1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/bootmem.h> 23 #include <linux/cache.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/genalloc.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/vmalloc.h> 30 #include <linux/swiotlb.h> 31 #include <linux/pci.h> 32 33 #include <asm/cacheflush.h> 34 35 static int swiotlb __ro_after_init; 36 37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot, 38 bool coherent) 39 { 40 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE)) 41 return pgprot_writecombine(prot); 42 return prot; 43 } 44 45 static struct gen_pool *atomic_pool; 46 47 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 49 50 static int __init early_coherent_pool(char *p) 51 { 52 atomic_pool_size = memparse(p, &p); 53 return 0; 54 } 55 early_param("coherent_pool", early_coherent_pool); 56 57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 58 { 59 unsigned long val; 60 void *ptr = NULL; 61 62 if (!atomic_pool) { 63 WARN(1, "coherent pool not initialised!\n"); 64 return NULL; 65 } 66 67 val = gen_pool_alloc(atomic_pool, size); 68 if (val) { 69 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 70 71 *ret_page = phys_to_page(phys); 72 ptr = (void *)val; 73 memset(ptr, 0, size); 74 } 75 76 return ptr; 77 } 78 79 static bool __in_atomic_pool(void *start, size_t size) 80 { 81 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 82 } 83 84 static int __free_from_pool(void *start, size_t size) 85 { 86 if (!__in_atomic_pool(start, size)) 87 return 0; 88 89 gen_pool_free(atomic_pool, (unsigned long)start, size); 90 91 return 1; 92 } 93 94 static void *__dma_alloc_coherent(struct device *dev, size_t size, 95 dma_addr_t *dma_handle, gfp_t flags, 96 unsigned long attrs) 97 { 98 if (dev == NULL) { 99 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 100 return NULL; 101 } 102 103 if (IS_ENABLED(CONFIG_ZONE_DMA) && 104 dev->coherent_dma_mask <= DMA_BIT_MASK(32)) 105 flags |= GFP_DMA; 106 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { 107 struct page *page; 108 void *addr; 109 110 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 111 get_order(size), flags); 112 if (!page) 113 return NULL; 114 115 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 116 addr = page_address(page); 117 memset(addr, 0, size); 118 return addr; 119 } else { 120 return swiotlb_alloc_coherent(dev, size, dma_handle, flags); 121 } 122 } 123 124 static void __dma_free_coherent(struct device *dev, size_t size, 125 void *vaddr, dma_addr_t dma_handle, 126 unsigned long attrs) 127 { 128 bool freed; 129 phys_addr_t paddr = dma_to_phys(dev, dma_handle); 130 131 if (dev == NULL) { 132 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 133 return; 134 } 135 136 freed = dma_release_from_contiguous(dev, 137 phys_to_page(paddr), 138 size >> PAGE_SHIFT); 139 if (!freed) 140 swiotlb_free_coherent(dev, size, vaddr, dma_handle); 141 } 142 143 static void *__dma_alloc(struct device *dev, size_t size, 144 dma_addr_t *dma_handle, gfp_t flags, 145 unsigned long attrs) 146 { 147 struct page *page; 148 void *ptr, *coherent_ptr; 149 bool coherent = is_device_dma_coherent(dev); 150 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 151 152 size = PAGE_ALIGN(size); 153 154 if (!coherent && !gfpflags_allow_blocking(flags)) { 155 struct page *page = NULL; 156 void *addr = __alloc_from_pool(size, &page, flags); 157 158 if (addr) 159 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 160 161 return addr; 162 } 163 164 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); 165 if (!ptr) 166 goto no_mem; 167 168 /* no need for non-cacheable mapping if coherent */ 169 if (coherent) 170 return ptr; 171 172 /* remove any dirty cache lines on the kernel alias */ 173 __dma_flush_area(ptr, size); 174 175 /* create a coherent mapping */ 176 page = virt_to_page(ptr); 177 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 178 prot, NULL); 179 if (!coherent_ptr) 180 goto no_map; 181 182 return coherent_ptr; 183 184 no_map: 185 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); 186 no_mem: 187 *dma_handle = DMA_ERROR_CODE; 188 return NULL; 189 } 190 191 static void __dma_free(struct device *dev, size_t size, 192 void *vaddr, dma_addr_t dma_handle, 193 unsigned long attrs) 194 { 195 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 196 197 size = PAGE_ALIGN(size); 198 199 if (!is_device_dma_coherent(dev)) { 200 if (__free_from_pool(vaddr, size)) 201 return; 202 vunmap(vaddr); 203 } 204 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); 205 } 206 207 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 208 unsigned long offset, size_t size, 209 enum dma_data_direction dir, 210 unsigned long attrs) 211 { 212 dma_addr_t dev_addr; 213 214 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 215 if (!is_device_dma_coherent(dev) && 216 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 217 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 218 219 return dev_addr; 220 } 221 222 223 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 224 size_t size, enum dma_data_direction dir, 225 unsigned long attrs) 226 { 227 if (!is_device_dma_coherent(dev) && 228 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 229 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 230 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 231 } 232 233 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 234 int nelems, enum dma_data_direction dir, 235 unsigned long attrs) 236 { 237 struct scatterlist *sg; 238 int i, ret; 239 240 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 241 if (!is_device_dma_coherent(dev) && 242 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 243 for_each_sg(sgl, sg, ret, i) 244 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 245 sg->length, dir); 246 247 return ret; 248 } 249 250 static void __swiotlb_unmap_sg_attrs(struct device *dev, 251 struct scatterlist *sgl, int nelems, 252 enum dma_data_direction dir, 253 unsigned long attrs) 254 { 255 struct scatterlist *sg; 256 int i; 257 258 if (!is_device_dma_coherent(dev) && 259 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 260 for_each_sg(sgl, sg, nelems, i) 261 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 262 sg->length, dir); 263 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 264 } 265 266 static void __swiotlb_sync_single_for_cpu(struct device *dev, 267 dma_addr_t dev_addr, size_t size, 268 enum dma_data_direction dir) 269 { 270 if (!is_device_dma_coherent(dev)) 271 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 272 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 273 } 274 275 static void __swiotlb_sync_single_for_device(struct device *dev, 276 dma_addr_t dev_addr, size_t size, 277 enum dma_data_direction dir) 278 { 279 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 280 if (!is_device_dma_coherent(dev)) 281 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 282 } 283 284 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 285 struct scatterlist *sgl, int nelems, 286 enum dma_data_direction dir) 287 { 288 struct scatterlist *sg; 289 int i; 290 291 if (!is_device_dma_coherent(dev)) 292 for_each_sg(sgl, sg, nelems, i) 293 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 294 sg->length, dir); 295 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 296 } 297 298 static void __swiotlb_sync_sg_for_device(struct device *dev, 299 struct scatterlist *sgl, int nelems, 300 enum dma_data_direction dir) 301 { 302 struct scatterlist *sg; 303 int i; 304 305 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 306 if (!is_device_dma_coherent(dev)) 307 for_each_sg(sgl, sg, nelems, i) 308 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 309 sg->length, dir); 310 } 311 312 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, 313 unsigned long pfn, size_t size) 314 { 315 int ret = -ENXIO; 316 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> 317 PAGE_SHIFT; 318 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 319 unsigned long off = vma->vm_pgoff; 320 321 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 322 ret = remap_pfn_range(vma, vma->vm_start, 323 pfn + off, 324 vma->vm_end - vma->vm_start, 325 vma->vm_page_prot); 326 } 327 328 return ret; 329 } 330 331 static int __swiotlb_mmap(struct device *dev, 332 struct vm_area_struct *vma, 333 void *cpu_addr, dma_addr_t dma_addr, size_t size, 334 unsigned long attrs) 335 { 336 int ret; 337 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 338 339 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 340 is_device_dma_coherent(dev)); 341 342 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 343 return ret; 344 345 return __swiotlb_mmap_pfn(vma, pfn, size); 346 } 347 348 static int __swiotlb_get_sgtable_page(struct sg_table *sgt, 349 struct page *page, size_t size) 350 { 351 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 352 353 if (!ret) 354 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 355 356 return ret; 357 } 358 359 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 360 void *cpu_addr, dma_addr_t handle, size_t size, 361 unsigned long attrs) 362 { 363 struct page *page = phys_to_page(dma_to_phys(dev, handle)); 364 365 return __swiotlb_get_sgtable_page(sgt, page, size); 366 } 367 368 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask) 369 { 370 if (swiotlb) 371 return swiotlb_dma_supported(hwdev, mask); 372 return 1; 373 } 374 375 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr) 376 { 377 if (swiotlb) 378 return swiotlb_dma_mapping_error(hwdev, addr); 379 return 0; 380 } 381 382 static const struct dma_map_ops swiotlb_dma_ops = { 383 .alloc = __dma_alloc, 384 .free = __dma_free, 385 .mmap = __swiotlb_mmap, 386 .get_sgtable = __swiotlb_get_sgtable, 387 .map_page = __swiotlb_map_page, 388 .unmap_page = __swiotlb_unmap_page, 389 .map_sg = __swiotlb_map_sg_attrs, 390 .unmap_sg = __swiotlb_unmap_sg_attrs, 391 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 392 .sync_single_for_device = __swiotlb_sync_single_for_device, 393 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 394 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 395 .dma_supported = __swiotlb_dma_supported, 396 .mapping_error = __swiotlb_dma_mapping_error, 397 }; 398 399 static int __init atomic_pool_init(void) 400 { 401 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 402 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 403 struct page *page; 404 void *addr; 405 unsigned int pool_size_order = get_order(atomic_pool_size); 406 407 if (dev_get_cma_area(NULL)) 408 page = dma_alloc_from_contiguous(NULL, nr_pages, 409 pool_size_order, GFP_KERNEL); 410 else 411 page = alloc_pages(GFP_DMA, pool_size_order); 412 413 if (page) { 414 int ret; 415 void *page_addr = page_address(page); 416 417 memset(page_addr, 0, atomic_pool_size); 418 __dma_flush_area(page_addr, atomic_pool_size); 419 420 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 421 if (!atomic_pool) 422 goto free_page; 423 424 addr = dma_common_contiguous_remap(page, atomic_pool_size, 425 VM_USERMAP, prot, atomic_pool_init); 426 427 if (!addr) 428 goto destroy_genpool; 429 430 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 431 page_to_phys(page), 432 atomic_pool_size, -1); 433 if (ret) 434 goto remove_mapping; 435 436 gen_pool_set_algo(atomic_pool, 437 gen_pool_first_fit_order_align, 438 (void *)PAGE_SHIFT); 439 440 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 441 atomic_pool_size / 1024); 442 return 0; 443 } 444 goto out; 445 446 remove_mapping: 447 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 448 destroy_genpool: 449 gen_pool_destroy(atomic_pool); 450 atomic_pool = NULL; 451 free_page: 452 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 453 __free_pages(page, pool_size_order); 454 out: 455 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 456 atomic_pool_size / 1024); 457 return -ENOMEM; 458 } 459 460 /******************************************** 461 * The following APIs are for dummy DMA ops * 462 ********************************************/ 463 464 static void *__dummy_alloc(struct device *dev, size_t size, 465 dma_addr_t *dma_handle, gfp_t flags, 466 unsigned long attrs) 467 { 468 return NULL; 469 } 470 471 static void __dummy_free(struct device *dev, size_t size, 472 void *vaddr, dma_addr_t dma_handle, 473 unsigned long attrs) 474 { 475 } 476 477 static int __dummy_mmap(struct device *dev, 478 struct vm_area_struct *vma, 479 void *cpu_addr, dma_addr_t dma_addr, size_t size, 480 unsigned long attrs) 481 { 482 return -ENXIO; 483 } 484 485 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 486 unsigned long offset, size_t size, 487 enum dma_data_direction dir, 488 unsigned long attrs) 489 { 490 return DMA_ERROR_CODE; 491 } 492 493 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 494 size_t size, enum dma_data_direction dir, 495 unsigned long attrs) 496 { 497 } 498 499 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 500 int nelems, enum dma_data_direction dir, 501 unsigned long attrs) 502 { 503 return 0; 504 } 505 506 static void __dummy_unmap_sg(struct device *dev, 507 struct scatterlist *sgl, int nelems, 508 enum dma_data_direction dir, 509 unsigned long attrs) 510 { 511 } 512 513 static void __dummy_sync_single(struct device *dev, 514 dma_addr_t dev_addr, size_t size, 515 enum dma_data_direction dir) 516 { 517 } 518 519 static void __dummy_sync_sg(struct device *dev, 520 struct scatterlist *sgl, int nelems, 521 enum dma_data_direction dir) 522 { 523 } 524 525 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 526 { 527 return 1; 528 } 529 530 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 531 { 532 return 0; 533 } 534 535 const struct dma_map_ops dummy_dma_ops = { 536 .alloc = __dummy_alloc, 537 .free = __dummy_free, 538 .mmap = __dummy_mmap, 539 .map_page = __dummy_map_page, 540 .unmap_page = __dummy_unmap_page, 541 .map_sg = __dummy_map_sg, 542 .unmap_sg = __dummy_unmap_sg, 543 .sync_single_for_cpu = __dummy_sync_single, 544 .sync_single_for_device = __dummy_sync_single, 545 .sync_sg_for_cpu = __dummy_sync_sg, 546 .sync_sg_for_device = __dummy_sync_sg, 547 .mapping_error = __dummy_mapping_error, 548 .dma_supported = __dummy_dma_supported, 549 }; 550 EXPORT_SYMBOL(dummy_dma_ops); 551 552 static int __init arm64_dma_init(void) 553 { 554 if (swiotlb_force == SWIOTLB_FORCE || 555 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 556 swiotlb = 1; 557 558 return atomic_pool_init(); 559 } 560 arch_initcall(arm64_dma_init); 561 562 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 563 564 static int __init dma_debug_do_init(void) 565 { 566 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 567 return 0; 568 } 569 fs_initcall(dma_debug_do_init); 570 571 572 #ifdef CONFIG_IOMMU_DMA 573 #include <linux/dma-iommu.h> 574 #include <linux/platform_device.h> 575 #include <linux/amba/bus.h> 576 577 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 578 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 579 { 580 __dma_flush_area(virt, PAGE_SIZE); 581 } 582 583 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 584 dma_addr_t *handle, gfp_t gfp, 585 unsigned long attrs) 586 { 587 bool coherent = is_device_dma_coherent(dev); 588 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 589 size_t iosize = size; 590 void *addr; 591 592 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 593 return NULL; 594 595 size = PAGE_ALIGN(size); 596 597 /* 598 * Some drivers rely on this, and we probably don't want the 599 * possibility of stale kernel data being read by devices anyway. 600 */ 601 gfp |= __GFP_ZERO; 602 603 if (!gfpflags_allow_blocking(gfp)) { 604 struct page *page; 605 /* 606 * In atomic context we can't remap anything, so we'll only 607 * get the virtually contiguous buffer we need by way of a 608 * physically contiguous allocation. 609 */ 610 if (coherent) { 611 page = alloc_pages(gfp, get_order(size)); 612 addr = page ? page_address(page) : NULL; 613 } else { 614 addr = __alloc_from_pool(size, &page, gfp); 615 } 616 if (!addr) 617 return NULL; 618 619 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 620 if (iommu_dma_mapping_error(dev, *handle)) { 621 if (coherent) 622 __free_pages(page, get_order(size)); 623 else 624 __free_from_pool(addr, size); 625 addr = NULL; 626 } 627 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 628 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 629 struct page *page; 630 631 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 632 get_order(size), gfp); 633 if (!page) 634 return NULL; 635 636 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 637 if (iommu_dma_mapping_error(dev, *handle)) { 638 dma_release_from_contiguous(dev, page, 639 size >> PAGE_SHIFT); 640 return NULL; 641 } 642 if (!coherent) 643 __dma_flush_area(page_to_virt(page), iosize); 644 645 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, 646 prot, 647 __builtin_return_address(0)); 648 if (!addr) { 649 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); 650 dma_release_from_contiguous(dev, page, 651 size >> PAGE_SHIFT); 652 } 653 } else { 654 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 655 struct page **pages; 656 657 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 658 handle, flush_page); 659 if (!pages) 660 return NULL; 661 662 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 663 __builtin_return_address(0)); 664 if (!addr) 665 iommu_dma_free(dev, pages, iosize, handle); 666 } 667 return addr; 668 } 669 670 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 671 dma_addr_t handle, unsigned long attrs) 672 { 673 size_t iosize = size; 674 675 size = PAGE_ALIGN(size); 676 /* 677 * @cpu_addr will be one of 4 things depending on how it was allocated: 678 * - A remapped array of pages for contiguous allocations. 679 * - A remapped array of pages from iommu_dma_alloc(), for all 680 * non-atomic allocations. 681 * - A non-cacheable alias from the atomic pool, for atomic 682 * allocations by non-coherent devices. 683 * - A normal lowmem address, for atomic allocations by 684 * coherent devices. 685 * Hence how dodgy the below logic looks... 686 */ 687 if (__in_atomic_pool(cpu_addr, size)) { 688 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 689 __free_from_pool(cpu_addr, size); 690 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 691 struct page *page = vmalloc_to_page(cpu_addr); 692 693 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); 694 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 695 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 696 } else if (is_vmalloc_addr(cpu_addr)){ 697 struct vm_struct *area = find_vm_area(cpu_addr); 698 699 if (WARN_ON(!area || !area->pages)) 700 return; 701 iommu_dma_free(dev, area->pages, iosize, &handle); 702 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 703 } else { 704 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 705 __free_pages(virt_to_page(cpu_addr), get_order(size)); 706 } 707 } 708 709 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 710 void *cpu_addr, dma_addr_t dma_addr, size_t size, 711 unsigned long attrs) 712 { 713 struct vm_struct *area; 714 int ret; 715 716 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 717 is_device_dma_coherent(dev)); 718 719 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 720 return ret; 721 722 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 723 /* 724 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 725 * hence in the vmalloc space. 726 */ 727 unsigned long pfn = vmalloc_to_pfn(cpu_addr); 728 return __swiotlb_mmap_pfn(vma, pfn, size); 729 } 730 731 area = find_vm_area(cpu_addr); 732 if (WARN_ON(!area || !area->pages)) 733 return -ENXIO; 734 735 return iommu_dma_mmap(area->pages, size, vma); 736 } 737 738 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 739 void *cpu_addr, dma_addr_t dma_addr, 740 size_t size, unsigned long attrs) 741 { 742 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 743 struct vm_struct *area = find_vm_area(cpu_addr); 744 745 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 746 /* 747 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 748 * hence in the vmalloc space. 749 */ 750 struct page *page = vmalloc_to_page(cpu_addr); 751 return __swiotlb_get_sgtable_page(sgt, page, size); 752 } 753 754 if (WARN_ON(!area || !area->pages)) 755 return -ENXIO; 756 757 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 758 GFP_KERNEL); 759 } 760 761 static void __iommu_sync_single_for_cpu(struct device *dev, 762 dma_addr_t dev_addr, size_t size, 763 enum dma_data_direction dir) 764 { 765 phys_addr_t phys; 766 767 if (is_device_dma_coherent(dev)) 768 return; 769 770 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 771 __dma_unmap_area(phys_to_virt(phys), size, dir); 772 } 773 774 static void __iommu_sync_single_for_device(struct device *dev, 775 dma_addr_t dev_addr, size_t size, 776 enum dma_data_direction dir) 777 { 778 phys_addr_t phys; 779 780 if (is_device_dma_coherent(dev)) 781 return; 782 783 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 784 __dma_map_area(phys_to_virt(phys), size, dir); 785 } 786 787 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 788 unsigned long offset, size_t size, 789 enum dma_data_direction dir, 790 unsigned long attrs) 791 { 792 bool coherent = is_device_dma_coherent(dev); 793 int prot = dma_info_to_prot(dir, coherent, attrs); 794 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 795 796 if (!iommu_dma_mapping_error(dev, dev_addr) && 797 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 798 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 799 800 return dev_addr; 801 } 802 803 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 804 size_t size, enum dma_data_direction dir, 805 unsigned long attrs) 806 { 807 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 808 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 809 810 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 811 } 812 813 static void __iommu_sync_sg_for_cpu(struct device *dev, 814 struct scatterlist *sgl, int nelems, 815 enum dma_data_direction dir) 816 { 817 struct scatterlist *sg; 818 int i; 819 820 if (is_device_dma_coherent(dev)) 821 return; 822 823 for_each_sg(sgl, sg, nelems, i) 824 __dma_unmap_area(sg_virt(sg), sg->length, dir); 825 } 826 827 static void __iommu_sync_sg_for_device(struct device *dev, 828 struct scatterlist *sgl, int nelems, 829 enum dma_data_direction dir) 830 { 831 struct scatterlist *sg; 832 int i; 833 834 if (is_device_dma_coherent(dev)) 835 return; 836 837 for_each_sg(sgl, sg, nelems, i) 838 __dma_map_area(sg_virt(sg), sg->length, dir); 839 } 840 841 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 842 int nelems, enum dma_data_direction dir, 843 unsigned long attrs) 844 { 845 bool coherent = is_device_dma_coherent(dev); 846 847 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 848 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 849 850 return iommu_dma_map_sg(dev, sgl, nelems, 851 dma_info_to_prot(dir, coherent, attrs)); 852 } 853 854 static void __iommu_unmap_sg_attrs(struct device *dev, 855 struct scatterlist *sgl, int nelems, 856 enum dma_data_direction dir, 857 unsigned long attrs) 858 { 859 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 860 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 861 862 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 863 } 864 865 static const struct dma_map_ops iommu_dma_ops = { 866 .alloc = __iommu_alloc_attrs, 867 .free = __iommu_free_attrs, 868 .mmap = __iommu_mmap_attrs, 869 .get_sgtable = __iommu_get_sgtable, 870 .map_page = __iommu_map_page, 871 .unmap_page = __iommu_unmap_page, 872 .map_sg = __iommu_map_sg_attrs, 873 .unmap_sg = __iommu_unmap_sg_attrs, 874 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 875 .sync_single_for_device = __iommu_sync_single_for_device, 876 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 877 .sync_sg_for_device = __iommu_sync_sg_for_device, 878 .map_resource = iommu_dma_map_resource, 879 .unmap_resource = iommu_dma_unmap_resource, 880 .mapping_error = iommu_dma_mapping_error, 881 }; 882 883 static int __init __iommu_dma_init(void) 884 { 885 return iommu_dma_init(); 886 } 887 arch_initcall(__iommu_dma_init); 888 889 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 890 const struct iommu_ops *ops) 891 { 892 struct iommu_domain *domain; 893 894 if (!ops) 895 return; 896 897 /* 898 * The IOMMU core code allocates the default DMA domain, which the 899 * underlying IOMMU driver needs to support via the dma-iommu layer. 900 */ 901 domain = iommu_get_domain_for_dev(dev); 902 903 if (!domain) 904 goto out_err; 905 906 if (domain->type == IOMMU_DOMAIN_DMA) { 907 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 908 goto out_err; 909 910 dev->dma_ops = &iommu_dma_ops; 911 } 912 913 return; 914 915 out_err: 916 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 917 dev_name(dev)); 918 } 919 920 void arch_teardown_dma_ops(struct device *dev) 921 { 922 dev->dma_ops = NULL; 923 } 924 925 #else 926 927 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 928 const struct iommu_ops *iommu) 929 { } 930 931 #endif /* CONFIG_IOMMU_DMA */ 932 933 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 934 const struct iommu_ops *iommu, bool coherent) 935 { 936 if (!dev->dma_ops) 937 dev->dma_ops = &swiotlb_dma_ops; 938 939 dev->archdata.dma_coherent = coherent; 940 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 941 942 #ifdef CONFIG_XEN 943 if (xen_initial_domain()) { 944 dev->archdata.dev_dma_ops = dev->dma_ops; 945 dev->dma_ops = xen_dma_ops; 946 } 947 #endif 948 } 949