xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision e3d786a3)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/memblock.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-noncoherent.h>
29 #include <linux/dma-contiguous.h>
30 #include <linux/vmalloc.h>
31 #include <linux/swiotlb.h>
32 #include <linux/pci.h>
33 
34 #include <asm/cacheflush.h>
35 
36 static struct gen_pool *atomic_pool __ro_after_init;
37 
38 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
39 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
40 
41 static int __init early_coherent_pool(char *p)
42 {
43 	atomic_pool_size = memparse(p, &p);
44 	return 0;
45 }
46 early_param("coherent_pool", early_coherent_pool);
47 
48 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
49 {
50 	unsigned long val;
51 	void *ptr = NULL;
52 
53 	if (!atomic_pool) {
54 		WARN(1, "coherent pool not initialised!\n");
55 		return NULL;
56 	}
57 
58 	val = gen_pool_alloc(atomic_pool, size);
59 	if (val) {
60 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
61 
62 		*ret_page = phys_to_page(phys);
63 		ptr = (void *)val;
64 		memset(ptr, 0, size);
65 	}
66 
67 	return ptr;
68 }
69 
70 static bool __in_atomic_pool(void *start, size_t size)
71 {
72 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
73 }
74 
75 static int __free_from_pool(void *start, size_t size)
76 {
77 	if (!__in_atomic_pool(start, size))
78 		return 0;
79 
80 	gen_pool_free(atomic_pool, (unsigned long)start, size);
81 
82 	return 1;
83 }
84 
85 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 		gfp_t flags, unsigned long attrs)
87 {
88 	struct page *page;
89 	void *ptr, *coherent_ptr;
90 	pgprot_t prot = pgprot_writecombine(PAGE_KERNEL);
91 
92 	size = PAGE_ALIGN(size);
93 
94 	if (!gfpflags_allow_blocking(flags)) {
95 		struct page *page = NULL;
96 		void *addr = __alloc_from_pool(size, &page, flags);
97 
98 		if (addr)
99 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
100 
101 		return addr;
102 	}
103 
104 	ptr = dma_direct_alloc_pages(dev, size, dma_handle, flags, attrs);
105 	if (!ptr)
106 		goto no_mem;
107 
108 	/* remove any dirty cache lines on the kernel alias */
109 	__dma_flush_area(ptr, size);
110 
111 	/* create a coherent mapping */
112 	page = virt_to_page(ptr);
113 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
114 						   prot, __builtin_return_address(0));
115 	if (!coherent_ptr)
116 		goto no_map;
117 
118 	return coherent_ptr;
119 
120 no_map:
121 	dma_direct_free_pages(dev, size, ptr, *dma_handle, attrs);
122 no_mem:
123 	return NULL;
124 }
125 
126 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
127 		dma_addr_t dma_handle, unsigned long attrs)
128 {
129 	if (!__free_from_pool(vaddr, PAGE_ALIGN(size))) {
130 		void *kaddr = phys_to_virt(dma_to_phys(dev, dma_handle));
131 
132 		vunmap(vaddr);
133 		dma_direct_free_pages(dev, size, kaddr, dma_handle, attrs);
134 	}
135 }
136 
137 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
138 		dma_addr_t dma_addr)
139 {
140 	return __phys_to_pfn(dma_to_phys(dev, dma_addr));
141 }
142 
143 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
144 		unsigned long attrs)
145 {
146 	if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE))
147 		return pgprot_writecombine(prot);
148 	return prot;
149 }
150 
151 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
152 		size_t size, enum dma_data_direction dir)
153 {
154 	__dma_map_area(phys_to_virt(paddr), size, dir);
155 }
156 
157 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
158 		size_t size, enum dma_data_direction dir)
159 {
160 	__dma_unmap_area(phys_to_virt(paddr), size, dir);
161 }
162 
163 #ifdef CONFIG_IOMMU_DMA
164 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
165 				      struct page *page, size_t size)
166 {
167 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
168 
169 	if (!ret)
170 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
171 
172 	return ret;
173 }
174 
175 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
176 			      unsigned long pfn, size_t size)
177 {
178 	int ret = -ENXIO;
179 	unsigned long nr_vma_pages = vma_pages(vma);
180 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
181 	unsigned long off = vma->vm_pgoff;
182 
183 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
184 		ret = remap_pfn_range(vma, vma->vm_start,
185 				      pfn + off,
186 				      vma->vm_end - vma->vm_start,
187 				      vma->vm_page_prot);
188 	}
189 
190 	return ret;
191 }
192 #endif /* CONFIG_IOMMU_DMA */
193 
194 static int __init atomic_pool_init(void)
195 {
196 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
197 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
198 	struct page *page;
199 	void *addr;
200 	unsigned int pool_size_order = get_order(atomic_pool_size);
201 
202 	if (dev_get_cma_area(NULL))
203 		page = dma_alloc_from_contiguous(NULL, nr_pages,
204 						 pool_size_order, false);
205 	else
206 		page = alloc_pages(GFP_DMA32, pool_size_order);
207 
208 	if (page) {
209 		int ret;
210 		void *page_addr = page_address(page);
211 
212 		memset(page_addr, 0, atomic_pool_size);
213 		__dma_flush_area(page_addr, atomic_pool_size);
214 
215 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
216 		if (!atomic_pool)
217 			goto free_page;
218 
219 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
220 					VM_USERMAP, prot, atomic_pool_init);
221 
222 		if (!addr)
223 			goto destroy_genpool;
224 
225 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
226 					page_to_phys(page),
227 					atomic_pool_size, -1);
228 		if (ret)
229 			goto remove_mapping;
230 
231 		gen_pool_set_algo(atomic_pool,
232 				  gen_pool_first_fit_order_align,
233 				  NULL);
234 
235 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
236 			atomic_pool_size / 1024);
237 		return 0;
238 	}
239 	goto out;
240 
241 remove_mapping:
242 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
243 destroy_genpool:
244 	gen_pool_destroy(atomic_pool);
245 	atomic_pool = NULL;
246 free_page:
247 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
248 		__free_pages(page, pool_size_order);
249 out:
250 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
251 		atomic_pool_size / 1024);
252 	return -ENOMEM;
253 }
254 
255 /********************************************
256  * The following APIs are for dummy DMA ops *
257  ********************************************/
258 
259 static void *__dummy_alloc(struct device *dev, size_t size,
260 			   dma_addr_t *dma_handle, gfp_t flags,
261 			   unsigned long attrs)
262 {
263 	return NULL;
264 }
265 
266 static void __dummy_free(struct device *dev, size_t size,
267 			 void *vaddr, dma_addr_t dma_handle,
268 			 unsigned long attrs)
269 {
270 }
271 
272 static int __dummy_mmap(struct device *dev,
273 			struct vm_area_struct *vma,
274 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
275 			unsigned long attrs)
276 {
277 	return -ENXIO;
278 }
279 
280 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
281 				   unsigned long offset, size_t size,
282 				   enum dma_data_direction dir,
283 				   unsigned long attrs)
284 {
285 	return 0;
286 }
287 
288 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
289 			       size_t size, enum dma_data_direction dir,
290 			       unsigned long attrs)
291 {
292 }
293 
294 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
295 			  int nelems, enum dma_data_direction dir,
296 			  unsigned long attrs)
297 {
298 	return 0;
299 }
300 
301 static void __dummy_unmap_sg(struct device *dev,
302 			     struct scatterlist *sgl, int nelems,
303 			     enum dma_data_direction dir,
304 			     unsigned long attrs)
305 {
306 }
307 
308 static void __dummy_sync_single(struct device *dev,
309 				dma_addr_t dev_addr, size_t size,
310 				enum dma_data_direction dir)
311 {
312 }
313 
314 static void __dummy_sync_sg(struct device *dev,
315 			    struct scatterlist *sgl, int nelems,
316 			    enum dma_data_direction dir)
317 {
318 }
319 
320 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
321 {
322 	return 1;
323 }
324 
325 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
326 {
327 	return 0;
328 }
329 
330 const struct dma_map_ops dummy_dma_ops = {
331 	.alloc                  = __dummy_alloc,
332 	.free                   = __dummy_free,
333 	.mmap                   = __dummy_mmap,
334 	.map_page               = __dummy_map_page,
335 	.unmap_page             = __dummy_unmap_page,
336 	.map_sg                 = __dummy_map_sg,
337 	.unmap_sg               = __dummy_unmap_sg,
338 	.sync_single_for_cpu    = __dummy_sync_single,
339 	.sync_single_for_device = __dummy_sync_single,
340 	.sync_sg_for_cpu        = __dummy_sync_sg,
341 	.sync_sg_for_device     = __dummy_sync_sg,
342 	.mapping_error          = __dummy_mapping_error,
343 	.dma_supported          = __dummy_dma_supported,
344 };
345 EXPORT_SYMBOL(dummy_dma_ops);
346 
347 static int __init arm64_dma_init(void)
348 {
349 	WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
350 		   TAINT_CPU_OUT_OF_SPEC,
351 		   "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
352 		   ARCH_DMA_MINALIGN, cache_line_size());
353 
354 	return atomic_pool_init();
355 }
356 arch_initcall(arm64_dma_init);
357 
358 #ifdef CONFIG_IOMMU_DMA
359 #include <linux/dma-iommu.h>
360 #include <linux/platform_device.h>
361 #include <linux/amba/bus.h>
362 
363 /* Thankfully, all cache ops are by VA so we can ignore phys here */
364 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
365 {
366 	__dma_flush_area(virt, PAGE_SIZE);
367 }
368 
369 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
370 				 dma_addr_t *handle, gfp_t gfp,
371 				 unsigned long attrs)
372 {
373 	bool coherent = dev_is_dma_coherent(dev);
374 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
375 	size_t iosize = size;
376 	void *addr;
377 
378 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
379 		return NULL;
380 
381 	size = PAGE_ALIGN(size);
382 
383 	/*
384 	 * Some drivers rely on this, and we probably don't want the
385 	 * possibility of stale kernel data being read by devices anyway.
386 	 */
387 	gfp |= __GFP_ZERO;
388 
389 	if (!gfpflags_allow_blocking(gfp)) {
390 		struct page *page;
391 		/*
392 		 * In atomic context we can't remap anything, so we'll only
393 		 * get the virtually contiguous buffer we need by way of a
394 		 * physically contiguous allocation.
395 		 */
396 		if (coherent) {
397 			page = alloc_pages(gfp, get_order(size));
398 			addr = page ? page_address(page) : NULL;
399 		} else {
400 			addr = __alloc_from_pool(size, &page, gfp);
401 		}
402 		if (!addr)
403 			return NULL;
404 
405 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
406 		if (iommu_dma_mapping_error(dev, *handle)) {
407 			if (coherent)
408 				__free_pages(page, get_order(size));
409 			else
410 				__free_from_pool(addr, size);
411 			addr = NULL;
412 		}
413 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
414 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
415 		struct page *page;
416 
417 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
418 					get_order(size), gfp & __GFP_NOWARN);
419 		if (!page)
420 			return NULL;
421 
422 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
423 		if (iommu_dma_mapping_error(dev, *handle)) {
424 			dma_release_from_contiguous(dev, page,
425 						    size >> PAGE_SHIFT);
426 			return NULL;
427 		}
428 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
429 						   prot,
430 						   __builtin_return_address(0));
431 		if (addr) {
432 			memset(addr, 0, size);
433 			if (!coherent)
434 				__dma_flush_area(page_to_virt(page), iosize);
435 		} else {
436 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
437 			dma_release_from_contiguous(dev, page,
438 						    size >> PAGE_SHIFT);
439 		}
440 	} else {
441 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
442 		struct page **pages;
443 
444 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
445 					handle, flush_page);
446 		if (!pages)
447 			return NULL;
448 
449 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
450 					      __builtin_return_address(0));
451 		if (!addr)
452 			iommu_dma_free(dev, pages, iosize, handle);
453 	}
454 	return addr;
455 }
456 
457 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
458 			       dma_addr_t handle, unsigned long attrs)
459 {
460 	size_t iosize = size;
461 
462 	size = PAGE_ALIGN(size);
463 	/*
464 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
465 	 * - A remapped array of pages for contiguous allocations.
466 	 * - A remapped array of pages from iommu_dma_alloc(), for all
467 	 *   non-atomic allocations.
468 	 * - A non-cacheable alias from the atomic pool, for atomic
469 	 *   allocations by non-coherent devices.
470 	 * - A normal lowmem address, for atomic allocations by
471 	 *   coherent devices.
472 	 * Hence how dodgy the below logic looks...
473 	 */
474 	if (__in_atomic_pool(cpu_addr, size)) {
475 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
476 		__free_from_pool(cpu_addr, size);
477 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
478 		struct page *page = vmalloc_to_page(cpu_addr);
479 
480 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
481 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
482 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
483 	} else if (is_vmalloc_addr(cpu_addr)){
484 		struct vm_struct *area = find_vm_area(cpu_addr);
485 
486 		if (WARN_ON(!area || !area->pages))
487 			return;
488 		iommu_dma_free(dev, area->pages, iosize, &handle);
489 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
490 	} else {
491 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
492 		__free_pages(virt_to_page(cpu_addr), get_order(size));
493 	}
494 }
495 
496 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
497 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
498 			      unsigned long attrs)
499 {
500 	struct vm_struct *area;
501 	int ret;
502 
503 	vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
504 
505 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
506 		return ret;
507 
508 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
509 		/*
510 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
511 		 * hence in the vmalloc space.
512 		 */
513 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
514 		return __swiotlb_mmap_pfn(vma, pfn, size);
515 	}
516 
517 	area = find_vm_area(cpu_addr);
518 	if (WARN_ON(!area || !area->pages))
519 		return -ENXIO;
520 
521 	return iommu_dma_mmap(area->pages, size, vma);
522 }
523 
524 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
525 			       void *cpu_addr, dma_addr_t dma_addr,
526 			       size_t size, unsigned long attrs)
527 {
528 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
529 	struct vm_struct *area = find_vm_area(cpu_addr);
530 
531 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
532 		/*
533 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
534 		 * hence in the vmalloc space.
535 		 */
536 		struct page *page = vmalloc_to_page(cpu_addr);
537 		return __swiotlb_get_sgtable_page(sgt, page, size);
538 	}
539 
540 	if (WARN_ON(!area || !area->pages))
541 		return -ENXIO;
542 
543 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
544 					 GFP_KERNEL);
545 }
546 
547 static void __iommu_sync_single_for_cpu(struct device *dev,
548 					dma_addr_t dev_addr, size_t size,
549 					enum dma_data_direction dir)
550 {
551 	phys_addr_t phys;
552 
553 	if (dev_is_dma_coherent(dev))
554 		return;
555 
556 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
557 	arch_sync_dma_for_cpu(dev, phys, size, dir);
558 }
559 
560 static void __iommu_sync_single_for_device(struct device *dev,
561 					   dma_addr_t dev_addr, size_t size,
562 					   enum dma_data_direction dir)
563 {
564 	phys_addr_t phys;
565 
566 	if (dev_is_dma_coherent(dev))
567 		return;
568 
569 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
570 	arch_sync_dma_for_device(dev, phys, size, dir);
571 }
572 
573 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
574 				   unsigned long offset, size_t size,
575 				   enum dma_data_direction dir,
576 				   unsigned long attrs)
577 {
578 	bool coherent = dev_is_dma_coherent(dev);
579 	int prot = dma_info_to_prot(dir, coherent, attrs);
580 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
581 
582 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
583 	    !iommu_dma_mapping_error(dev, dev_addr))
584 		__dma_map_area(page_address(page) + offset, size, dir);
585 
586 	return dev_addr;
587 }
588 
589 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
590 			       size_t size, enum dma_data_direction dir,
591 			       unsigned long attrs)
592 {
593 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
594 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
595 
596 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
597 }
598 
599 static void __iommu_sync_sg_for_cpu(struct device *dev,
600 				    struct scatterlist *sgl, int nelems,
601 				    enum dma_data_direction dir)
602 {
603 	struct scatterlist *sg;
604 	int i;
605 
606 	if (dev_is_dma_coherent(dev))
607 		return;
608 
609 	for_each_sg(sgl, sg, nelems, i)
610 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
611 }
612 
613 static void __iommu_sync_sg_for_device(struct device *dev,
614 				       struct scatterlist *sgl, int nelems,
615 				       enum dma_data_direction dir)
616 {
617 	struct scatterlist *sg;
618 	int i;
619 
620 	if (dev_is_dma_coherent(dev))
621 		return;
622 
623 	for_each_sg(sgl, sg, nelems, i)
624 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
625 }
626 
627 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
628 				int nelems, enum dma_data_direction dir,
629 				unsigned long attrs)
630 {
631 	bool coherent = dev_is_dma_coherent(dev);
632 
633 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
634 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
635 
636 	return iommu_dma_map_sg(dev, sgl, nelems,
637 				dma_info_to_prot(dir, coherent, attrs));
638 }
639 
640 static void __iommu_unmap_sg_attrs(struct device *dev,
641 				   struct scatterlist *sgl, int nelems,
642 				   enum dma_data_direction dir,
643 				   unsigned long attrs)
644 {
645 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
646 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
647 
648 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
649 }
650 
651 static const struct dma_map_ops iommu_dma_ops = {
652 	.alloc = __iommu_alloc_attrs,
653 	.free = __iommu_free_attrs,
654 	.mmap = __iommu_mmap_attrs,
655 	.get_sgtable = __iommu_get_sgtable,
656 	.map_page = __iommu_map_page,
657 	.unmap_page = __iommu_unmap_page,
658 	.map_sg = __iommu_map_sg_attrs,
659 	.unmap_sg = __iommu_unmap_sg_attrs,
660 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
661 	.sync_single_for_device = __iommu_sync_single_for_device,
662 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
663 	.sync_sg_for_device = __iommu_sync_sg_for_device,
664 	.map_resource = iommu_dma_map_resource,
665 	.unmap_resource = iommu_dma_unmap_resource,
666 	.mapping_error = iommu_dma_mapping_error,
667 };
668 
669 static int __init __iommu_dma_init(void)
670 {
671 	return iommu_dma_init();
672 }
673 arch_initcall(__iommu_dma_init);
674 
675 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
676 				  const struct iommu_ops *ops)
677 {
678 	struct iommu_domain *domain;
679 
680 	if (!ops)
681 		return;
682 
683 	/*
684 	 * The IOMMU core code allocates the default DMA domain, which the
685 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
686 	 */
687 	domain = iommu_get_domain_for_dev(dev);
688 
689 	if (!domain)
690 		goto out_err;
691 
692 	if (domain->type == IOMMU_DOMAIN_DMA) {
693 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
694 			goto out_err;
695 
696 		dev->dma_ops = &iommu_dma_ops;
697 	}
698 
699 	return;
700 
701 out_err:
702 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
703 		 dev_name(dev));
704 }
705 
706 void arch_teardown_dma_ops(struct device *dev)
707 {
708 	dev->dma_ops = NULL;
709 }
710 
711 #else
712 
713 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
714 				  const struct iommu_ops *iommu)
715 { }
716 
717 #endif  /* CONFIG_IOMMU_DMA */
718 
719 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
720 			const struct iommu_ops *iommu, bool coherent)
721 {
722 	if (!dev->dma_ops)
723 		dev->dma_ops = &swiotlb_dma_ops;
724 
725 	dev->dma_coherent = coherent;
726 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
727 
728 #ifdef CONFIG_XEN
729 	if (xen_initial_domain()) {
730 		dev->archdata.dev_dma_ops = dev->dma_ops;
731 		dev->dma_ops = xen_dma_ops;
732 	}
733 #endif
734 }
735