xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision e6c81cce)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/export.h>
22 #include <linux/slab.h>
23 #include <linux/genalloc.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/vmalloc.h>
27 #include <linux/swiotlb.h>
28 
29 #include <asm/cacheflush.h>
30 
31 struct dma_map_ops *dma_ops;
32 EXPORT_SYMBOL(dma_ops);
33 
34 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
35 				 bool coherent)
36 {
37 	if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
38 		return pgprot_writecombine(prot);
39 	return prot;
40 }
41 
42 static struct gen_pool *atomic_pool;
43 
44 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
45 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
46 
47 static int __init early_coherent_pool(char *p)
48 {
49 	atomic_pool_size = memparse(p, &p);
50 	return 0;
51 }
52 early_param("coherent_pool", early_coherent_pool);
53 
54 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
55 {
56 	unsigned long val;
57 	void *ptr = NULL;
58 
59 	if (!atomic_pool) {
60 		WARN(1, "coherent pool not initialised!\n");
61 		return NULL;
62 	}
63 
64 	val = gen_pool_alloc(atomic_pool, size);
65 	if (val) {
66 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
67 
68 		*ret_page = phys_to_page(phys);
69 		ptr = (void *)val;
70 		if (flags & __GFP_ZERO)
71 			memset(ptr, 0, size);
72 	}
73 
74 	return ptr;
75 }
76 
77 static bool __in_atomic_pool(void *start, size_t size)
78 {
79 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
80 }
81 
82 static int __free_from_pool(void *start, size_t size)
83 {
84 	if (!__in_atomic_pool(start, size))
85 		return 0;
86 
87 	gen_pool_free(atomic_pool, (unsigned long)start, size);
88 
89 	return 1;
90 }
91 
92 static void *__dma_alloc_coherent(struct device *dev, size_t size,
93 				  dma_addr_t *dma_handle, gfp_t flags,
94 				  struct dma_attrs *attrs)
95 {
96 	if (dev == NULL) {
97 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
98 		return NULL;
99 	}
100 
101 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
102 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
103 		flags |= GFP_DMA;
104 	if (IS_ENABLED(CONFIG_DMA_CMA) && (flags & __GFP_WAIT)) {
105 		struct page *page;
106 		void *addr;
107 
108 		size = PAGE_ALIGN(size);
109 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
110 							get_order(size));
111 		if (!page)
112 			return NULL;
113 
114 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
115 		addr = page_address(page);
116 		if (flags & __GFP_ZERO)
117 			memset(addr, 0, size);
118 		return addr;
119 	} else {
120 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
121 	}
122 }
123 
124 static void __dma_free_coherent(struct device *dev, size_t size,
125 				void *vaddr, dma_addr_t dma_handle,
126 				struct dma_attrs *attrs)
127 {
128 	bool freed;
129 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
130 
131 	if (dev == NULL) {
132 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
133 		return;
134 	}
135 
136 	freed = dma_release_from_contiguous(dev,
137 					phys_to_page(paddr),
138 					size >> PAGE_SHIFT);
139 	if (!freed)
140 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
141 }
142 
143 static void *__dma_alloc(struct device *dev, size_t size,
144 			 dma_addr_t *dma_handle, gfp_t flags,
145 			 struct dma_attrs *attrs)
146 {
147 	struct page *page;
148 	void *ptr, *coherent_ptr;
149 	bool coherent = is_device_dma_coherent(dev);
150 
151 	size = PAGE_ALIGN(size);
152 
153 	if (!coherent && !(flags & __GFP_WAIT)) {
154 		struct page *page = NULL;
155 		void *addr = __alloc_from_pool(size, &page, flags);
156 
157 		if (addr)
158 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
159 
160 		return addr;
161 	}
162 
163 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
164 	if (!ptr)
165 		goto no_mem;
166 
167 	/* no need for non-cacheable mapping if coherent */
168 	if (coherent)
169 		return ptr;
170 
171 	/* remove any dirty cache lines on the kernel alias */
172 	__dma_flush_range(ptr, ptr + size);
173 
174 	/* create a coherent mapping */
175 	page = virt_to_page(ptr);
176 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
177 				__get_dma_pgprot(attrs,
178 					__pgprot(PROT_NORMAL_NC), false),
179 					NULL);
180 	if (!coherent_ptr)
181 		goto no_map;
182 
183 	return coherent_ptr;
184 
185 no_map:
186 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
187 no_mem:
188 	*dma_handle = DMA_ERROR_CODE;
189 	return NULL;
190 }
191 
192 static void __dma_free(struct device *dev, size_t size,
193 		       void *vaddr, dma_addr_t dma_handle,
194 		       struct dma_attrs *attrs)
195 {
196 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
197 
198 	if (!is_device_dma_coherent(dev)) {
199 		if (__free_from_pool(vaddr, size))
200 			return;
201 		vunmap(vaddr);
202 	}
203 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
204 }
205 
206 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
207 				     unsigned long offset, size_t size,
208 				     enum dma_data_direction dir,
209 				     struct dma_attrs *attrs)
210 {
211 	dma_addr_t dev_addr;
212 
213 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
214 	if (!is_device_dma_coherent(dev))
215 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
216 
217 	return dev_addr;
218 }
219 
220 
221 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
222 				 size_t size, enum dma_data_direction dir,
223 				 struct dma_attrs *attrs)
224 {
225 	if (!is_device_dma_coherent(dev))
226 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
227 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
228 }
229 
230 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
231 				  int nelems, enum dma_data_direction dir,
232 				  struct dma_attrs *attrs)
233 {
234 	struct scatterlist *sg;
235 	int i, ret;
236 
237 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
238 	if (!is_device_dma_coherent(dev))
239 		for_each_sg(sgl, sg, ret, i)
240 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
241 				       sg->length, dir);
242 
243 	return ret;
244 }
245 
246 static void __swiotlb_unmap_sg_attrs(struct device *dev,
247 				     struct scatterlist *sgl, int nelems,
248 				     enum dma_data_direction dir,
249 				     struct dma_attrs *attrs)
250 {
251 	struct scatterlist *sg;
252 	int i;
253 
254 	if (!is_device_dma_coherent(dev))
255 		for_each_sg(sgl, sg, nelems, i)
256 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
257 					 sg->length, dir);
258 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
259 }
260 
261 static void __swiotlb_sync_single_for_cpu(struct device *dev,
262 					  dma_addr_t dev_addr, size_t size,
263 					  enum dma_data_direction dir)
264 {
265 	if (!is_device_dma_coherent(dev))
266 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
267 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
268 }
269 
270 static void __swiotlb_sync_single_for_device(struct device *dev,
271 					     dma_addr_t dev_addr, size_t size,
272 					     enum dma_data_direction dir)
273 {
274 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
275 	if (!is_device_dma_coherent(dev))
276 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
277 }
278 
279 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
280 				      struct scatterlist *sgl, int nelems,
281 				      enum dma_data_direction dir)
282 {
283 	struct scatterlist *sg;
284 	int i;
285 
286 	if (!is_device_dma_coherent(dev))
287 		for_each_sg(sgl, sg, nelems, i)
288 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
289 					 sg->length, dir);
290 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
291 }
292 
293 static void __swiotlb_sync_sg_for_device(struct device *dev,
294 					 struct scatterlist *sgl, int nelems,
295 					 enum dma_data_direction dir)
296 {
297 	struct scatterlist *sg;
298 	int i;
299 
300 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
301 	if (!is_device_dma_coherent(dev))
302 		for_each_sg(sgl, sg, nelems, i)
303 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
304 				       sg->length, dir);
305 }
306 
307 /* vma->vm_page_prot must be set appropriately before calling this function */
308 static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
309 			     void *cpu_addr, dma_addr_t dma_addr, size_t size)
310 {
311 	int ret = -ENXIO;
312 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
313 					PAGE_SHIFT;
314 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
315 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
316 	unsigned long off = vma->vm_pgoff;
317 
318 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
319 		return ret;
320 
321 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
322 		ret = remap_pfn_range(vma, vma->vm_start,
323 				      pfn + off,
324 				      vma->vm_end - vma->vm_start,
325 				      vma->vm_page_prot);
326 	}
327 
328 	return ret;
329 }
330 
331 static int __swiotlb_mmap(struct device *dev,
332 			  struct vm_area_struct *vma,
333 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
334 			  struct dma_attrs *attrs)
335 {
336 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
337 					     is_device_dma_coherent(dev));
338 	return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
339 }
340 
341 static struct dma_map_ops swiotlb_dma_ops = {
342 	.alloc = __dma_alloc,
343 	.free = __dma_free,
344 	.mmap = __swiotlb_mmap,
345 	.map_page = __swiotlb_map_page,
346 	.unmap_page = __swiotlb_unmap_page,
347 	.map_sg = __swiotlb_map_sg_attrs,
348 	.unmap_sg = __swiotlb_unmap_sg_attrs,
349 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
350 	.sync_single_for_device = __swiotlb_sync_single_for_device,
351 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
352 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
353 	.dma_supported = swiotlb_dma_supported,
354 	.mapping_error = swiotlb_dma_mapping_error,
355 };
356 
357 static int __init atomic_pool_init(void)
358 {
359 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
360 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
361 	struct page *page;
362 	void *addr;
363 	unsigned int pool_size_order = get_order(atomic_pool_size);
364 
365 	if (dev_get_cma_area(NULL))
366 		page = dma_alloc_from_contiguous(NULL, nr_pages,
367 							pool_size_order);
368 	else
369 		page = alloc_pages(GFP_DMA, pool_size_order);
370 
371 	if (page) {
372 		int ret;
373 		void *page_addr = page_address(page);
374 
375 		memset(page_addr, 0, atomic_pool_size);
376 		__dma_flush_range(page_addr, page_addr + atomic_pool_size);
377 
378 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
379 		if (!atomic_pool)
380 			goto free_page;
381 
382 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
383 					VM_USERMAP, prot, atomic_pool_init);
384 
385 		if (!addr)
386 			goto destroy_genpool;
387 
388 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
389 					page_to_phys(page),
390 					atomic_pool_size, -1);
391 		if (ret)
392 			goto remove_mapping;
393 
394 		gen_pool_set_algo(atomic_pool,
395 				  gen_pool_first_fit_order_align,
396 				  (void *)PAGE_SHIFT);
397 
398 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
399 			atomic_pool_size / 1024);
400 		return 0;
401 	}
402 	goto out;
403 
404 remove_mapping:
405 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
406 destroy_genpool:
407 	gen_pool_destroy(atomic_pool);
408 	atomic_pool = NULL;
409 free_page:
410 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
411 		__free_pages(page, pool_size_order);
412 out:
413 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
414 		atomic_pool_size / 1024);
415 	return -ENOMEM;
416 }
417 
418 static int __init arm64_dma_init(void)
419 {
420 	int ret;
421 
422 	dma_ops = &swiotlb_dma_ops;
423 
424 	ret = atomic_pool_init();
425 
426 	return ret;
427 }
428 arch_initcall(arm64_dma_init);
429 
430 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
431 
432 static int __init dma_debug_do_init(void)
433 {
434 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
435 	return 0;
436 }
437 fs_initcall(dma_debug_do_init);
438