1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/hardirq.h> 16 #include <linux/init.h> 17 #include <linux/kprobes.h> 18 #include <linux/uaccess.h> 19 #include <linux/page-flags.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/debug.h> 22 #include <linux/highmem.h> 23 #include <linux/perf_event.h> 24 #include <linux/preempt.h> 25 #include <linux/hugetlb.h> 26 27 #include <asm/acpi.h> 28 #include <asm/bug.h> 29 #include <asm/cmpxchg.h> 30 #include <asm/cpufeature.h> 31 #include <asm/exception.h> 32 #include <asm/daifflags.h> 33 #include <asm/debug-monitors.h> 34 #include <asm/esr.h> 35 #include <asm/kprobes.h> 36 #include <asm/processor.h> 37 #include <asm/sysreg.h> 38 #include <asm/system_misc.h> 39 #include <asm/tlbflush.h> 40 #include <asm/traps.h> 41 42 struct fault_info { 43 int (*fn)(unsigned long addr, unsigned int esr, 44 struct pt_regs *regs); 45 int sig; 46 int code; 47 const char *name; 48 }; 49 50 static const struct fault_info fault_info[]; 51 static struct fault_info debug_fault_info[]; 52 53 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 54 { 55 return fault_info + (esr & ESR_ELx_FSC); 56 } 57 58 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr) 59 { 60 return debug_fault_info + DBG_ESR_EVT(esr); 61 } 62 63 static void data_abort_decode(unsigned int esr) 64 { 65 pr_alert("Data abort info:\n"); 66 67 if (esr & ESR_ELx_ISV) { 68 pr_alert(" Access size = %u byte(s)\n", 69 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 70 pr_alert(" SSE = %lu, SRT = %lu\n", 71 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 72 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 73 pr_alert(" SF = %lu, AR = %lu\n", 74 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 75 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 76 } else { 77 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 78 } 79 80 pr_alert(" CM = %lu, WnR = %lu\n", 81 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 82 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 83 } 84 85 static void mem_abort_decode(unsigned int esr) 86 { 87 pr_alert("Mem abort info:\n"); 88 89 pr_alert(" ESR = 0x%08x\n", esr); 90 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 91 ESR_ELx_EC(esr), esr_get_class_string(esr), 92 (esr & ESR_ELx_IL) ? 32 : 16); 93 pr_alert(" SET = %lu, FnV = %lu\n", 94 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 95 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 96 pr_alert(" EA = %lu, S1PTW = %lu\n", 97 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 98 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 99 100 if (esr_is_data_abort(esr)) 101 data_abort_decode(esr); 102 } 103 104 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 105 { 106 /* Either init_pg_dir or swapper_pg_dir */ 107 if (mm == &init_mm) 108 return __pa_symbol(mm->pgd); 109 110 return (unsigned long)virt_to_phys(mm->pgd); 111 } 112 113 /* 114 * Dump out the page tables associated with 'addr' in the currently active mm. 115 */ 116 static void show_pte(unsigned long addr) 117 { 118 struct mm_struct *mm; 119 pgd_t *pgdp; 120 pgd_t pgd; 121 122 if (is_ttbr0_addr(addr)) { 123 /* TTBR0 */ 124 mm = current->active_mm; 125 if (mm == &init_mm) { 126 pr_alert("[%016lx] user address but active_mm is swapper\n", 127 addr); 128 return; 129 } 130 } else if (is_ttbr1_addr(addr)) { 131 /* TTBR1 */ 132 mm = &init_mm; 133 } else { 134 pr_alert("[%016lx] address between user and kernel address ranges\n", 135 addr); 136 return; 137 } 138 139 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 140 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 141 vabits_actual, mm_to_pgd_phys(mm)); 142 pgdp = pgd_offset(mm, addr); 143 pgd = READ_ONCE(*pgdp); 144 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 145 146 do { 147 p4d_t *p4dp, p4d; 148 pud_t *pudp, pud; 149 pmd_t *pmdp, pmd; 150 pte_t *ptep, pte; 151 152 if (pgd_none(pgd) || pgd_bad(pgd)) 153 break; 154 155 p4dp = p4d_offset(pgdp, addr); 156 p4d = READ_ONCE(*p4dp); 157 pr_cont(", p4d=%016llx", p4d_val(p4d)); 158 if (p4d_none(p4d) || p4d_bad(p4d)) 159 break; 160 161 pudp = pud_offset(p4dp, addr); 162 pud = READ_ONCE(*pudp); 163 pr_cont(", pud=%016llx", pud_val(pud)); 164 if (pud_none(pud) || pud_bad(pud)) 165 break; 166 167 pmdp = pmd_offset(pudp, addr); 168 pmd = READ_ONCE(*pmdp); 169 pr_cont(", pmd=%016llx", pmd_val(pmd)); 170 if (pmd_none(pmd) || pmd_bad(pmd)) 171 break; 172 173 ptep = pte_offset_map(pmdp, addr); 174 pte = READ_ONCE(*ptep); 175 pr_cont(", pte=%016llx", pte_val(pte)); 176 pte_unmap(ptep); 177 } while(0); 178 179 pr_cont("\n"); 180 } 181 182 /* 183 * This function sets the access flags (dirty, accessed), as well as write 184 * permission, and only to a more permissive setting. 185 * 186 * It needs to cope with hardware update of the accessed/dirty state by other 187 * agents in the system and can safely skip the __sync_icache_dcache() call as, 188 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 189 * 190 * Returns whether or not the PTE actually changed. 191 */ 192 int ptep_set_access_flags(struct vm_area_struct *vma, 193 unsigned long address, pte_t *ptep, 194 pte_t entry, int dirty) 195 { 196 pteval_t old_pteval, pteval; 197 pte_t pte = READ_ONCE(*ptep); 198 199 if (pte_same(pte, entry)) 200 return 0; 201 202 /* only preserve the access flags and write permission */ 203 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 204 205 /* 206 * Setting the flags must be done atomically to avoid racing with the 207 * hardware update of the access/dirty state. The PTE_RDONLY bit must 208 * be set to the most permissive (lowest value) of *ptep and entry 209 * (calculated as: a & b == ~(~a | ~b)). 210 */ 211 pte_val(entry) ^= PTE_RDONLY; 212 pteval = pte_val(pte); 213 do { 214 old_pteval = pteval; 215 pteval ^= PTE_RDONLY; 216 pteval |= pte_val(entry); 217 pteval ^= PTE_RDONLY; 218 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 219 } while (pteval != old_pteval); 220 221 /* Invalidate a stale read-only entry */ 222 if (dirty) 223 flush_tlb_page(vma, address); 224 return 1; 225 } 226 227 static bool is_el1_instruction_abort(unsigned int esr) 228 { 229 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 230 } 231 232 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr, 233 struct pt_regs *regs) 234 { 235 unsigned int ec = ESR_ELx_EC(esr); 236 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 237 238 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 239 return false; 240 241 if (fsc_type == ESR_ELx_FSC_PERM) 242 return true; 243 244 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 245 return fsc_type == ESR_ELx_FSC_FAULT && 246 (regs->pstate & PSR_PAN_BIT); 247 248 return false; 249 } 250 251 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 252 unsigned int esr, 253 struct pt_regs *regs) 254 { 255 unsigned long flags; 256 u64 par, dfsc; 257 258 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR || 259 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) 260 return false; 261 262 local_irq_save(flags); 263 asm volatile("at s1e1r, %0" :: "r" (addr)); 264 isb(); 265 par = read_sysreg(par_el1); 266 local_irq_restore(flags); 267 268 /* 269 * If we now have a valid translation, treat the translation fault as 270 * spurious. 271 */ 272 if (!(par & SYS_PAR_EL1_F)) 273 return true; 274 275 /* 276 * If we got a different type of fault from the AT instruction, 277 * treat the translation fault as spurious. 278 */ 279 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 280 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; 281 } 282 283 static void die_kernel_fault(const char *msg, unsigned long addr, 284 unsigned int esr, struct pt_regs *regs) 285 { 286 bust_spinlocks(1); 287 288 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 289 addr); 290 291 mem_abort_decode(esr); 292 293 show_pte(addr); 294 die("Oops", regs, esr); 295 bust_spinlocks(0); 296 do_exit(SIGKILL); 297 } 298 299 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 300 struct pt_regs *regs) 301 { 302 const char *msg; 303 304 /* 305 * Are we prepared to handle this kernel fault? 306 * We are almost certainly not prepared to handle instruction faults. 307 */ 308 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 309 return; 310 311 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 312 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 313 return; 314 315 if (is_el1_permission_fault(addr, esr, regs)) { 316 if (esr & ESR_ELx_WNR) 317 msg = "write to read-only memory"; 318 else if (is_el1_instruction_abort(esr)) 319 msg = "execute from non-executable memory"; 320 else 321 msg = "read from unreadable memory"; 322 } else if (addr < PAGE_SIZE) { 323 msg = "NULL pointer dereference"; 324 } else { 325 msg = "paging request"; 326 } 327 328 die_kernel_fault(msg, addr, esr, regs); 329 } 330 331 static void set_thread_esr(unsigned long address, unsigned int esr) 332 { 333 current->thread.fault_address = address; 334 335 /* 336 * If the faulting address is in the kernel, we must sanitize the ESR. 337 * From userspace's point of view, kernel-only mappings don't exist 338 * at all, so we report them as level 0 translation faults. 339 * (This is not quite the way that "no mapping there at all" behaves: 340 * an alignment fault not caused by the memory type would take 341 * precedence over translation fault for a real access to empty 342 * space. Unfortunately we can't easily distinguish "alignment fault 343 * not caused by memory type" from "alignment fault caused by memory 344 * type", so we ignore this wrinkle and just return the translation 345 * fault.) 346 */ 347 if (!is_ttbr0_addr(current->thread.fault_address)) { 348 switch (ESR_ELx_EC(esr)) { 349 case ESR_ELx_EC_DABT_LOW: 350 /* 351 * These bits provide only information about the 352 * faulting instruction, which userspace knows already. 353 * We explicitly clear bits which are architecturally 354 * RES0 in case they are given meanings in future. 355 * We always report the ESR as if the fault was taken 356 * to EL1 and so ISV and the bits in ISS[23:14] are 357 * clear. (In fact it always will be a fault to EL1.) 358 */ 359 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 360 ESR_ELx_CM | ESR_ELx_WNR; 361 esr |= ESR_ELx_FSC_FAULT; 362 break; 363 case ESR_ELx_EC_IABT_LOW: 364 /* 365 * Claim a level 0 translation fault. 366 * All other bits are architecturally RES0 for faults 367 * reported with that DFSC value, so we clear them. 368 */ 369 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 370 esr |= ESR_ELx_FSC_FAULT; 371 break; 372 default: 373 /* 374 * This should never happen (entry.S only brings us 375 * into this code for insn and data aborts from a lower 376 * exception level). Fail safe by not providing an ESR 377 * context record at all. 378 */ 379 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); 380 esr = 0; 381 break; 382 } 383 } 384 385 current->thread.fault_code = esr; 386 } 387 388 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 389 { 390 /* 391 * If we are in kernel mode at this point, we have no context to 392 * handle this fault with. 393 */ 394 if (user_mode(regs)) { 395 const struct fault_info *inf = esr_to_fault_info(esr); 396 397 set_thread_esr(addr, esr); 398 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr, 399 inf->name); 400 } else { 401 __do_kernel_fault(addr, esr, regs); 402 } 403 } 404 405 #define VM_FAULT_BADMAP 0x010000 406 #define VM_FAULT_BADACCESS 0x020000 407 408 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, 409 unsigned int mm_flags, unsigned long vm_flags, 410 struct pt_regs *regs) 411 { 412 struct vm_area_struct *vma = find_vma(mm, addr); 413 414 if (unlikely(!vma)) 415 return VM_FAULT_BADMAP; 416 417 /* 418 * Ok, we have a good vm_area for this memory access, so we can handle 419 * it. 420 */ 421 if (unlikely(vma->vm_start > addr)) { 422 if (!(vma->vm_flags & VM_GROWSDOWN)) 423 return VM_FAULT_BADMAP; 424 if (expand_stack(vma, addr)) 425 return VM_FAULT_BADMAP; 426 } 427 428 /* 429 * Check that the permissions on the VMA allow for the fault which 430 * occurred. 431 */ 432 if (!(vma->vm_flags & vm_flags)) 433 return VM_FAULT_BADACCESS; 434 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs); 435 } 436 437 static bool is_el0_instruction_abort(unsigned int esr) 438 { 439 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 440 } 441 442 /* 443 * Note: not valid for EL1 DC IVAC, but we never use that such that it 444 * should fault. EL0 cannot issue DC IVAC (undef). 445 */ 446 static bool is_write_abort(unsigned int esr) 447 { 448 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 449 } 450 451 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 452 struct pt_regs *regs) 453 { 454 const struct fault_info *inf; 455 struct mm_struct *mm = current->mm; 456 vm_fault_t fault; 457 unsigned long vm_flags = VM_ACCESS_FLAGS; 458 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 459 460 if (kprobe_page_fault(regs, esr)) 461 return 0; 462 463 /* 464 * If we're in an interrupt or have no user context, we must not take 465 * the fault. 466 */ 467 if (faulthandler_disabled() || !mm) 468 goto no_context; 469 470 if (user_mode(regs)) 471 mm_flags |= FAULT_FLAG_USER; 472 473 if (is_el0_instruction_abort(esr)) { 474 vm_flags = VM_EXEC; 475 mm_flags |= FAULT_FLAG_INSTRUCTION; 476 } else if (is_write_abort(esr)) { 477 vm_flags = VM_WRITE; 478 mm_flags |= FAULT_FLAG_WRITE; 479 } 480 481 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 482 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 483 if (regs->orig_addr_limit == KERNEL_DS) 484 die_kernel_fault("access to user memory with fs=KERNEL_DS", 485 addr, esr, regs); 486 487 if (is_el1_instruction_abort(esr)) 488 die_kernel_fault("execution of user memory", 489 addr, esr, regs); 490 491 if (!search_exception_tables(regs->pc)) 492 die_kernel_fault("access to user memory outside uaccess routines", 493 addr, esr, regs); 494 } 495 496 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 497 498 /* 499 * As per x86, we may deadlock here. However, since the kernel only 500 * validly references user space from well defined areas of the code, 501 * we can bug out early if this is from code which shouldn't. 502 */ 503 if (!mmap_read_trylock(mm)) { 504 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 505 goto no_context; 506 retry: 507 mmap_read_lock(mm); 508 } else { 509 /* 510 * The above down_read_trylock() might have succeeded in which 511 * case, we'll have missed the might_sleep() from down_read(). 512 */ 513 might_sleep(); 514 #ifdef CONFIG_DEBUG_VM 515 if (!user_mode(regs) && !search_exception_tables(regs->pc)) { 516 mmap_read_unlock(mm); 517 goto no_context; 518 } 519 #endif 520 } 521 522 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs); 523 524 /* Quick path to respond to signals */ 525 if (fault_signal_pending(fault, regs)) { 526 if (!user_mode(regs)) 527 goto no_context; 528 return 0; 529 } 530 531 if (fault & VM_FAULT_RETRY) { 532 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 533 mm_flags |= FAULT_FLAG_TRIED; 534 goto retry; 535 } 536 } 537 mmap_read_unlock(mm); 538 539 /* 540 * Handle the "normal" (no error) case first. 541 */ 542 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 543 VM_FAULT_BADACCESS)))) 544 return 0; 545 546 /* 547 * If we are in kernel mode at this point, we have no context to 548 * handle this fault with. 549 */ 550 if (!user_mode(regs)) 551 goto no_context; 552 553 if (fault & VM_FAULT_OOM) { 554 /* 555 * We ran out of memory, call the OOM killer, and return to 556 * userspace (which will retry the fault, or kill us if we got 557 * oom-killed). 558 */ 559 pagefault_out_of_memory(); 560 return 0; 561 } 562 563 inf = esr_to_fault_info(esr); 564 set_thread_esr(addr, esr); 565 if (fault & VM_FAULT_SIGBUS) { 566 /* 567 * We had some memory, but were unable to successfully fix up 568 * this page fault. 569 */ 570 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr, 571 inf->name); 572 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 573 unsigned int lsb; 574 575 lsb = PAGE_SHIFT; 576 if (fault & VM_FAULT_HWPOISON_LARGE) 577 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 578 579 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb, 580 inf->name); 581 } else { 582 /* 583 * Something tried to access memory that isn't in our memory 584 * map. 585 */ 586 arm64_force_sig_fault(SIGSEGV, 587 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, 588 (void __user *)addr, 589 inf->name); 590 } 591 592 return 0; 593 594 no_context: 595 __do_kernel_fault(addr, esr, regs); 596 return 0; 597 } 598 599 static int __kprobes do_translation_fault(unsigned long addr, 600 unsigned int esr, 601 struct pt_regs *regs) 602 { 603 if (is_ttbr0_addr(addr)) 604 return do_page_fault(addr, esr, regs); 605 606 do_bad_area(addr, esr, regs); 607 return 0; 608 } 609 610 static int do_alignment_fault(unsigned long addr, unsigned int esr, 611 struct pt_regs *regs) 612 { 613 do_bad_area(addr, esr, regs); 614 return 0; 615 } 616 617 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 618 { 619 return 1; /* "fault" */ 620 } 621 622 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) 623 { 624 const struct fault_info *inf; 625 void __user *siaddr; 626 627 inf = esr_to_fault_info(esr); 628 629 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 630 /* 631 * APEI claimed this as a firmware-first notification. 632 * Some processing deferred to task_work before ret_to_user(). 633 */ 634 return 0; 635 } 636 637 if (esr & ESR_ELx_FnV) 638 siaddr = NULL; 639 else 640 siaddr = (void __user *)addr; 641 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 642 643 return 0; 644 } 645 646 static int do_tag_check_fault(unsigned long addr, unsigned int esr, 647 struct pt_regs *regs) 648 { 649 do_bad_area(addr, esr, regs); 650 return 0; 651 } 652 653 static const struct fault_info fault_info[] = { 654 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 655 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 656 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 657 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 658 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 659 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 660 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 661 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 662 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, 663 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 666 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, 667 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 668 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 669 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 670 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 671 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 672 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 673 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, 674 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 675 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 676 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 677 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 678 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 679 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 680 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 681 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, 682 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 683 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 684 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 685 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 686 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 687 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 688 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 689 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 690 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 691 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 692 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 693 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 694 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 695 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, 696 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 697 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, 698 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 699 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 700 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 701 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 702 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 703 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 704 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 705 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 706 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 707 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 708 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 709 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 710 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 711 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 712 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 713 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 714 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 715 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 716 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 717 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 718 }; 719 720 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 721 { 722 const struct fault_info *inf = esr_to_fault_info(esr); 723 724 if (!inf->fn(addr, esr, regs)) 725 return; 726 727 if (!user_mode(regs)) { 728 pr_alert("Unhandled fault at 0x%016lx\n", addr); 729 mem_abort_decode(esr); 730 show_pte(addr); 731 } 732 733 arm64_notify_die(inf->name, regs, 734 inf->sig, inf->code, (void __user *)addr, esr); 735 } 736 NOKPROBE_SYMBOL(do_mem_abort); 737 738 void do_el0_irq_bp_hardening(void) 739 { 740 /* PC has already been checked in entry.S */ 741 arm64_apply_bp_hardening(); 742 } 743 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening); 744 745 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 746 { 747 arm64_notify_die("SP/PC alignment exception", regs, 748 SIGBUS, BUS_ADRALN, (void __user *)addr, esr); 749 } 750 NOKPROBE_SYMBOL(do_sp_pc_abort); 751 752 int __init early_brk64(unsigned long addr, unsigned int esr, 753 struct pt_regs *regs); 754 755 /* 756 * __refdata because early_brk64 is __init, but the reference to it is 757 * clobbered at arch_initcall time. 758 * See traps.c and debug-monitors.c:debug_traps_init(). 759 */ 760 static struct fault_info __refdata debug_fault_info[] = { 761 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 762 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 763 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 764 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 765 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 766 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 767 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 768 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 769 }; 770 771 void __init hook_debug_fault_code(int nr, 772 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 773 int sig, int code, const char *name) 774 { 775 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 776 777 debug_fault_info[nr].fn = fn; 778 debug_fault_info[nr].sig = sig; 779 debug_fault_info[nr].code = code; 780 debug_fault_info[nr].name = name; 781 } 782 783 /* 784 * In debug exception context, we explicitly disable preemption despite 785 * having interrupts disabled. 786 * This serves two purposes: it makes it much less likely that we would 787 * accidentally schedule in exception context and it will force a warning 788 * if we somehow manage to schedule by accident. 789 */ 790 static void debug_exception_enter(struct pt_regs *regs) 791 { 792 /* 793 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 794 * already disabled to preserve the last enabled/disabled addresses. 795 */ 796 if (interrupts_enabled(regs)) 797 trace_hardirqs_off(); 798 799 if (user_mode(regs)) { 800 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 801 } else { 802 /* 803 * We might have interrupted pretty much anything. In 804 * fact, if we're a debug exception, we can even interrupt 805 * NMI processing. We don't want this code makes in_nmi() 806 * to return true, but we need to notify RCU. 807 */ 808 rcu_nmi_enter(); 809 } 810 811 preempt_disable(); 812 813 /* This code is a bit fragile. Test it. */ 814 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 815 } 816 NOKPROBE_SYMBOL(debug_exception_enter); 817 818 static void debug_exception_exit(struct pt_regs *regs) 819 { 820 preempt_enable_no_resched(); 821 822 if (!user_mode(regs)) 823 rcu_nmi_exit(); 824 825 if (interrupts_enabled(regs)) 826 trace_hardirqs_on(); 827 } 828 NOKPROBE_SYMBOL(debug_exception_exit); 829 830 #ifdef CONFIG_ARM64_ERRATUM_1463225 831 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 832 833 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 834 { 835 if (user_mode(regs)) 836 return 0; 837 838 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 839 return 0; 840 841 /* 842 * We've taken a dummy step exception from the kernel to ensure 843 * that interrupts are re-enabled on the syscall path. Return back 844 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 845 * masked so that we can safely restore the mdscr and get on with 846 * handling the syscall. 847 */ 848 regs->pstate |= PSR_D_BIT; 849 return 1; 850 } 851 #else 852 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 853 { 854 return 0; 855 } 856 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 857 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler); 858 859 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr, 860 struct pt_regs *regs) 861 { 862 const struct fault_info *inf = esr_to_debug_fault_info(esr); 863 unsigned long pc = instruction_pointer(regs); 864 865 if (cortex_a76_erratum_1463225_debug_handler(regs)) 866 return; 867 868 debug_exception_enter(regs); 869 870 if (user_mode(regs) && !is_ttbr0_addr(pc)) 871 arm64_apply_bp_hardening(); 872 873 if (inf->fn(addr_if_watchpoint, esr, regs)) { 874 arm64_notify_die(inf->name, regs, 875 inf->sig, inf->code, (void __user *)pc, esr); 876 } 877 878 debug_exception_exit(regs); 879 } 880 NOKPROBE_SYMBOL(do_debug_exception); 881