xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 
32 #include <asm/cacheflush.h>
33 
34 static int swiotlb __ro_after_init;
35 
36 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
37 				 bool coherent)
38 {
39 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
40 		return pgprot_writecombine(prot);
41 	return prot;
42 }
43 
44 static struct gen_pool *atomic_pool;
45 
46 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
47 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
48 
49 static int __init early_coherent_pool(char *p)
50 {
51 	atomic_pool_size = memparse(p, &p);
52 	return 0;
53 }
54 early_param("coherent_pool", early_coherent_pool);
55 
56 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
57 {
58 	unsigned long val;
59 	void *ptr = NULL;
60 
61 	if (!atomic_pool) {
62 		WARN(1, "coherent pool not initialised!\n");
63 		return NULL;
64 	}
65 
66 	val = gen_pool_alloc(atomic_pool, size);
67 	if (val) {
68 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
69 
70 		*ret_page = phys_to_page(phys);
71 		ptr = (void *)val;
72 		memset(ptr, 0, size);
73 	}
74 
75 	return ptr;
76 }
77 
78 static bool __in_atomic_pool(void *start, size_t size)
79 {
80 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
81 }
82 
83 static int __free_from_pool(void *start, size_t size)
84 {
85 	if (!__in_atomic_pool(start, size))
86 		return 0;
87 
88 	gen_pool_free(atomic_pool, (unsigned long)start, size);
89 
90 	return 1;
91 }
92 
93 static void *__dma_alloc_coherent(struct device *dev, size_t size,
94 				  dma_addr_t *dma_handle, gfp_t flags,
95 				  unsigned long attrs)
96 {
97 	if (dev == NULL) {
98 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
99 		return NULL;
100 	}
101 
102 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
103 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
104 		flags |= GFP_DMA;
105 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
106 		struct page *page;
107 		void *addr;
108 
109 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
110 							get_order(size));
111 		if (!page)
112 			return NULL;
113 
114 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
115 		addr = page_address(page);
116 		memset(addr, 0, size);
117 		return addr;
118 	} else {
119 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
120 	}
121 }
122 
123 static void __dma_free_coherent(struct device *dev, size_t size,
124 				void *vaddr, dma_addr_t dma_handle,
125 				unsigned long attrs)
126 {
127 	bool freed;
128 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
129 
130 	if (dev == NULL) {
131 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
132 		return;
133 	}
134 
135 	freed = dma_release_from_contiguous(dev,
136 					phys_to_page(paddr),
137 					size >> PAGE_SHIFT);
138 	if (!freed)
139 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
140 }
141 
142 static void *__dma_alloc(struct device *dev, size_t size,
143 			 dma_addr_t *dma_handle, gfp_t flags,
144 			 unsigned long attrs)
145 {
146 	struct page *page;
147 	void *ptr, *coherent_ptr;
148 	bool coherent = is_device_dma_coherent(dev);
149 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
150 
151 	size = PAGE_ALIGN(size);
152 
153 	if (!coherent && !gfpflags_allow_blocking(flags)) {
154 		struct page *page = NULL;
155 		void *addr = __alloc_from_pool(size, &page, flags);
156 
157 		if (addr)
158 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
159 
160 		return addr;
161 	}
162 
163 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
164 	if (!ptr)
165 		goto no_mem;
166 
167 	/* no need for non-cacheable mapping if coherent */
168 	if (coherent)
169 		return ptr;
170 
171 	/* remove any dirty cache lines on the kernel alias */
172 	__dma_flush_area(ptr, size);
173 
174 	/* create a coherent mapping */
175 	page = virt_to_page(ptr);
176 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
177 						   prot, NULL);
178 	if (!coherent_ptr)
179 		goto no_map;
180 
181 	return coherent_ptr;
182 
183 no_map:
184 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
185 no_mem:
186 	*dma_handle = DMA_ERROR_CODE;
187 	return NULL;
188 }
189 
190 static void __dma_free(struct device *dev, size_t size,
191 		       void *vaddr, dma_addr_t dma_handle,
192 		       unsigned long attrs)
193 {
194 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
195 
196 	size = PAGE_ALIGN(size);
197 
198 	if (!is_device_dma_coherent(dev)) {
199 		if (__free_from_pool(vaddr, size))
200 			return;
201 		vunmap(vaddr);
202 	}
203 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
204 }
205 
206 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
207 				     unsigned long offset, size_t size,
208 				     enum dma_data_direction dir,
209 				     unsigned long attrs)
210 {
211 	dma_addr_t dev_addr;
212 
213 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
214 	if (!is_device_dma_coherent(dev))
215 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
216 
217 	return dev_addr;
218 }
219 
220 
221 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
222 				 size_t size, enum dma_data_direction dir,
223 				 unsigned long attrs)
224 {
225 	if (!is_device_dma_coherent(dev))
226 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
227 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
228 }
229 
230 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
231 				  int nelems, enum dma_data_direction dir,
232 				  unsigned long attrs)
233 {
234 	struct scatterlist *sg;
235 	int i, ret;
236 
237 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
238 	if (!is_device_dma_coherent(dev))
239 		for_each_sg(sgl, sg, ret, i)
240 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
241 				       sg->length, dir);
242 
243 	return ret;
244 }
245 
246 static void __swiotlb_unmap_sg_attrs(struct device *dev,
247 				     struct scatterlist *sgl, int nelems,
248 				     enum dma_data_direction dir,
249 				     unsigned long attrs)
250 {
251 	struct scatterlist *sg;
252 	int i;
253 
254 	if (!is_device_dma_coherent(dev))
255 		for_each_sg(sgl, sg, nelems, i)
256 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
257 					 sg->length, dir);
258 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
259 }
260 
261 static void __swiotlb_sync_single_for_cpu(struct device *dev,
262 					  dma_addr_t dev_addr, size_t size,
263 					  enum dma_data_direction dir)
264 {
265 	if (!is_device_dma_coherent(dev))
266 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
267 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
268 }
269 
270 static void __swiotlb_sync_single_for_device(struct device *dev,
271 					     dma_addr_t dev_addr, size_t size,
272 					     enum dma_data_direction dir)
273 {
274 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
275 	if (!is_device_dma_coherent(dev))
276 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
277 }
278 
279 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
280 				      struct scatterlist *sgl, int nelems,
281 				      enum dma_data_direction dir)
282 {
283 	struct scatterlist *sg;
284 	int i;
285 
286 	if (!is_device_dma_coherent(dev))
287 		for_each_sg(sgl, sg, nelems, i)
288 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
289 					 sg->length, dir);
290 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
291 }
292 
293 static void __swiotlb_sync_sg_for_device(struct device *dev,
294 					 struct scatterlist *sgl, int nelems,
295 					 enum dma_data_direction dir)
296 {
297 	struct scatterlist *sg;
298 	int i;
299 
300 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
301 	if (!is_device_dma_coherent(dev))
302 		for_each_sg(sgl, sg, nelems, i)
303 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
304 				       sg->length, dir);
305 }
306 
307 static int __swiotlb_mmap(struct device *dev,
308 			  struct vm_area_struct *vma,
309 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
310 			  unsigned long attrs)
311 {
312 	int ret = -ENXIO;
313 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
314 					PAGE_SHIFT;
315 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
316 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
317 	unsigned long off = vma->vm_pgoff;
318 
319 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
320 					     is_device_dma_coherent(dev));
321 
322 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
323 		return ret;
324 
325 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
326 		ret = remap_pfn_range(vma, vma->vm_start,
327 				      pfn + off,
328 				      vma->vm_end - vma->vm_start,
329 				      vma->vm_page_prot);
330 	}
331 
332 	return ret;
333 }
334 
335 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
336 				 void *cpu_addr, dma_addr_t handle, size_t size,
337 				 unsigned long attrs)
338 {
339 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
340 
341 	if (!ret)
342 		sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
343 			    PAGE_ALIGN(size), 0);
344 
345 	return ret;
346 }
347 
348 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
349 {
350 	if (swiotlb)
351 		return swiotlb_dma_supported(hwdev, mask);
352 	return 1;
353 }
354 
355 static struct dma_map_ops swiotlb_dma_ops = {
356 	.alloc = __dma_alloc,
357 	.free = __dma_free,
358 	.mmap = __swiotlb_mmap,
359 	.get_sgtable = __swiotlb_get_sgtable,
360 	.map_page = __swiotlb_map_page,
361 	.unmap_page = __swiotlb_unmap_page,
362 	.map_sg = __swiotlb_map_sg_attrs,
363 	.unmap_sg = __swiotlb_unmap_sg_attrs,
364 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
365 	.sync_single_for_device = __swiotlb_sync_single_for_device,
366 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
367 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
368 	.dma_supported = __swiotlb_dma_supported,
369 	.mapping_error = swiotlb_dma_mapping_error,
370 };
371 
372 static int __init atomic_pool_init(void)
373 {
374 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
375 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
376 	struct page *page;
377 	void *addr;
378 	unsigned int pool_size_order = get_order(atomic_pool_size);
379 
380 	if (dev_get_cma_area(NULL))
381 		page = dma_alloc_from_contiguous(NULL, nr_pages,
382 							pool_size_order);
383 	else
384 		page = alloc_pages(GFP_DMA, pool_size_order);
385 
386 	if (page) {
387 		int ret;
388 		void *page_addr = page_address(page);
389 
390 		memset(page_addr, 0, atomic_pool_size);
391 		__dma_flush_area(page_addr, atomic_pool_size);
392 
393 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
394 		if (!atomic_pool)
395 			goto free_page;
396 
397 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
398 					VM_USERMAP, prot, atomic_pool_init);
399 
400 		if (!addr)
401 			goto destroy_genpool;
402 
403 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
404 					page_to_phys(page),
405 					atomic_pool_size, -1);
406 		if (ret)
407 			goto remove_mapping;
408 
409 		gen_pool_set_algo(atomic_pool,
410 				  gen_pool_first_fit_order_align,
411 				  (void *)PAGE_SHIFT);
412 
413 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
414 			atomic_pool_size / 1024);
415 		return 0;
416 	}
417 	goto out;
418 
419 remove_mapping:
420 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
421 destroy_genpool:
422 	gen_pool_destroy(atomic_pool);
423 	atomic_pool = NULL;
424 free_page:
425 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
426 		__free_pages(page, pool_size_order);
427 out:
428 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
429 		atomic_pool_size / 1024);
430 	return -ENOMEM;
431 }
432 
433 /********************************************
434  * The following APIs are for dummy DMA ops *
435  ********************************************/
436 
437 static void *__dummy_alloc(struct device *dev, size_t size,
438 			   dma_addr_t *dma_handle, gfp_t flags,
439 			   unsigned long attrs)
440 {
441 	return NULL;
442 }
443 
444 static void __dummy_free(struct device *dev, size_t size,
445 			 void *vaddr, dma_addr_t dma_handle,
446 			 unsigned long attrs)
447 {
448 }
449 
450 static int __dummy_mmap(struct device *dev,
451 			struct vm_area_struct *vma,
452 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
453 			unsigned long attrs)
454 {
455 	return -ENXIO;
456 }
457 
458 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
459 				   unsigned long offset, size_t size,
460 				   enum dma_data_direction dir,
461 				   unsigned long attrs)
462 {
463 	return DMA_ERROR_CODE;
464 }
465 
466 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
467 			       size_t size, enum dma_data_direction dir,
468 			       unsigned long attrs)
469 {
470 }
471 
472 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
473 			  int nelems, enum dma_data_direction dir,
474 			  unsigned long attrs)
475 {
476 	return 0;
477 }
478 
479 static void __dummy_unmap_sg(struct device *dev,
480 			     struct scatterlist *sgl, int nelems,
481 			     enum dma_data_direction dir,
482 			     unsigned long attrs)
483 {
484 }
485 
486 static void __dummy_sync_single(struct device *dev,
487 				dma_addr_t dev_addr, size_t size,
488 				enum dma_data_direction dir)
489 {
490 }
491 
492 static void __dummy_sync_sg(struct device *dev,
493 			    struct scatterlist *sgl, int nelems,
494 			    enum dma_data_direction dir)
495 {
496 }
497 
498 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
499 {
500 	return 1;
501 }
502 
503 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
504 {
505 	return 0;
506 }
507 
508 struct dma_map_ops dummy_dma_ops = {
509 	.alloc                  = __dummy_alloc,
510 	.free                   = __dummy_free,
511 	.mmap                   = __dummy_mmap,
512 	.map_page               = __dummy_map_page,
513 	.unmap_page             = __dummy_unmap_page,
514 	.map_sg                 = __dummy_map_sg,
515 	.unmap_sg               = __dummy_unmap_sg,
516 	.sync_single_for_cpu    = __dummy_sync_single,
517 	.sync_single_for_device = __dummy_sync_single,
518 	.sync_sg_for_cpu        = __dummy_sync_sg,
519 	.sync_sg_for_device     = __dummy_sync_sg,
520 	.mapping_error          = __dummy_mapping_error,
521 	.dma_supported          = __dummy_dma_supported,
522 };
523 EXPORT_SYMBOL(dummy_dma_ops);
524 
525 static int __init arm64_dma_init(void)
526 {
527 	if (swiotlb_force || max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
528 		swiotlb = 1;
529 
530 	return atomic_pool_init();
531 }
532 arch_initcall(arm64_dma_init);
533 
534 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
535 
536 static int __init dma_debug_do_init(void)
537 {
538 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
539 	return 0;
540 }
541 fs_initcall(dma_debug_do_init);
542 
543 
544 #ifdef CONFIG_IOMMU_DMA
545 #include <linux/dma-iommu.h>
546 #include <linux/platform_device.h>
547 #include <linux/amba/bus.h>
548 
549 /* Thankfully, all cache ops are by VA so we can ignore phys here */
550 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
551 {
552 	__dma_flush_area(virt, PAGE_SIZE);
553 }
554 
555 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
556 				 dma_addr_t *handle, gfp_t gfp,
557 				 unsigned long attrs)
558 {
559 	bool coherent = is_device_dma_coherent(dev);
560 	int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
561 	size_t iosize = size;
562 	void *addr;
563 
564 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
565 		return NULL;
566 
567 	size = PAGE_ALIGN(size);
568 
569 	/*
570 	 * Some drivers rely on this, and we probably don't want the
571 	 * possibility of stale kernel data being read by devices anyway.
572 	 */
573 	gfp |= __GFP_ZERO;
574 
575 	if (gfpflags_allow_blocking(gfp)) {
576 		struct page **pages;
577 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
578 
579 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
580 					handle, flush_page);
581 		if (!pages)
582 			return NULL;
583 
584 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
585 					      __builtin_return_address(0));
586 		if (!addr)
587 			iommu_dma_free(dev, pages, iosize, handle);
588 	} else {
589 		struct page *page;
590 		/*
591 		 * In atomic context we can't remap anything, so we'll only
592 		 * get the virtually contiguous buffer we need by way of a
593 		 * physically contiguous allocation.
594 		 */
595 		if (coherent) {
596 			page = alloc_pages(gfp, get_order(size));
597 			addr = page ? page_address(page) : NULL;
598 		} else {
599 			addr = __alloc_from_pool(size, &page, gfp);
600 		}
601 		if (!addr)
602 			return NULL;
603 
604 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
605 		if (iommu_dma_mapping_error(dev, *handle)) {
606 			if (coherent)
607 				__free_pages(page, get_order(size));
608 			else
609 				__free_from_pool(addr, size);
610 			addr = NULL;
611 		}
612 	}
613 	return addr;
614 }
615 
616 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
617 			       dma_addr_t handle, unsigned long attrs)
618 {
619 	size_t iosize = size;
620 
621 	size = PAGE_ALIGN(size);
622 	/*
623 	 * @cpu_addr will be one of 3 things depending on how it was allocated:
624 	 * - A remapped array of pages from iommu_dma_alloc(), for all
625 	 *   non-atomic allocations.
626 	 * - A non-cacheable alias from the atomic pool, for atomic
627 	 *   allocations by non-coherent devices.
628 	 * - A normal lowmem address, for atomic allocations by
629 	 *   coherent devices.
630 	 * Hence how dodgy the below logic looks...
631 	 */
632 	if (__in_atomic_pool(cpu_addr, size)) {
633 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
634 		__free_from_pool(cpu_addr, size);
635 	} else if (is_vmalloc_addr(cpu_addr)){
636 		struct vm_struct *area = find_vm_area(cpu_addr);
637 
638 		if (WARN_ON(!area || !area->pages))
639 			return;
640 		iommu_dma_free(dev, area->pages, iosize, &handle);
641 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
642 	} else {
643 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
644 		__free_pages(virt_to_page(cpu_addr), get_order(size));
645 	}
646 }
647 
648 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
649 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
650 			      unsigned long attrs)
651 {
652 	struct vm_struct *area;
653 	int ret;
654 
655 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
656 					     is_device_dma_coherent(dev));
657 
658 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
659 		return ret;
660 
661 	area = find_vm_area(cpu_addr);
662 	if (WARN_ON(!area || !area->pages))
663 		return -ENXIO;
664 
665 	return iommu_dma_mmap(area->pages, size, vma);
666 }
667 
668 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
669 			       void *cpu_addr, dma_addr_t dma_addr,
670 			       size_t size, unsigned long attrs)
671 {
672 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
673 	struct vm_struct *area = find_vm_area(cpu_addr);
674 
675 	if (WARN_ON(!area || !area->pages))
676 		return -ENXIO;
677 
678 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
679 					 GFP_KERNEL);
680 }
681 
682 static void __iommu_sync_single_for_cpu(struct device *dev,
683 					dma_addr_t dev_addr, size_t size,
684 					enum dma_data_direction dir)
685 {
686 	phys_addr_t phys;
687 
688 	if (is_device_dma_coherent(dev))
689 		return;
690 
691 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
692 	__dma_unmap_area(phys_to_virt(phys), size, dir);
693 }
694 
695 static void __iommu_sync_single_for_device(struct device *dev,
696 					   dma_addr_t dev_addr, size_t size,
697 					   enum dma_data_direction dir)
698 {
699 	phys_addr_t phys;
700 
701 	if (is_device_dma_coherent(dev))
702 		return;
703 
704 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
705 	__dma_map_area(phys_to_virt(phys), size, dir);
706 }
707 
708 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
709 				   unsigned long offset, size_t size,
710 				   enum dma_data_direction dir,
711 				   unsigned long attrs)
712 {
713 	bool coherent = is_device_dma_coherent(dev);
714 	int prot = dma_direction_to_prot(dir, coherent);
715 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
716 
717 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
718 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
719 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
720 
721 	return dev_addr;
722 }
723 
724 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
725 			       size_t size, enum dma_data_direction dir,
726 			       unsigned long attrs)
727 {
728 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
729 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
730 
731 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
732 }
733 
734 static void __iommu_sync_sg_for_cpu(struct device *dev,
735 				    struct scatterlist *sgl, int nelems,
736 				    enum dma_data_direction dir)
737 {
738 	struct scatterlist *sg;
739 	int i;
740 
741 	if (is_device_dma_coherent(dev))
742 		return;
743 
744 	for_each_sg(sgl, sg, nelems, i)
745 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
746 }
747 
748 static void __iommu_sync_sg_for_device(struct device *dev,
749 				       struct scatterlist *sgl, int nelems,
750 				       enum dma_data_direction dir)
751 {
752 	struct scatterlist *sg;
753 	int i;
754 
755 	if (is_device_dma_coherent(dev))
756 		return;
757 
758 	for_each_sg(sgl, sg, nelems, i)
759 		__dma_map_area(sg_virt(sg), sg->length, dir);
760 }
761 
762 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
763 				int nelems, enum dma_data_direction dir,
764 				unsigned long attrs)
765 {
766 	bool coherent = is_device_dma_coherent(dev);
767 
768 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
769 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
770 
771 	return iommu_dma_map_sg(dev, sgl, nelems,
772 			dma_direction_to_prot(dir, coherent));
773 }
774 
775 static void __iommu_unmap_sg_attrs(struct device *dev,
776 				   struct scatterlist *sgl, int nelems,
777 				   enum dma_data_direction dir,
778 				   unsigned long attrs)
779 {
780 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
781 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
782 
783 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
784 }
785 
786 static struct dma_map_ops iommu_dma_ops = {
787 	.alloc = __iommu_alloc_attrs,
788 	.free = __iommu_free_attrs,
789 	.mmap = __iommu_mmap_attrs,
790 	.get_sgtable = __iommu_get_sgtable,
791 	.map_page = __iommu_map_page,
792 	.unmap_page = __iommu_unmap_page,
793 	.map_sg = __iommu_map_sg_attrs,
794 	.unmap_sg = __iommu_unmap_sg_attrs,
795 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
796 	.sync_single_for_device = __iommu_sync_single_for_device,
797 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
798 	.sync_sg_for_device = __iommu_sync_sg_for_device,
799 	.map_resource = iommu_dma_map_resource,
800 	.unmap_resource = iommu_dma_unmap_resource,
801 	.dma_supported = iommu_dma_supported,
802 	.mapping_error = iommu_dma_mapping_error,
803 };
804 
805 /*
806  * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
807  * everything it needs to - the device is only partially created and the
808  * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
809  * need this delayed attachment dance. Once IOMMU probe ordering is sorted
810  * to move the arch_setup_dma_ops() call later, all the notifier bits below
811  * become unnecessary, and will go away.
812  */
813 struct iommu_dma_notifier_data {
814 	struct list_head list;
815 	struct device *dev;
816 	const struct iommu_ops *ops;
817 	u64 dma_base;
818 	u64 size;
819 };
820 static LIST_HEAD(iommu_dma_masters);
821 static DEFINE_MUTEX(iommu_dma_notifier_lock);
822 
823 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
824 			   u64 dma_base, u64 size)
825 {
826 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
827 
828 	/*
829 	 * If the IOMMU driver has the DMA domain support that we require,
830 	 * then the IOMMU core will have already configured a group for this
831 	 * device, and allocated the default domain for that group.
832 	 */
833 	if (!domain || iommu_dma_init_domain(domain, dma_base, size, dev)) {
834 		pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
835 			dev_name(dev));
836 		return false;
837 	}
838 
839 	dev->archdata.dma_ops = &iommu_dma_ops;
840 	return true;
841 }
842 
843 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
844 			      u64 dma_base, u64 size)
845 {
846 	struct iommu_dma_notifier_data *iommudata;
847 
848 	iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
849 	if (!iommudata)
850 		return;
851 
852 	iommudata->dev = dev;
853 	iommudata->ops = ops;
854 	iommudata->dma_base = dma_base;
855 	iommudata->size = size;
856 
857 	mutex_lock(&iommu_dma_notifier_lock);
858 	list_add(&iommudata->list, &iommu_dma_masters);
859 	mutex_unlock(&iommu_dma_notifier_lock);
860 }
861 
862 static int __iommu_attach_notifier(struct notifier_block *nb,
863 				   unsigned long action, void *data)
864 {
865 	struct iommu_dma_notifier_data *master, *tmp;
866 
867 	if (action != BUS_NOTIFY_BIND_DRIVER)
868 		return 0;
869 
870 	mutex_lock(&iommu_dma_notifier_lock);
871 	list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
872 		if (data == master->dev && do_iommu_attach(master->dev,
873 				master->ops, master->dma_base, master->size)) {
874 			list_del(&master->list);
875 			kfree(master);
876 			break;
877 		}
878 	}
879 	mutex_unlock(&iommu_dma_notifier_lock);
880 	return 0;
881 }
882 
883 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
884 {
885 	struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
886 	int ret;
887 
888 	if (!nb)
889 		return -ENOMEM;
890 
891 	nb->notifier_call = __iommu_attach_notifier;
892 
893 	ret = bus_register_notifier(bus, nb);
894 	if (ret) {
895 		pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
896 			bus->name);
897 		kfree(nb);
898 	}
899 	return ret;
900 }
901 
902 static int __init __iommu_dma_init(void)
903 {
904 	int ret;
905 
906 	ret = iommu_dma_init();
907 	if (!ret)
908 		ret = register_iommu_dma_ops_notifier(&platform_bus_type);
909 	if (!ret)
910 		ret = register_iommu_dma_ops_notifier(&amba_bustype);
911 #ifdef CONFIG_PCI
912 	if (!ret)
913 		ret = register_iommu_dma_ops_notifier(&pci_bus_type);
914 #endif
915 	return ret;
916 }
917 arch_initcall(__iommu_dma_init);
918 
919 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
920 				  const struct iommu_ops *ops)
921 {
922 	struct iommu_group *group;
923 
924 	if (!ops)
925 		return;
926 	/*
927 	 * TODO: As a concession to the future, we're ready to handle being
928 	 * called both early and late (i.e. after bus_add_device). Once all
929 	 * the platform bus code is reworked to call us late and the notifier
930 	 * junk above goes away, move the body of do_iommu_attach here.
931 	 */
932 	group = iommu_group_get(dev);
933 	if (group) {
934 		do_iommu_attach(dev, ops, dma_base, size);
935 		iommu_group_put(group);
936 	} else {
937 		queue_iommu_attach(dev, ops, dma_base, size);
938 	}
939 }
940 
941 void arch_teardown_dma_ops(struct device *dev)
942 {
943 	dev->archdata.dma_ops = NULL;
944 }
945 
946 #else
947 
948 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
949 				  const struct iommu_ops *iommu)
950 { }
951 
952 #endif  /* CONFIG_IOMMU_DMA */
953 
954 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
955 			const struct iommu_ops *iommu, bool coherent)
956 {
957 	if (!dev->archdata.dma_ops)
958 		dev->archdata.dma_ops = &swiotlb_dma_ops;
959 
960 	dev->archdata.dma_coherent = coherent;
961 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
962 }
963