	struct siginfo info;
692 
693 	if (!inf->fn(addr, esr, regs))
694 		return;
695 
696 	pr_alert("Unhandled fault: %s at 0x%016lx\n",
697 		 inf->name, addr);
698 
699 	mem_abort_decode(esr);
700 
701 	if (!user_mode(regs))
702 		show_pte(addr);
703 
704 	info.si_signo = inf->sig;
705 	info.si_errno = 0;
706 	info.si_code  = inf->code;
707 	info.si_addr  = (void __user *)addr;
708 	arm64_notify_die("", regs, &info, esr);
709 }
710 
711 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
712 					   unsigned int esr,
713 					   struct pt_regs *regs)
714 {
715 	struct siginfo info;
716 	struct task_struct *tsk = current;
717 
718 	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
719 		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
720 				    tsk->comm, task_pid_nr(tsk),
721 				    esr_get_class_string(esr), (void *)regs->pc,
722 				    (void *)regs->sp);
723 
724 	info.si_signo = SIGBUS;
725 	info.si_errno = 0;
726 	info.si_code  = BUS_ADRALN;
727 	info.si_addr  = (void __user *)addr;
728 	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
729 }
730 
731 int __init early_brk64(unsigned long addr, unsigned int esr,
732 		       struct pt_regs *regs);
733 
734 /*
735  * __refdata because early_brk64 is __init, but the reference to it is
736  * clobbered at arch_initcall time.
737  * See traps.c and debug-monitors.c:debug_traps_init().
738  */
739 static struct fault_info __refdata debug_fault_info[] = {
740 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
741 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
742 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
743 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
744 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
745 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
746 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
747 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
748 };
749 
750 void __init hook_debug_fault_code(int nr,
751 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
752 				  int sig, int code, const char *name)
753 {
754 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
755 
756 	debug_fault_info[nr].fn		= fn;
757 	debug_fault_info[nr].sig	= sig;
758 	debug_fault_info[nr].code	= code;
759 	debug_fault_info[nr].name	= name;
760 }
761 
762 asmlinkage int __exception do_debug_exception(unsigned long addr,
763 					      unsigned int esr,
764 					      struct pt_regs *regs)
765 {
766 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
767 	struct siginfo info;
768 	int rv;
769 
770 	/*
771 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
772 	 * already disabled to preserve the last enabled/disabled addresses.
773 	 */
774 	if (interrupts_enabled(regs))
775 		trace_hardirqs_off();
776 
777 	if (!inf->fn(addr, esr, regs)) {
778 		rv = 1;
779 	} else {
780 		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
781 			 inf->name, esr, addr);
782 
783 		info.si_signo = inf->sig;
784 		info.si_errno = 0;
785 		info.si_code  = inf->code;
786 		info.si_addr  = (void __user *)addr;
787 		arm64_notify_die("", regs, &info, 0);
788 		rv = 0;
789 	}
790 
791 	if (interrupts_enabled(regs))
792 		trace_hardirqs_on();
793 
794 	return rv;
795 }
796 NOKPROBE_SYMBOL(do_debug_exception);
797 
798 #ifdef CONFIG_ARM64_PAN
799 int cpu_enable_pan(void *__unused)
800 {
801 	/*
802 	 * We modify PSTATE. This won't work from irq context as the PSTATE
803 	 * is discarded once we return from the exception.
804 	 */
805 	WARN_ON_ONCE(in_interrupt());
806 
807 	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
808 	asm(SET_PSTATE_PAN(1));
809 	return 0;
810 }
811 #endif /* CONFIG_ARM64_PAN */
812