xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision a36954f5)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32 
33 #include <asm/cacheflush.h>
34 
35 static int swiotlb __ro_after_init;
36 
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38 				 bool coherent)
39 {
40 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41 		return pgprot_writecombine(prot);
42 	return prot;
43 }
44 
45 static struct gen_pool *atomic_pool;
46 
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49 
50 static int __init early_coherent_pool(char *p)
51 {
52 	atomic_pool_size = memparse(p, &p);
53 	return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56 
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59 	unsigned long val;
60 	void *ptr = NULL;
61 
62 	if (!atomic_pool) {
63 		WARN(1, "coherent pool not initialised!\n");
64 		return NULL;
65 	}
66 
67 	val = gen_pool_alloc(atomic_pool, size);
68 	if (val) {
69 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70 
71 		*ret_page = phys_to_page(phys);
72 		ptr = (void *)val;
73 		memset(ptr, 0, size);
74 	}
75 
76 	return ptr;
77 }
78 
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83 
84 static int __free_from_pool(void *start, size_t size)
85 {
86 	if (!__in_atomic_pool(start, size))
87 		return 0;
88 
89 	gen_pool_free(atomic_pool, (unsigned long)start, size);
90 
91 	return 1;
92 }
93 
94 static void *__dma_alloc_coherent(struct device *dev, size_t size,
95 				  dma_addr_t *dma_handle, gfp_t flags,
96 				  unsigned long attrs)
97 {
98 	if (dev == NULL) {
99 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
100 		return NULL;
101 	}
102 
103 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
104 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
105 		flags |= GFP_DMA;
106 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
107 		struct page *page;
108 		void *addr;
109 
110 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
111 						 get_order(size), flags);
112 		if (!page)
113 			return NULL;
114 
115 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
116 		addr = page_address(page);
117 		memset(addr, 0, size);
118 		return addr;
119 	} else {
120 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
121 	}
122 }
123 
124 static void __dma_free_coherent(struct device *dev, size_t size,
125 				void *vaddr, dma_addr_t dma_handle,
126 				unsigned long attrs)
127 {
128 	bool freed;
129 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
130 
131 	if (dev == NULL) {
132 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
133 		return;
134 	}
135 
136 	freed = dma_release_from_contiguous(dev,
137 					phys_to_page(paddr),
138 					size >> PAGE_SHIFT);
139 	if (!freed)
140 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
141 }
142 
143 static void *__dma_alloc(struct device *dev, size_t size,
144 			 dma_addr_t *dma_handle, gfp_t flags,
145 			 unsigned long attrs)
146 {
147 	struct page *page;
148 	void *ptr, *coherent_ptr;
149 	bool coherent = is_device_dma_coherent(dev);
150 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
151 
152 	size = PAGE_ALIGN(size);
153 
154 	if (!coherent && !gfpflags_allow_blocking(flags)) {
155 		struct page *page = NULL;
156 		void *addr = __alloc_from_pool(size, &page, flags);
157 
158 		if (addr)
159 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
160 
161 		return addr;
162 	}
163 
164 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
165 	if (!ptr)
166 		goto no_mem;
167 
168 	/* no need for non-cacheable mapping if coherent */
169 	if (coherent)
170 		return ptr;
171 
172 	/* remove any dirty cache lines on the kernel alias */
173 	__dma_flush_area(ptr, size);
174 
175 	/* create a coherent mapping */
176 	page = virt_to_page(ptr);
177 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
178 						   prot, NULL);
179 	if (!coherent_ptr)
180 		goto no_map;
181 
182 	return coherent_ptr;
183 
184 no_map:
185 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
186 no_mem:
187 	*dma_handle = DMA_ERROR_CODE;
188 	return NULL;
189 }
190 
191 static void __dma_free(struct device *dev, size_t size,
192 		       void *vaddr, dma_addr_t dma_handle,
193 		       unsigned long attrs)
194 {
195 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
196 
197 	size = PAGE_ALIGN(size);
198 
199 	if (!is_device_dma_coherent(dev)) {
200 		if (__free_from_pool(vaddr, size))
201 			return;
202 		vunmap(vaddr);
203 	}
204 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
205 }
206 
207 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
208 				     unsigned long offset, size_t size,
209 				     enum dma_data_direction dir,
210 				     unsigned long attrs)
211 {
212 	dma_addr_t dev_addr;
213 
214 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
215 	if (!is_device_dma_coherent(dev) &&
216 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
217 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
218 
219 	return dev_addr;
220 }
221 
222 
223 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
224 				 size_t size, enum dma_data_direction dir,
225 				 unsigned long attrs)
226 {
227 	if (!is_device_dma_coherent(dev) &&
228 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
229 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
230 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
231 }
232 
233 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
234 				  int nelems, enum dma_data_direction dir,
235 				  unsigned long attrs)
236 {
237 	struct scatterlist *sg;
238 	int i, ret;
239 
240 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
241 	if (!is_device_dma_coherent(dev) &&
242 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
243 		for_each_sg(sgl, sg, ret, i)
244 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
245 				       sg->length, dir);
246 
247 	return ret;
248 }
249 
250 static void __swiotlb_unmap_sg_attrs(struct device *dev,
251 				     struct scatterlist *sgl, int nelems,
252 				     enum dma_data_direction dir,
253 				     unsigned long attrs)
254 {
255 	struct scatterlist *sg;
256 	int i;
257 
258 	if (!is_device_dma_coherent(dev) &&
259 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
260 		for_each_sg(sgl, sg, nelems, i)
261 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
262 					 sg->length, dir);
263 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
264 }
265 
266 static void __swiotlb_sync_single_for_cpu(struct device *dev,
267 					  dma_addr_t dev_addr, size_t size,
268 					  enum dma_data_direction dir)
269 {
270 	if (!is_device_dma_coherent(dev))
271 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
272 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
273 }
274 
275 static void __swiotlb_sync_single_for_device(struct device *dev,
276 					     dma_addr_t dev_addr, size_t size,
277 					     enum dma_data_direction dir)
278 {
279 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
280 	if (!is_device_dma_coherent(dev))
281 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
282 }
283 
284 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
285 				      struct scatterlist *sgl, int nelems,
286 				      enum dma_data_direction dir)
287 {
288 	struct scatterlist *sg;
289 	int i;
290 
291 	if (!is_device_dma_coherent(dev))
292 		for_each_sg(sgl, sg, nelems, i)
293 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
294 					 sg->length, dir);
295 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
296 }
297 
298 static void __swiotlb_sync_sg_for_device(struct device *dev,
299 					 struct scatterlist *sgl, int nelems,
300 					 enum dma_data_direction dir)
301 {
302 	struct scatterlist *sg;
303 	int i;
304 
305 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
306 	if (!is_device_dma_coherent(dev))
307 		for_each_sg(sgl, sg, nelems, i)
308 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
309 				       sg->length, dir);
310 }
311 
312 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
313 			      unsigned long pfn, size_t size)
314 {
315 	int ret = -ENXIO;
316 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
317 					PAGE_SHIFT;
318 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
319 	unsigned long off = vma->vm_pgoff;
320 
321 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
322 		ret = remap_pfn_range(vma, vma->vm_start,
323 				      pfn + off,
324 				      vma->vm_end - vma->vm_start,
325 				      vma->vm_page_prot);
326 	}
327 
328 	return ret;
329 }
330 
331 static int __swiotlb_mmap(struct device *dev,
332 			  struct vm_area_struct *vma,
333 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
334 			  unsigned long attrs)
335 {
336 	int ret;
337 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
338 
339 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
340 					     is_device_dma_coherent(dev));
341 
342 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
343 		return ret;
344 
345 	return __swiotlb_mmap_pfn(vma, pfn, size);
346 }
347 
348 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
349 				      struct page *page, size_t size)
350 {
351 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
352 
353 	if (!ret)
354 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
355 
356 	return ret;
357 }
358 
359 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
360 				 void *cpu_addr, dma_addr_t handle, size_t size,
361 				 unsigned long attrs)
362 {
363 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
364 
365 	return __swiotlb_get_sgtable_page(sgt, page, size);
366 }
367 
368 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
369 {
370 	if (swiotlb)
371 		return swiotlb_dma_supported(hwdev, mask);
372 	return 1;
373 }
374 
375 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
376 {
377 	if (swiotlb)
378 		return swiotlb_dma_mapping_error(hwdev, addr);
379 	return 0;
380 }
381 
382 static const struct dma_map_ops swiotlb_dma_ops = {
383 	.alloc = __dma_alloc,
384 	.free = __dma_free,
385 	.mmap = __swiotlb_mmap,
386 	.get_sgtable = __swiotlb_get_sgtable,
387 	.map_page = __swiotlb_map_page,
388 	.unmap_page = __swiotlb_unmap_page,
389 	.map_sg = __swiotlb_map_sg_attrs,
390 	.unmap_sg = __swiotlb_unmap_sg_attrs,
391 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
392 	.sync_single_for_device = __swiotlb_sync_single_for_device,
393 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
394 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
395 	.dma_supported = __swiotlb_dma_supported,
396 	.mapping_error = __swiotlb_dma_mapping_error,
397 };
398 
399 static int __init atomic_pool_init(void)
400 {
401 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
402 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
403 	struct page *page;
404 	void *addr;
405 	unsigned int pool_size_order = get_order(atomic_pool_size);
406 
407 	if (dev_get_cma_area(NULL))
408 		page = dma_alloc_from_contiguous(NULL, nr_pages,
409 						 pool_size_order, GFP_KERNEL);
410 	else
411 		page = alloc_pages(GFP_DMA, pool_size_order);
412 
413 	if (page) {
414 		int ret;
415 		void *page_addr = page_address(page);
416 
417 		memset(page_addr, 0, atomic_pool_size);
418 		__dma_flush_area(page_addr, atomic_pool_size);
419 
420 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
421 		if (!atomic_pool)
422 			goto free_page;
423 
424 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
425 					VM_USERMAP, prot, atomic_pool_init);
426 
427 		if (!addr)
428 			goto destroy_genpool;
429 
430 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
431 					page_to_phys(page),
432 					atomic_pool_size, -1);
433 		if (ret)
434 			goto remove_mapping;
435 
436 		gen_pool_set_algo(atomic_pool,
437 				  gen_pool_first_fit_order_align,
438 				  (void *)PAGE_SHIFT);
439 
440 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
441 			atomic_pool_size / 1024);
442 		return 0;
443 	}
444 	goto out;
445 
446 remove_mapping:
447 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
448 destroy_genpool:
449 	gen_pool_destroy(atomic_pool);
450 	atomic_pool = NULL;
451 free_page:
452 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
453 		__free_pages(page, pool_size_order);
454 out:
455 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
456 		atomic_pool_size / 1024);
457 	return -ENOMEM;
458 }
459 
460 /********************************************
461  * The following APIs are for dummy DMA ops *
462  ********************************************/
463 
464 static void *__dummy_alloc(struct device *dev, size_t size,
465 			   dma_addr_t *dma_handle, gfp_t flags,
466 			   unsigned long attrs)
467 {
468 	return NULL;
469 }
470 
471 static void __dummy_free(struct device *dev, size_t size,
472 			 void *vaddr, dma_addr_t dma_handle,
473 			 unsigned long attrs)
474 {
475 }
476 
477 static int __dummy_mmap(struct device *dev,
478 			struct vm_area_struct *vma,
479 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
480 			unsigned long attrs)
481 {
482 	return -ENXIO;
483 }
484 
485 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
486 				   unsigned long offset, size_t size,
487 				   enum dma_data_direction dir,
488 				   unsigned long attrs)
489 {
490 	return DMA_ERROR_CODE;
491 }
492 
493 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
494 			       size_t size, enum dma_data_direction dir,
495 			       unsigned long attrs)
496 {
497 }
498 
499 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
500 			  int nelems, enum dma_data_direction dir,
501 			  unsigned long attrs)
502 {
503 	return 0;
504 }
505 
506 static void __dummy_unmap_sg(struct device *dev,
507 			     struct scatterlist *sgl, int nelems,
508 			     enum dma_data_direction dir,
509 			     unsigned long attrs)
510 {
511 }
512 
513 static void __dummy_sync_single(struct device *dev,
514 				dma_addr_t dev_addr, size_t size,
515 				enum dma_data_direction dir)
516 {
517 }
518 
519 static void __dummy_sync_sg(struct device *dev,
520 			    struct scatterlist *sgl, int nelems,
521 			    enum dma_data_direction dir)
522 {
523 }
524 
525 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
526 {
527 	return 1;
528 }
529 
530 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
531 {
532 	return 0;
533 }
534 
535 const struct dma_map_ops dummy_dma_ops = {
536 	.alloc                  = __dummy_alloc,
537 	.free                   = __dummy_free,
538 	.mmap                   = __dummy_mmap,
539 	.map_page               = __dummy_map_page,
540 	.unmap_page             = __dummy_unmap_page,
541 	.map_sg                 = __dummy_map_sg,
542 	.unmap_sg               = __dummy_unmap_sg,
543 	.sync_single_for_cpu    = __dummy_sync_single,
544 	.sync_single_for_device = __dummy_sync_single,
545 	.sync_sg_for_cpu        = __dummy_sync_sg,
546 	.sync_sg_for_device     = __dummy_sync_sg,
547 	.mapping_error          = __dummy_mapping_error,
548 	.dma_supported          = __dummy_dma_supported,
549 };
550 EXPORT_SYMBOL(dummy_dma_ops);
551 
552 static int __init arm64_dma_init(void)
553 {
554 	if (swiotlb_force == SWIOTLB_FORCE ||
555 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
556 		swiotlb = 1;
557 
558 	return atomic_pool_init();
559 }
560 arch_initcall(arm64_dma_init);
561 
562 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
563 
564 static int __init dma_debug_do_init(void)
565 {
566 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
567 	return 0;
568 }
569 fs_initcall(dma_debug_do_init);
570 
571 
572 #ifdef CONFIG_IOMMU_DMA
573 #include <linux/dma-iommu.h>
574 #include <linux/platform_device.h>
575 #include <linux/amba/bus.h>
576 
577 /* Thankfully, all cache ops are by VA so we can ignore phys here */
578 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
579 {
580 	__dma_flush_area(virt, PAGE_SIZE);
581 }
582 
583 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
584 				 dma_addr_t *handle, gfp_t gfp,
585 				 unsigned long attrs)
586 {
587 	bool coherent = is_device_dma_coherent(dev);
588 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
589 	size_t iosize = size;
590 	void *addr;
591 
592 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
593 		return NULL;
594 
595 	size = PAGE_ALIGN(size);
596 
597 	/*
598 	 * Some drivers rely on this, and we probably don't want the
599 	 * possibility of stale kernel data being read by devices anyway.
600 	 */
601 	gfp |= __GFP_ZERO;
602 
603 	if (!gfpflags_allow_blocking(gfp)) {
604 		struct page *page;
605 		/*
606 		 * In atomic context we can't remap anything, so we'll only
607 		 * get the virtually contiguous buffer we need by way of a
608 		 * physically contiguous allocation.
609 		 */
610 		if (coherent) {
611 			page = alloc_pages(gfp, get_order(size));
612 			addr = page ? page_address(page) : NULL;
613 		} else {
614 			addr = __alloc_from_pool(size, &page, gfp);
615 		}
616 		if (!addr)
617 			return NULL;
618 
619 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
620 		if (iommu_dma_mapping_error(dev, *handle)) {
621 			if (coherent)
622 				__free_pages(page, get_order(size));
623 			else
624 				__free_from_pool(addr, size);
625 			addr = NULL;
626 		}
627 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
628 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
629 		struct page *page;
630 
631 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
632 						 get_order(size), gfp);
633 		if (!page)
634 			return NULL;
635 
636 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
637 		if (iommu_dma_mapping_error(dev, *handle)) {
638 			dma_release_from_contiguous(dev, page,
639 						    size >> PAGE_SHIFT);
640 			return NULL;
641 		}
642 		if (!coherent)
643 			__dma_flush_area(page_to_virt(page), iosize);
644 
645 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
646 						   prot,
647 						   __builtin_return_address(0));
648 		if (!addr) {
649 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
650 			dma_release_from_contiguous(dev, page,
651 						    size >> PAGE_SHIFT);
652 		}
653 	} else {
654 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
655 		struct page **pages;
656 
657 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
658 					handle, flush_page);
659 		if (!pages)
660 			return NULL;
661 
662 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
663 					      __builtin_return_address(0));
664 		if (!addr)
665 			iommu_dma_free(dev, pages, iosize, handle);
666 	}
667 	return addr;
668 }
669 
670 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
671 			       dma_addr_t handle, unsigned long attrs)
672 {
673 	size_t iosize = size;
674 
675 	size = PAGE_ALIGN(size);
676 	/*
677 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
678 	 * - A remapped array of pages for contiguous allocations.
679 	 * - A remapped array of pages from iommu_dma_alloc(), for all
680 	 *   non-atomic allocations.
681 	 * - A non-cacheable alias from the atomic pool, for atomic
682 	 *   allocations by non-coherent devices.
683 	 * - A normal lowmem address, for atomic allocations by
684 	 *   coherent devices.
685 	 * Hence how dodgy the below logic looks...
686 	 */
687 	if (__in_atomic_pool(cpu_addr, size)) {
688 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
689 		__free_from_pool(cpu_addr, size);
690 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
691 		struct page *page = vmalloc_to_page(cpu_addr);
692 
693 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
694 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
695 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
696 	} else if (is_vmalloc_addr(cpu_addr)){
697 		struct vm_struct *area = find_vm_area(cpu_addr);
698 
699 		if (WARN_ON(!area || !area->pages))
700 			return;
701 		iommu_dma_free(dev, area->pages, iosize, &handle);
702 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
703 	} else {
704 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
705 		__free_pages(virt_to_page(cpu_addr), get_order(size));
706 	}
707 }
708 
709 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
710 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
711 			      unsigned long attrs)
712 {
713 	struct vm_struct *area;
714 	int ret;
715 
716 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
717 					     is_device_dma_coherent(dev));
718 
719 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
720 		return ret;
721 
722 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
723 		/*
724 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
725 		 * hence in the vmalloc space.
726 		 */
727 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
728 		return __swiotlb_mmap_pfn(vma, pfn, size);
729 	}
730 
731 	area = find_vm_area(cpu_addr);
732 	if (WARN_ON(!area || !area->pages))
733 		return -ENXIO;
734 
735 	return iommu_dma_mmap(area->pages, size, vma);
736 }
737 
738 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
739 			       void *cpu_addr, dma_addr_t dma_addr,
740 			       size_t size, unsigned long attrs)
741 {
742 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
743 	struct vm_struct *area = find_vm_area(cpu_addr);
744 
745 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
746 		/*
747 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
748 		 * hence in the vmalloc space.
749 		 */
750 		struct page *page = vmalloc_to_page(cpu_addr);
751 		return __swiotlb_get_sgtable_page(sgt, page, size);
752 	}
753 
754 	if (WARN_ON(!area || !area->pages))
755 		return -ENXIO;
756 
757 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
758 					 GFP_KERNEL);
759 }
760 
761 static void __iommu_sync_single_for_cpu(struct device *dev,
762 					dma_addr_t dev_addr, size_t size,
763 					enum dma_data_direction dir)
764 {
765 	phys_addr_t phys;
766 
767 	if (is_device_dma_coherent(dev))
768 		return;
769 
770 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
771 	__dma_unmap_area(phys_to_virt(phys), size, dir);
772 }
773 
774 static void __iommu_sync_single_for_device(struct device *dev,
775 					   dma_addr_t dev_addr, size_t size,
776 					   enum dma_data_direction dir)
777 {
778 	phys_addr_t phys;
779 
780 	if (is_device_dma_coherent(dev))
781 		return;
782 
783 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
784 	__dma_map_area(phys_to_virt(phys), size, dir);
785 }
786 
787 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
788 				   unsigned long offset, size_t size,
789 				   enum dma_data_direction dir,
790 				   unsigned long attrs)
791 {
792 	bool coherent = is_device_dma_coherent(dev);
793 	int prot = dma_info_to_prot(dir, coherent, attrs);
794 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
795 
796 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
797 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
798 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
799 
800 	return dev_addr;
801 }
802 
803 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
804 			       size_t size, enum dma_data_direction dir,
805 			       unsigned long attrs)
806 {
807 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
808 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
809 
810 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
811 }
812 
813 static void __iommu_sync_sg_for_cpu(struct device *dev,
814 				    struct scatterlist *sgl, int nelems,
815 				    enum dma_data_direction dir)
816 {
817 	struct scatterlist *sg;
818 	int i;
819 
820 	if (is_device_dma_coherent(dev))
821 		return;
822 
823 	for_each_sg(sgl, sg, nelems, i)
824 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
825 }
826 
827 static void __iommu_sync_sg_for_device(struct device *dev,
828 				       struct scatterlist *sgl, int nelems,
829 				       enum dma_data_direction dir)
830 {
831 	struct scatterlist *sg;
832 	int i;
833 
834 	if (is_device_dma_coherent(dev))
835 		return;
836 
837 	for_each_sg(sgl, sg, nelems, i)
838 		__dma_map_area(sg_virt(sg), sg->length, dir);
839 }
840 
841 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
842 				int nelems, enum dma_data_direction dir,
843 				unsigned long attrs)
844 {
845 	bool coherent = is_device_dma_coherent(dev);
846 
847 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
848 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
849 
850 	return iommu_dma_map_sg(dev, sgl, nelems,
851 				dma_info_to_prot(dir, coherent, attrs));
852 }
853 
854 static void __iommu_unmap_sg_attrs(struct device *dev,
855 				   struct scatterlist *sgl, int nelems,
856 				   enum dma_data_direction dir,
857 				   unsigned long attrs)
858 {
859 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
860 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
861 
862 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
863 }
864 
865 static const struct dma_map_ops iommu_dma_ops = {
866 	.alloc = __iommu_alloc_attrs,
867 	.free = __iommu_free_attrs,
868 	.mmap = __iommu_mmap_attrs,
869 	.get_sgtable = __iommu_get_sgtable,
870 	.map_page = __iommu_map_page,
871 	.unmap_page = __iommu_unmap_page,
872 	.map_sg = __iommu_map_sg_attrs,
873 	.unmap_sg = __iommu_unmap_sg_attrs,
874 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
875 	.sync_single_for_device = __iommu_sync_single_for_device,
876 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
877 	.sync_sg_for_device = __iommu_sync_sg_for_device,
878 	.map_resource = iommu_dma_map_resource,
879 	.unmap_resource = iommu_dma_unmap_resource,
880 	.mapping_error = iommu_dma_mapping_error,
881 };
882 
883 static int __init __iommu_dma_init(void)
884 {
885 	return iommu_dma_init();
886 }
887 arch_initcall(__iommu_dma_init);
888 
889 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
890 				  const struct iommu_ops *ops)
891 {
892 	struct iommu_domain *domain;
893 
894 	if (!ops)
895 		return;
896 
897 	/*
898 	 * The IOMMU core code allocates the default DMA domain, which the
899 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
900 	 */
901 	domain = iommu_get_domain_for_dev(dev);
902 
903 	if (!domain)
904 		goto out_err;
905 
906 	if (domain->type == IOMMU_DOMAIN_DMA) {
907 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
908 			goto out_err;
909 
910 		dev->dma_ops = &iommu_dma_ops;
911 	}
912 
913 	return;
914 
915 out_err:
916 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
917 		 dev_name(dev));
918 }
919 
920 void arch_teardown_dma_ops(struct device *dev)
921 {
922 	dev->dma_ops = NULL;
923 }
924 
925 #else
926 
927 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
928 				  const struct iommu_ops *iommu)
929 { }
930 
931 #endif  /* CONFIG_IOMMU_DMA */
932 
933 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
934 			const struct iommu_ops *iommu, bool coherent)
935 {
936 	if (!dev->dma_ops)
937 		dev->dma_ops = &swiotlb_dma_ops;
938 
939 	dev->archdata.dma_coherent = coherent;
940 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
941 
942 #ifdef CONFIG_XEN
943 	if (xen_initial_domain()) {
944 		dev->archdata.dev_dma_ops = dev->dma_ops;
945 		dev->dma_ops = xen_dma_ops;
946 	}
947 #endif
948 }
949