1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/memblock.h> 23 #include <linux/cache.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/genalloc.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-noncoherent.h> 29 #include <linux/dma-contiguous.h> 30 #include <linux/vmalloc.h> 31 #include <linux/swiotlb.h> 32 #include <linux/pci.h> 33 34 #include <asm/cacheflush.h> 35 36 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, 37 unsigned long attrs) 38 { 39 if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE)) 40 return pgprot_writecombine(prot); 41 return prot; 42 } 43 44 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, 45 size_t size, enum dma_data_direction dir) 46 { 47 __dma_map_area(phys_to_virt(paddr), size, dir); 48 } 49 50 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 51 size_t size, enum dma_data_direction dir) 52 { 53 __dma_unmap_area(phys_to_virt(paddr), size, dir); 54 } 55 56 void arch_dma_prep_coherent(struct page *page, size_t size) 57 { 58 __dma_flush_area(page_address(page), size); 59 } 60 61 #ifdef CONFIG_IOMMU_DMA 62 static int __swiotlb_get_sgtable_page(struct sg_table *sgt, 63 struct page *page, size_t size) 64 { 65 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 66 67 if (!ret) 68 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 69 70 return ret; 71 } 72 73 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, 74 unsigned long pfn, size_t size) 75 { 76 int ret = -ENXIO; 77 unsigned long nr_vma_pages = vma_pages(vma); 78 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 79 unsigned long off = vma->vm_pgoff; 80 81 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 82 ret = remap_pfn_range(vma, vma->vm_start, 83 pfn + off, 84 vma->vm_end - vma->vm_start, 85 vma->vm_page_prot); 86 } 87 88 return ret; 89 } 90 #endif /* CONFIG_IOMMU_DMA */ 91 92 static int __init arm64_dma_init(void) 93 { 94 WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(), 95 TAINT_CPU_OUT_OF_SPEC, 96 "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)", 97 ARCH_DMA_MINALIGN, cache_line_size()); 98 return dma_atomic_pool_init(GFP_DMA32, __pgprot(PROT_NORMAL_NC)); 99 } 100 arch_initcall(arm64_dma_init); 101 102 #ifdef CONFIG_IOMMU_DMA 103 #include <linux/dma-iommu.h> 104 #include <linux/platform_device.h> 105 #include <linux/amba/bus.h> 106 107 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 108 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 109 { 110 __dma_flush_area(virt, PAGE_SIZE); 111 } 112 113 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 114 dma_addr_t *handle, gfp_t gfp, 115 unsigned long attrs) 116 { 117 bool coherent = dev_is_dma_coherent(dev); 118 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 119 size_t iosize = size; 120 void *addr; 121 122 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 123 return NULL; 124 125 size = PAGE_ALIGN(size); 126 127 /* 128 * Some drivers rely on this, and we probably don't want the 129 * possibility of stale kernel data being read by devices anyway. 130 */ 131 gfp |= __GFP_ZERO; 132 133 if (!gfpflags_allow_blocking(gfp)) { 134 struct page *page; 135 /* 136 * In atomic context we can't remap anything, so we'll only 137 * get the virtually contiguous buffer we need by way of a 138 * physically contiguous allocation. 139 */ 140 if (coherent) { 141 page = alloc_pages(gfp, get_order(size)); 142 addr = page ? page_address(page) : NULL; 143 } else { 144 addr = dma_alloc_from_pool(size, &page, gfp); 145 } 146 if (!addr) 147 return NULL; 148 149 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 150 if (*handle == DMA_MAPPING_ERROR) { 151 if (coherent) 152 __free_pages(page, get_order(size)); 153 else 154 dma_free_from_pool(addr, size); 155 addr = NULL; 156 } 157 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 158 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); 159 struct page *page; 160 161 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 162 get_order(size), gfp & __GFP_NOWARN); 163 if (!page) 164 return NULL; 165 166 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 167 if (*handle == DMA_MAPPING_ERROR) { 168 dma_release_from_contiguous(dev, page, 169 size >> PAGE_SHIFT); 170 return NULL; 171 } 172 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, 173 prot, 174 __builtin_return_address(0)); 175 if (addr) { 176 if (!coherent) 177 __dma_flush_area(page_to_virt(page), iosize); 178 memset(addr, 0, size); 179 } else { 180 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); 181 dma_release_from_contiguous(dev, page, 182 size >> PAGE_SHIFT); 183 } 184 } else { 185 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); 186 struct page **pages; 187 188 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 189 handle, flush_page); 190 if (!pages) 191 return NULL; 192 193 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 194 __builtin_return_address(0)); 195 if (!addr) 196 iommu_dma_free(dev, pages, iosize, handle); 197 } 198 return addr; 199 } 200 201 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 202 dma_addr_t handle, unsigned long attrs) 203 { 204 size_t iosize = size; 205 206 size = PAGE_ALIGN(size); 207 /* 208 * @cpu_addr will be one of 4 things depending on how it was allocated: 209 * - A remapped array of pages for contiguous allocations. 210 * - A remapped array of pages from iommu_dma_alloc(), for all 211 * non-atomic allocations. 212 * - A non-cacheable alias from the atomic pool, for atomic 213 * allocations by non-coherent devices. 214 * - A normal lowmem address, for atomic allocations by 215 * coherent devices. 216 * Hence how dodgy the below logic looks... 217 */ 218 if (dma_in_atomic_pool(cpu_addr, size)) { 219 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 220 dma_free_from_pool(cpu_addr, size); 221 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 222 struct page *page = vmalloc_to_page(cpu_addr); 223 224 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); 225 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 226 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 227 } else if (is_vmalloc_addr(cpu_addr)){ 228 struct vm_struct *area = find_vm_area(cpu_addr); 229 230 if (WARN_ON(!area || !area->pages)) 231 return; 232 iommu_dma_free(dev, area->pages, iosize, &handle); 233 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 234 } else { 235 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 236 __free_pages(virt_to_page(cpu_addr), get_order(size)); 237 } 238 } 239 240 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 241 void *cpu_addr, dma_addr_t dma_addr, size_t size, 242 unsigned long attrs) 243 { 244 struct vm_struct *area; 245 int ret; 246 247 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs); 248 249 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 250 return ret; 251 252 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 253 /* 254 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 255 * hence in the vmalloc space. 256 */ 257 unsigned long pfn = vmalloc_to_pfn(cpu_addr); 258 return __swiotlb_mmap_pfn(vma, pfn, size); 259 } 260 261 area = find_vm_area(cpu_addr); 262 if (WARN_ON(!area || !area->pages)) 263 return -ENXIO; 264 265 return iommu_dma_mmap(area->pages, size, vma); 266 } 267 268 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 269 void *cpu_addr, dma_addr_t dma_addr, 270 size_t size, unsigned long attrs) 271 { 272 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 273 struct vm_struct *area = find_vm_area(cpu_addr); 274 275 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 276 /* 277 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 278 * hence in the vmalloc space. 279 */ 280 struct page *page = vmalloc_to_page(cpu_addr); 281 return __swiotlb_get_sgtable_page(sgt, page, size); 282 } 283 284 if (WARN_ON(!area || !area->pages)) 285 return -ENXIO; 286 287 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 288 GFP_KERNEL); 289 } 290 291 static void __iommu_sync_single_for_cpu(struct device *dev, 292 dma_addr_t dev_addr, size_t size, 293 enum dma_data_direction dir) 294 { 295 phys_addr_t phys; 296 297 if (dev_is_dma_coherent(dev)) 298 return; 299 300 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); 301 arch_sync_dma_for_cpu(dev, phys, size, dir); 302 } 303 304 static void __iommu_sync_single_for_device(struct device *dev, 305 dma_addr_t dev_addr, size_t size, 306 enum dma_data_direction dir) 307 { 308 phys_addr_t phys; 309 310 if (dev_is_dma_coherent(dev)) 311 return; 312 313 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); 314 arch_sync_dma_for_device(dev, phys, size, dir); 315 } 316 317 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 318 unsigned long offset, size_t size, 319 enum dma_data_direction dir, 320 unsigned long attrs) 321 { 322 bool coherent = dev_is_dma_coherent(dev); 323 int prot = dma_info_to_prot(dir, coherent, attrs); 324 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 325 326 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 327 dev_addr != DMA_MAPPING_ERROR) 328 __dma_map_area(page_address(page) + offset, size, dir); 329 330 return dev_addr; 331 } 332 333 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 334 size_t size, enum dma_data_direction dir, 335 unsigned long attrs) 336 { 337 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 338 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 339 340 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 341 } 342 343 static void __iommu_sync_sg_for_cpu(struct device *dev, 344 struct scatterlist *sgl, int nelems, 345 enum dma_data_direction dir) 346 { 347 struct scatterlist *sg; 348 int i; 349 350 if (dev_is_dma_coherent(dev)) 351 return; 352 353 for_each_sg(sgl, sg, nelems, i) 354 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); 355 } 356 357 static void __iommu_sync_sg_for_device(struct device *dev, 358 struct scatterlist *sgl, int nelems, 359 enum dma_data_direction dir) 360 { 361 struct scatterlist *sg; 362 int i; 363 364 if (dev_is_dma_coherent(dev)) 365 return; 366 367 for_each_sg(sgl, sg, nelems, i) 368 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); 369 } 370 371 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 372 int nelems, enum dma_data_direction dir, 373 unsigned long attrs) 374 { 375 bool coherent = dev_is_dma_coherent(dev); 376 377 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 378 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 379 380 return iommu_dma_map_sg(dev, sgl, nelems, 381 dma_info_to_prot(dir, coherent, attrs)); 382 } 383 384 static void __iommu_unmap_sg_attrs(struct device *dev, 385 struct scatterlist *sgl, int nelems, 386 enum dma_data_direction dir, 387 unsigned long attrs) 388 { 389 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 390 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 391 392 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 393 } 394 395 static const struct dma_map_ops iommu_dma_ops = { 396 .alloc = __iommu_alloc_attrs, 397 .free = __iommu_free_attrs, 398 .mmap = __iommu_mmap_attrs, 399 .get_sgtable = __iommu_get_sgtable, 400 .map_page = __iommu_map_page, 401 .unmap_page = __iommu_unmap_page, 402 .map_sg = __iommu_map_sg_attrs, 403 .unmap_sg = __iommu_unmap_sg_attrs, 404 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 405 .sync_single_for_device = __iommu_sync_single_for_device, 406 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 407 .sync_sg_for_device = __iommu_sync_sg_for_device, 408 .map_resource = iommu_dma_map_resource, 409 .unmap_resource = iommu_dma_unmap_resource, 410 }; 411 412 static int __init __iommu_dma_init(void) 413 { 414 return iommu_dma_init(); 415 } 416 arch_initcall(__iommu_dma_init); 417 418 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 419 const struct iommu_ops *ops) 420 { 421 struct iommu_domain *domain; 422 423 if (!ops) 424 return; 425 426 /* 427 * The IOMMU core code allocates the default DMA domain, which the 428 * underlying IOMMU driver needs to support via the dma-iommu layer. 429 */ 430 domain = iommu_get_domain_for_dev(dev); 431 432 if (!domain) 433 goto out_err; 434 435 if (domain->type == IOMMU_DOMAIN_DMA) { 436 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 437 goto out_err; 438 439 dev->dma_ops = &iommu_dma_ops; 440 } 441 442 return; 443 444 out_err: 445 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 446 dev_name(dev)); 447 } 448 449 void arch_teardown_dma_ops(struct device *dev) 450 { 451 dev->dma_ops = NULL; 452 } 453 454 #else 455 456 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 457 const struct iommu_ops *iommu) 458 { } 459 460 #endif /* CONFIG_IOMMU_DMA */ 461 462 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 463 const struct iommu_ops *iommu, bool coherent) 464 { 465 dev->dma_coherent = coherent; 466 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 467 468 #ifdef CONFIG_XEN 469 if (xen_initial_domain()) { 470 dev->archdata.dev_dma_ops = dev->dma_ops; 471 dev->dma_ops = xen_dma_ops; 472 } 473 #endif 474 } 475