xref: /openbmc/linux/arch/arm64/mm/fault.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35 
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/daifflags.h>
41 #include <asm/debug-monitors.h>
42 #include <asm/esr.h>
43 #include <asm/sysreg.h>
44 #include <asm/system_misc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/traps.h>
48 
49 #include <acpi/ghes.h>
50 
51 struct fault_info {
52 	int	(*fn)(unsigned long addr, unsigned int esr,
53 		      struct pt_regs *regs);
54 	int	sig;
55 	int	code;
56 	const char *name;
57 };
58 
59 static const struct fault_info fault_info[];
60 static struct fault_info debug_fault_info[];
61 
62 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
63 {
64 	return fault_info + (esr & ESR_ELx_FSC);
65 }
66 
67 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
68 {
69 	return debug_fault_info + DBG_ESR_EVT(esr);
70 }
71 
72 #ifdef CONFIG_KPROBES
73 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
74 {
75 	int ret = 0;
76 
77 	/* kprobe_running() needs smp_processor_id() */
78 	if (!user_mode(regs)) {
79 		preempt_disable();
80 		if (kprobe_running() && kprobe_fault_handler(regs, esr))
81 			ret = 1;
82 		preempt_enable();
83 	}
84 
85 	return ret;
86 }
87 #else
88 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
89 {
90 	return 0;
91 }
92 #endif
93 
94 static void data_abort_decode(unsigned int esr)
95 {
96 	pr_alert("Data abort info:\n");
97 
98 	if (esr & ESR_ELx_ISV) {
99 		pr_alert("  Access size = %u byte(s)\n",
100 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
101 		pr_alert("  SSE = %lu, SRT = %lu\n",
102 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
103 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
104 		pr_alert("  SF = %lu, AR = %lu\n",
105 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
106 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
107 	} else {
108 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
109 	}
110 
111 	pr_alert("  CM = %lu, WnR = %lu\n",
112 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
113 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
114 }
115 
116 static void mem_abort_decode(unsigned int esr)
117 {
118 	pr_alert("Mem abort info:\n");
119 
120 	pr_alert("  ESR = 0x%08x\n", esr);
121 	pr_alert("  Exception class = %s, IL = %u bits\n",
122 		 esr_get_class_string(esr),
123 		 (esr & ESR_ELx_IL) ? 32 : 16);
124 	pr_alert("  SET = %lu, FnV = %lu\n",
125 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
126 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
127 	pr_alert("  EA = %lu, S1PTW = %lu\n",
128 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
129 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
130 
131 	if (esr_is_data_abort(esr))
132 		data_abort_decode(esr);
133 }
134 
135 /*
136  * Dump out the page tables associated with 'addr' in the currently active mm.
137  */
138 void show_pte(unsigned long addr)
139 {
140 	struct mm_struct *mm;
141 	pgd_t *pgdp;
142 	pgd_t pgd;
143 
144 	if (addr < TASK_SIZE) {
145 		/* TTBR0 */
146 		mm = current->active_mm;
147 		if (mm == &init_mm) {
148 			pr_alert("[%016lx] user address but active_mm is swapper\n",
149 				 addr);
150 			return;
151 		}
152 	} else if (addr >= VA_START) {
153 		/* TTBR1 */
154 		mm = &init_mm;
155 	} else {
156 		pr_alert("[%016lx] address between user and kernel address ranges\n",
157 			 addr);
158 		return;
159 	}
160 
161 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
162 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
163 		 VA_BITS, mm->pgd);
164 	pgdp = pgd_offset(mm, addr);
165 	pgd = READ_ONCE(*pgdp);
166 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
167 
168 	do {
169 		pud_t *pudp, pud;
170 		pmd_t *pmdp, pmd;
171 		pte_t *ptep, pte;
172 
173 		if (pgd_none(pgd) || pgd_bad(pgd))
174 			break;
175 
176 		pudp = pud_offset(pgdp, addr);
177 		pud = READ_ONCE(*pudp);
178 		pr_cont(", pud=%016llx", pud_val(pud));
179 		if (pud_none(pud) || pud_bad(pud))
180 			break;
181 
182 		pmdp = pmd_offset(pudp, addr);
183 		pmd = READ_ONCE(*pmdp);
184 		pr_cont(", pmd=%016llx", pmd_val(pmd));
185 		if (pmd_none(pmd) || pmd_bad(pmd))
186 			break;
187 
188 		ptep = pte_offset_map(pmdp, addr);
189 		pte = READ_ONCE(*ptep);
190 		pr_cont(", pte=%016llx", pte_val(pte));
191 		pte_unmap(ptep);
192 	} while(0);
193 
194 	pr_cont("\n");
195 }
196 
197 /*
198  * This function sets the access flags (dirty, accessed), as well as write
199  * permission, and only to a more permissive setting.
200  *
201  * It needs to cope with hardware update of the accessed/dirty state by other
202  * agents in the system and can safely skip the __sync_icache_dcache() call as,
203  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
204  *
205  * Returns whether or not the PTE actually changed.
206  */
207 int ptep_set_access_flags(struct vm_area_struct *vma,
208 			  unsigned long address, pte_t *ptep,
209 			  pte_t entry, int dirty)
210 {
211 	pteval_t old_pteval, pteval;
212 	pte_t pte = READ_ONCE(*ptep);
213 
214 	if (pte_same(pte, entry))
215 		return 0;
216 
217 	/* only preserve the access flags and write permission */
218 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
219 
220 	/*
221 	 * Setting the flags must be done atomically to avoid racing with the
222 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
223 	 * be set to the most permissive (lowest value) of *ptep and entry
224 	 * (calculated as: a & b == ~(~a | ~b)).
225 	 */
226 	pte_val(entry) ^= PTE_RDONLY;
227 	pteval = pte_val(pte);
228 	do {
229 		old_pteval = pteval;
230 		pteval ^= PTE_RDONLY;
231 		pteval |= pte_val(entry);
232 		pteval ^= PTE_RDONLY;
233 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234 	} while (pteval != old_pteval);
235 
236 	flush_tlb_fix_spurious_fault(vma, address);
237 	return 1;
238 }
239 
240 static bool is_el1_instruction_abort(unsigned int esr)
241 {
242 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
243 }
244 
245 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
246 					   struct pt_regs *regs)
247 {
248 	unsigned int ec       = ESR_ELx_EC(esr);
249 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
250 
251 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
252 		return false;
253 
254 	if (fsc_type == ESR_ELx_FSC_PERM)
255 		return true;
256 
257 	if (addr < TASK_SIZE && system_uses_ttbr0_pan())
258 		return fsc_type == ESR_ELx_FSC_FAULT &&
259 			(regs->pstate & PSR_PAN_BIT);
260 
261 	return false;
262 }
263 
264 static void die_kernel_fault(const char *msg, unsigned long addr,
265 			     unsigned int esr, struct pt_regs *regs)
266 {
267 	bust_spinlocks(1);
268 
269 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
270 		 addr);
271 
272 	mem_abort_decode(esr);
273 
274 	show_pte(addr);
275 	die("Oops", regs, esr);
276 	bust_spinlocks(0);
277 	do_exit(SIGKILL);
278 }
279 
280 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
281 			      struct pt_regs *regs)
282 {
283 	const char *msg;
284 
285 	/*
286 	 * Are we prepared to handle this kernel fault?
287 	 * We are almost certainly not prepared to handle instruction faults.
288 	 */
289 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
290 		return;
291 
292 	if (is_el1_permission_fault(addr, esr, regs)) {
293 		if (esr & ESR_ELx_WNR)
294 			msg = "write to read-only memory";
295 		else
296 			msg = "read from unreadable memory";
297 	} else if (addr < PAGE_SIZE) {
298 		msg = "NULL pointer dereference";
299 	} else {
300 		msg = "paging request";
301 	}
302 
303 	die_kernel_fault(msg, addr, esr, regs);
304 }
305 
306 static void set_thread_esr(unsigned long address, unsigned int esr)
307 {
308 	current->thread.fault_address = address;
309 
310 	/*
311 	 * If the faulting address is in the kernel, we must sanitize the ESR.
312 	 * From userspace's point of view, kernel-only mappings don't exist
313 	 * at all, so we report them as level 0 translation faults.
314 	 * (This is not quite the way that "no mapping there at all" behaves:
315 	 * an alignment fault not caused by the memory type would take
316 	 * precedence over translation fault for a real access to empty
317 	 * space. Unfortunately we can't easily distinguish "alignment fault
318 	 * not caused by memory type" from "alignment fault caused by memory
319 	 * type", so we ignore this wrinkle and just return the translation
320 	 * fault.)
321 	 */
322 	if (current->thread.fault_address >= TASK_SIZE) {
323 		switch (ESR_ELx_EC(esr)) {
324 		case ESR_ELx_EC_DABT_LOW:
325 			/*
326 			 * These bits provide only information about the
327 			 * faulting instruction, which userspace knows already.
328 			 * We explicitly clear bits which are architecturally
329 			 * RES0 in case they are given meanings in future.
330 			 * We always report the ESR as if the fault was taken
331 			 * to EL1 and so ISV and the bits in ISS[23:14] are
332 			 * clear. (In fact it always will be a fault to EL1.)
333 			 */
334 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
335 				ESR_ELx_CM | ESR_ELx_WNR;
336 			esr |= ESR_ELx_FSC_FAULT;
337 			break;
338 		case ESR_ELx_EC_IABT_LOW:
339 			/*
340 			 * Claim a level 0 translation fault.
341 			 * All other bits are architecturally RES0 for faults
342 			 * reported with that DFSC value, so we clear them.
343 			 */
344 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
345 			esr |= ESR_ELx_FSC_FAULT;
346 			break;
347 		default:
348 			/*
349 			 * This should never happen (entry.S only brings us
350 			 * into this code for insn and data aborts from a lower
351 			 * exception level). Fail safe by not providing an ESR
352 			 * context record at all.
353 			 */
354 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
355 			esr = 0;
356 			break;
357 		}
358 	}
359 
360 	current->thread.fault_code = esr;
361 }
362 
363 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
364 {
365 	/*
366 	 * If we are in kernel mode at this point, we have no context to
367 	 * handle this fault with.
368 	 */
369 	if (user_mode(regs)) {
370 		const struct fault_info *inf = esr_to_fault_info(esr);
371 
372 		set_thread_esr(addr, esr);
373 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
374 				      inf->name);
375 	} else {
376 		__do_kernel_fault(addr, esr, regs);
377 	}
378 }
379 
380 #define VM_FAULT_BADMAP		0x010000
381 #define VM_FAULT_BADACCESS	0x020000
382 
383 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
384 			   unsigned int mm_flags, unsigned long vm_flags,
385 			   struct task_struct *tsk)
386 {
387 	struct vm_area_struct *vma;
388 	vm_fault_t fault;
389 
390 	vma = find_vma(mm, addr);
391 	fault = VM_FAULT_BADMAP;
392 	if (unlikely(!vma))
393 		goto out;
394 	if (unlikely(vma->vm_start > addr))
395 		goto check_stack;
396 
397 	/*
398 	 * Ok, we have a good vm_area for this memory access, so we can handle
399 	 * it.
400 	 */
401 good_area:
402 	/*
403 	 * Check that the permissions on the VMA allow for the fault which
404 	 * occurred.
405 	 */
406 	if (!(vma->vm_flags & vm_flags)) {
407 		fault = VM_FAULT_BADACCESS;
408 		goto out;
409 	}
410 
411 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
412 
413 check_stack:
414 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
415 		goto good_area;
416 out:
417 	return fault;
418 }
419 
420 static bool is_el0_instruction_abort(unsigned int esr)
421 {
422 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
423 }
424 
425 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
426 				   struct pt_regs *regs)
427 {
428 	const struct fault_info *inf;
429 	struct task_struct *tsk;
430 	struct mm_struct *mm;
431 	vm_fault_t fault, major = 0;
432 	unsigned long vm_flags = VM_READ | VM_WRITE;
433 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
434 
435 	if (notify_page_fault(regs, esr))
436 		return 0;
437 
438 	tsk = current;
439 	mm  = tsk->mm;
440 
441 	/*
442 	 * If we're in an interrupt or have no user context, we must not take
443 	 * the fault.
444 	 */
445 	if (faulthandler_disabled() || !mm)
446 		goto no_context;
447 
448 	if (user_mode(regs))
449 		mm_flags |= FAULT_FLAG_USER;
450 
451 	if (is_el0_instruction_abort(esr)) {
452 		vm_flags = VM_EXEC;
453 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
454 		vm_flags = VM_WRITE;
455 		mm_flags |= FAULT_FLAG_WRITE;
456 	}
457 
458 	if (addr < TASK_SIZE && is_el1_permission_fault(addr, esr, regs)) {
459 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
460 		if (regs->orig_addr_limit == KERNEL_DS)
461 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
462 					 addr, esr, regs);
463 
464 		if (is_el1_instruction_abort(esr))
465 			die_kernel_fault("execution of user memory",
466 					 addr, esr, regs);
467 
468 		if (!search_exception_tables(regs->pc))
469 			die_kernel_fault("access to user memory outside uaccess routines",
470 					 addr, esr, regs);
471 	}
472 
473 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
474 
475 	/*
476 	 * As per x86, we may deadlock here. However, since the kernel only
477 	 * validly references user space from well defined areas of the code,
478 	 * we can bug out early if this is from code which shouldn't.
479 	 */
480 	if (!down_read_trylock(&mm->mmap_sem)) {
481 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
482 			goto no_context;
483 retry:
484 		down_read(&mm->mmap_sem);
485 	} else {
486 		/*
487 		 * The above down_read_trylock() might have succeeded in which
488 		 * case, we'll have missed the might_sleep() from down_read().
489 		 */
490 		might_sleep();
491 #ifdef CONFIG_DEBUG_VM
492 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
493 			goto no_context;
494 #endif
495 	}
496 
497 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
498 	major |= fault & VM_FAULT_MAJOR;
499 
500 	if (fault & VM_FAULT_RETRY) {
501 		/*
502 		 * If we need to retry but a fatal signal is pending,
503 		 * handle the signal first. We do not need to release
504 		 * the mmap_sem because it would already be released
505 		 * in __lock_page_or_retry in mm/filemap.c.
506 		 */
507 		if (fatal_signal_pending(current)) {
508 			if (!user_mode(regs))
509 				goto no_context;
510 			return 0;
511 		}
512 
513 		/*
514 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
515 		 * starvation.
516 		 */
517 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
518 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
519 			mm_flags |= FAULT_FLAG_TRIED;
520 			goto retry;
521 		}
522 	}
523 	up_read(&mm->mmap_sem);
524 
525 	/*
526 	 * Handle the "normal" (no error) case first.
527 	 */
528 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
529 			      VM_FAULT_BADACCESS)))) {
530 		/*
531 		 * Major/minor page fault accounting is only done
532 		 * once. If we go through a retry, it is extremely
533 		 * likely that the page will be found in page cache at
534 		 * that point.
535 		 */
536 		if (major) {
537 			tsk->maj_flt++;
538 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
539 				      addr);
540 		} else {
541 			tsk->min_flt++;
542 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
543 				      addr);
544 		}
545 
546 		return 0;
547 	}
548 
549 	/*
550 	 * If we are in kernel mode at this point, we have no context to
551 	 * handle this fault with.
552 	 */
553 	if (!user_mode(regs))
554 		goto no_context;
555 
556 	if (fault & VM_FAULT_OOM) {
557 		/*
558 		 * We ran out of memory, call the OOM killer, and return to
559 		 * userspace (which will retry the fault, or kill us if we got
560 		 * oom-killed).
561 		 */
562 		pagefault_out_of_memory();
563 		return 0;
564 	}
565 
566 	inf = esr_to_fault_info(esr);
567 	set_thread_esr(addr, esr);
568 	if (fault & VM_FAULT_SIGBUS) {
569 		/*
570 		 * We had some memory, but were unable to successfully fix up
571 		 * this page fault.
572 		 */
573 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
574 				      inf->name);
575 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
576 		unsigned int lsb;
577 
578 		lsb = PAGE_SHIFT;
579 		if (fault & VM_FAULT_HWPOISON_LARGE)
580 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
581 
582 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
583 				       inf->name);
584 	} else {
585 		/*
586 		 * Something tried to access memory that isn't in our memory
587 		 * map.
588 		 */
589 		arm64_force_sig_fault(SIGSEGV,
590 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
591 				      (void __user *)addr,
592 				      inf->name);
593 	}
594 
595 	return 0;
596 
597 no_context:
598 	__do_kernel_fault(addr, esr, regs);
599 	return 0;
600 }
601 
602 static int __kprobes do_translation_fault(unsigned long addr,
603 					  unsigned int esr,
604 					  struct pt_regs *regs)
605 {
606 	if (addr < TASK_SIZE)
607 		return do_page_fault(addr, esr, regs);
608 
609 	do_bad_area(addr, esr, regs);
610 	return 0;
611 }
612 
613 static int do_alignment_fault(unsigned long addr, unsigned int esr,
614 			      struct pt_regs *regs)
615 {
616 	do_bad_area(addr, esr, regs);
617 	return 0;
618 }
619 
620 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
621 {
622 	return 1; /* "fault" */
623 }
624 
625 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
626 {
627 	const struct fault_info *inf;
628 	void __user *siaddr;
629 
630 	inf = esr_to_fault_info(esr);
631 
632 	/*
633 	 * Synchronous aborts may interrupt code which had interrupts masked.
634 	 * Before calling out into the wider kernel tell the interested
635 	 * subsystems.
636 	 */
637 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
638 		if (interrupts_enabled(regs))
639 			nmi_enter();
640 
641 		ghes_notify_sea();
642 
643 		if (interrupts_enabled(regs))
644 			nmi_exit();
645 	}
646 
647 	if (esr & ESR_ELx_FnV)
648 		siaddr = NULL;
649 	else
650 		siaddr  = (void __user *)addr;
651 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
652 
653 	return 0;
654 }
655 
656 static const struct fault_info fault_info[] = {
657 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
658 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
659 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
660 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
661 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
662 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
663 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
664 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
665 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
666 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
667 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
668 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
669 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
670 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
671 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
672 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
673 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
674 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
675 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
676 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
677 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
678 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
679 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
680 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
681 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
682 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
683 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
684 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
685 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
686 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
687 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
688 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
689 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
690 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
691 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
692 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
693 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
694 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
695 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
696 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
697 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
698 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
699 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
700 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
701 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
702 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
703 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
704 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
705 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
706 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
707 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
708 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
709 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
710 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
711 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
712 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
713 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
714 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
715 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
716 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
717 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
718 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
719 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
720 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
721 };
722 
723 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
724 {
725 	return ghes_notify_sea();
726 }
727 
728 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
729 					 struct pt_regs *regs)
730 {
731 	const struct fault_info *inf = esr_to_fault_info(esr);
732 
733 	if (!inf->fn(addr, esr, regs))
734 		return;
735 
736 	if (!user_mode(regs)) {
737 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
738 		mem_abort_decode(esr);
739 		show_pte(addr);
740 	}
741 
742 	arm64_notify_die(inf->name, regs,
743 			 inf->sig, inf->code, (void __user *)addr, esr);
744 }
745 
746 asmlinkage void __exception do_el0_irq_bp_hardening(void)
747 {
748 	/* PC has already been checked in entry.S */
749 	arm64_apply_bp_hardening();
750 }
751 
752 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
753 						   unsigned int esr,
754 						   struct pt_regs *regs)
755 {
756 	/*
757 	 * We've taken an instruction abort from userspace and not yet
758 	 * re-enabled IRQs. If the address is a kernel address, apply
759 	 * BP hardening prior to enabling IRQs and pre-emption.
760 	 */
761 	if (addr > TASK_SIZE)
762 		arm64_apply_bp_hardening();
763 
764 	local_daif_restore(DAIF_PROCCTX);
765 	do_mem_abort(addr, esr, regs);
766 }
767 
768 
769 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
770 					   unsigned int esr,
771 					   struct pt_regs *regs)
772 {
773 	if (user_mode(regs)) {
774 		if (instruction_pointer(regs) > TASK_SIZE)
775 			arm64_apply_bp_hardening();
776 		local_daif_restore(DAIF_PROCCTX);
777 	}
778 
779 	arm64_notify_die("SP/PC alignment exception", regs,
780 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
781 }
782 
783 int __init early_brk64(unsigned long addr, unsigned int esr,
784 		       struct pt_regs *regs);
785 
786 /*
787  * __refdata because early_brk64 is __init, but the reference to it is
788  * clobbered at arch_initcall time.
789  * See traps.c and debug-monitors.c:debug_traps_init().
790  */
791 static struct fault_info __refdata debug_fault_info[] = {
792 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
793 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
794 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
795 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
796 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
797 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
798 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
799 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
800 };
801 
802 void __init hook_debug_fault_code(int nr,
803 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
804 				  int sig, int code, const char *name)
805 {
806 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
807 
808 	debug_fault_info[nr].fn		= fn;
809 	debug_fault_info[nr].sig	= sig;
810 	debug_fault_info[nr].code	= code;
811 	debug_fault_info[nr].name	= name;
812 }
813 
814 asmlinkage int __exception do_debug_exception(unsigned long addr,
815 					      unsigned int esr,
816 					      struct pt_regs *regs)
817 {
818 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
819 	int rv;
820 
821 	/*
822 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
823 	 * already disabled to preserve the last enabled/disabled addresses.
824 	 */
825 	if (interrupts_enabled(regs))
826 		trace_hardirqs_off();
827 
828 	if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
829 		arm64_apply_bp_hardening();
830 
831 	if (!inf->fn(addr, esr, regs)) {
832 		rv = 1;
833 	} else {
834 		arm64_notify_die(inf->name, regs,
835 				 inf->sig, inf->code, (void __user *)addr, esr);
836 		rv = 0;
837 	}
838 
839 	if (interrupts_enabled(regs))
840 		trace_hardirqs_on();
841 
842 	return rv;
843 }
844 NOKPROBE_SYMBOL(do_debug_exception);
845