xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision 9cfc5c90)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/export.h>
22 #include <linux/slab.h>
23 #include <linux/genalloc.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/vmalloc.h>
27 #include <linux/swiotlb.h>
28 
29 #include <asm/cacheflush.h>
30 
31 struct dma_map_ops *dma_ops;
32 EXPORT_SYMBOL(dma_ops);
33 
34 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
35 				 bool coherent)
36 {
37 	if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
38 		return pgprot_writecombine(prot);
39 	return prot;
40 }
41 
42 static struct gen_pool *atomic_pool;
43 
44 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
45 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
46 
47 static int __init early_coherent_pool(char *p)
48 {
49 	atomic_pool_size = memparse(p, &p);
50 	return 0;
51 }
52 early_param("coherent_pool", early_coherent_pool);
53 
54 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
55 {
56 	unsigned long val;
57 	void *ptr = NULL;
58 
59 	if (!atomic_pool) {
60 		WARN(1, "coherent pool not initialised!\n");
61 		return NULL;
62 	}
63 
64 	val = gen_pool_alloc(atomic_pool, size);
65 	if (val) {
66 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
67 
68 		*ret_page = phys_to_page(phys);
69 		ptr = (void *)val;
70 		memset(ptr, 0, size);
71 	}
72 
73 	return ptr;
74 }
75 
76 static bool __in_atomic_pool(void *start, size_t size)
77 {
78 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
79 }
80 
81 static int __free_from_pool(void *start, size_t size)
82 {
83 	if (!__in_atomic_pool(start, size))
84 		return 0;
85 
86 	gen_pool_free(atomic_pool, (unsigned long)start, size);
87 
88 	return 1;
89 }
90 
91 static void *__dma_alloc_coherent(struct device *dev, size_t size,
92 				  dma_addr_t *dma_handle, gfp_t flags,
93 				  struct dma_attrs *attrs)
94 {
95 	if (dev == NULL) {
96 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
97 		return NULL;
98 	}
99 
100 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
101 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
102 		flags |= GFP_DMA;
103 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
104 		struct page *page;
105 		void *addr;
106 
107 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
108 							get_order(size));
109 		if (!page)
110 			return NULL;
111 
112 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
113 		addr = page_address(page);
114 		memset(addr, 0, size);
115 		return addr;
116 	} else {
117 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
118 	}
119 }
120 
121 static void __dma_free_coherent(struct device *dev, size_t size,
122 				void *vaddr, dma_addr_t dma_handle,
123 				struct dma_attrs *attrs)
124 {
125 	bool freed;
126 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
127 
128 	if (dev == NULL) {
129 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
130 		return;
131 	}
132 
133 	freed = dma_release_from_contiguous(dev,
134 					phys_to_page(paddr),
135 					size >> PAGE_SHIFT);
136 	if (!freed)
137 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
138 }
139 
140 static void *__dma_alloc(struct device *dev, size_t size,
141 			 dma_addr_t *dma_handle, gfp_t flags,
142 			 struct dma_attrs *attrs)
143 {
144 	struct page *page;
145 	void *ptr, *coherent_ptr;
146 	bool coherent = is_device_dma_coherent(dev);
147 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
148 
149 	size = PAGE_ALIGN(size);
150 
151 	if (!coherent && !gfpflags_allow_blocking(flags)) {
152 		struct page *page = NULL;
153 		void *addr = __alloc_from_pool(size, &page, flags);
154 
155 		if (addr)
156 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
157 
158 		return addr;
159 	}
160 
161 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
162 	if (!ptr)
163 		goto no_mem;
164 
165 	/* no need for non-cacheable mapping if coherent */
166 	if (coherent)
167 		return ptr;
168 
169 	/* remove any dirty cache lines on the kernel alias */
170 	__dma_flush_range(ptr, ptr + size);
171 
172 	/* create a coherent mapping */
173 	page = virt_to_page(ptr);
174 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
175 						   prot, NULL);
176 	if (!coherent_ptr)
177 		goto no_map;
178 
179 	return coherent_ptr;
180 
181 no_map:
182 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
183 no_mem:
184 	*dma_handle = DMA_ERROR_CODE;
185 	return NULL;
186 }
187 
188 static void __dma_free(struct device *dev, size_t size,
189 		       void *vaddr, dma_addr_t dma_handle,
190 		       struct dma_attrs *attrs)
191 {
192 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
193 
194 	size = PAGE_ALIGN(size);
195 
196 	if (!is_device_dma_coherent(dev)) {
197 		if (__free_from_pool(vaddr, size))
198 			return;
199 		vunmap(vaddr);
200 	}
201 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
202 }
203 
204 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
205 				     unsigned long offset, size_t size,
206 				     enum dma_data_direction dir,
207 				     struct dma_attrs *attrs)
208 {
209 	dma_addr_t dev_addr;
210 
211 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
212 	if (!is_device_dma_coherent(dev))
213 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
214 
215 	return dev_addr;
216 }
217 
218 
219 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
220 				 size_t size, enum dma_data_direction dir,
221 				 struct dma_attrs *attrs)
222 {
223 	if (!is_device_dma_coherent(dev))
224 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
225 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
226 }
227 
228 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
229 				  int nelems, enum dma_data_direction dir,
230 				  struct dma_attrs *attrs)
231 {
232 	struct scatterlist *sg;
233 	int i, ret;
234 
235 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
236 	if (!is_device_dma_coherent(dev))
237 		for_each_sg(sgl, sg, ret, i)
238 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
239 				       sg->length, dir);
240 
241 	return ret;
242 }
243 
244 static void __swiotlb_unmap_sg_attrs(struct device *dev,
245 				     struct scatterlist *sgl, int nelems,
246 				     enum dma_data_direction dir,
247 				     struct dma_attrs *attrs)
248 {
249 	struct scatterlist *sg;
250 	int i;
251 
252 	if (!is_device_dma_coherent(dev))
253 		for_each_sg(sgl, sg, nelems, i)
254 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
255 					 sg->length, dir);
256 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
257 }
258 
259 static void __swiotlb_sync_single_for_cpu(struct device *dev,
260 					  dma_addr_t dev_addr, size_t size,
261 					  enum dma_data_direction dir)
262 {
263 	if (!is_device_dma_coherent(dev))
264 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
265 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
266 }
267 
268 static void __swiotlb_sync_single_for_device(struct device *dev,
269 					     dma_addr_t dev_addr, size_t size,
270 					     enum dma_data_direction dir)
271 {
272 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
273 	if (!is_device_dma_coherent(dev))
274 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
275 }
276 
277 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
278 				      struct scatterlist *sgl, int nelems,
279 				      enum dma_data_direction dir)
280 {
281 	struct scatterlist *sg;
282 	int i;
283 
284 	if (!is_device_dma_coherent(dev))
285 		for_each_sg(sgl, sg, nelems, i)
286 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
287 					 sg->length, dir);
288 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
289 }
290 
291 static void __swiotlb_sync_sg_for_device(struct device *dev,
292 					 struct scatterlist *sgl, int nelems,
293 					 enum dma_data_direction dir)
294 {
295 	struct scatterlist *sg;
296 	int i;
297 
298 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
299 	if (!is_device_dma_coherent(dev))
300 		for_each_sg(sgl, sg, nelems, i)
301 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
302 				       sg->length, dir);
303 }
304 
305 static int __swiotlb_mmap(struct device *dev,
306 			  struct vm_area_struct *vma,
307 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
308 			  struct dma_attrs *attrs)
309 {
310 	int ret = -ENXIO;
311 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
312 					PAGE_SHIFT;
313 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
314 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
315 	unsigned long off = vma->vm_pgoff;
316 
317 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
318 					     is_device_dma_coherent(dev));
319 
320 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
321 		return ret;
322 
323 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
324 		ret = remap_pfn_range(vma, vma->vm_start,
325 				      pfn + off,
326 				      vma->vm_end - vma->vm_start,
327 				      vma->vm_page_prot);
328 	}
329 
330 	return ret;
331 }
332 
333 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
334 				 void *cpu_addr, dma_addr_t handle, size_t size,
335 				 struct dma_attrs *attrs)
336 {
337 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
338 
339 	if (!ret)
340 		sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
341 			    PAGE_ALIGN(size), 0);
342 
343 	return ret;
344 }
345 
346 static struct dma_map_ops swiotlb_dma_ops = {
347 	.alloc = __dma_alloc,
348 	.free = __dma_free,
349 	.mmap = __swiotlb_mmap,
350 	.get_sgtable = __swiotlb_get_sgtable,
351 	.map_page = __swiotlb_map_page,
352 	.unmap_page = __swiotlb_unmap_page,
353 	.map_sg = __swiotlb_map_sg_attrs,
354 	.unmap_sg = __swiotlb_unmap_sg_attrs,
355 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
356 	.sync_single_for_device = __swiotlb_sync_single_for_device,
357 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
358 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
359 	.dma_supported = swiotlb_dma_supported,
360 	.mapping_error = swiotlb_dma_mapping_error,
361 };
362 
363 static int __init atomic_pool_init(void)
364 {
365 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
366 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
367 	struct page *page;
368 	void *addr;
369 	unsigned int pool_size_order = get_order(atomic_pool_size);
370 
371 	if (dev_get_cma_area(NULL))
372 		page = dma_alloc_from_contiguous(NULL, nr_pages,
373 							pool_size_order);
374 	else
375 		page = alloc_pages(GFP_DMA, pool_size_order);
376 
377 	if (page) {
378 		int ret;
379 		void *page_addr = page_address(page);
380 
381 		memset(page_addr, 0, atomic_pool_size);
382 		__dma_flush_range(page_addr, page_addr + atomic_pool_size);
383 
384 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
385 		if (!atomic_pool)
386 			goto free_page;
387 
388 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
389 					VM_USERMAP, prot, atomic_pool_init);
390 
391 		if (!addr)
392 			goto destroy_genpool;
393 
394 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
395 					page_to_phys(page),
396 					atomic_pool_size, -1);
397 		if (ret)
398 			goto remove_mapping;
399 
400 		gen_pool_set_algo(atomic_pool,
401 				  gen_pool_first_fit_order_align,
402 				  (void *)PAGE_SHIFT);
403 
404 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
405 			atomic_pool_size / 1024);
406 		return 0;
407 	}
408 	goto out;
409 
410 remove_mapping:
411 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
412 destroy_genpool:
413 	gen_pool_destroy(atomic_pool);
414 	atomic_pool = NULL;
415 free_page:
416 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
417 		__free_pages(page, pool_size_order);
418 out:
419 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
420 		atomic_pool_size / 1024);
421 	return -ENOMEM;
422 }
423 
424 /********************************************
425  * The following APIs are for dummy DMA ops *
426  ********************************************/
427 
428 static void *__dummy_alloc(struct device *dev, size_t size,
429 			   dma_addr_t *dma_handle, gfp_t flags,
430 			   struct dma_attrs *attrs)
431 {
432 	return NULL;
433 }
434 
435 static void __dummy_free(struct device *dev, size_t size,
436 			 void *vaddr, dma_addr_t dma_handle,
437 			 struct dma_attrs *attrs)
438 {
439 }
440 
441 static int __dummy_mmap(struct device *dev,
442 			struct vm_area_struct *vma,
443 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
444 			struct dma_attrs *attrs)
445 {
446 	return -ENXIO;
447 }
448 
449 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
450 				   unsigned long offset, size_t size,
451 				   enum dma_data_direction dir,
452 				   struct dma_attrs *attrs)
453 {
454 	return DMA_ERROR_CODE;
455 }
456 
457 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
458 			       size_t size, enum dma_data_direction dir,
459 			       struct dma_attrs *attrs)
460 {
461 }
462 
463 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
464 			  int nelems, enum dma_data_direction dir,
465 			  struct dma_attrs *attrs)
466 {
467 	return 0;
468 }
469 
470 static void __dummy_unmap_sg(struct device *dev,
471 			     struct scatterlist *sgl, int nelems,
472 			     enum dma_data_direction dir,
473 			     struct dma_attrs *attrs)
474 {
475 }
476 
477 static void __dummy_sync_single(struct device *dev,
478 				dma_addr_t dev_addr, size_t size,
479 				enum dma_data_direction dir)
480 {
481 }
482 
483 static void __dummy_sync_sg(struct device *dev,
484 			    struct scatterlist *sgl, int nelems,
485 			    enum dma_data_direction dir)
486 {
487 }
488 
489 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
490 {
491 	return 1;
492 }
493 
494 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
495 {
496 	return 0;
497 }
498 
499 struct dma_map_ops dummy_dma_ops = {
500 	.alloc                  = __dummy_alloc,
501 	.free                   = __dummy_free,
502 	.mmap                   = __dummy_mmap,
503 	.map_page               = __dummy_map_page,
504 	.unmap_page             = __dummy_unmap_page,
505 	.map_sg                 = __dummy_map_sg,
506 	.unmap_sg               = __dummy_unmap_sg,
507 	.sync_single_for_cpu    = __dummy_sync_single,
508 	.sync_single_for_device = __dummy_sync_single,
509 	.sync_sg_for_cpu        = __dummy_sync_sg,
510 	.sync_sg_for_device     = __dummy_sync_sg,
511 	.mapping_error          = __dummy_mapping_error,
512 	.dma_supported          = __dummy_dma_supported,
513 };
514 EXPORT_SYMBOL(dummy_dma_ops);
515 
516 static int __init arm64_dma_init(void)
517 {
518 	int ret;
519 
520 	dma_ops = &swiotlb_dma_ops;
521 
522 	ret = atomic_pool_init();
523 
524 	return ret;
525 }
526 arch_initcall(arm64_dma_init);
527 
528 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
529 
530 static int __init dma_debug_do_init(void)
531 {
532 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
533 	return 0;
534 }
535 fs_initcall(dma_debug_do_init);
536 
537 
538 #ifdef CONFIG_IOMMU_DMA
539 #include <linux/dma-iommu.h>
540 #include <linux/platform_device.h>
541 #include <linux/amba/bus.h>
542 
543 /* Thankfully, all cache ops are by VA so we can ignore phys here */
544 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
545 {
546 	__dma_flush_range(virt, virt + PAGE_SIZE);
547 }
548 
549 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
550 				 dma_addr_t *handle, gfp_t gfp,
551 				 struct dma_attrs *attrs)
552 {
553 	bool coherent = is_device_dma_coherent(dev);
554 	int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
555 	void *addr;
556 
557 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
558 		return NULL;
559 	/*
560 	 * Some drivers rely on this, and we probably don't want the
561 	 * possibility of stale kernel data being read by devices anyway.
562 	 */
563 	gfp |= __GFP_ZERO;
564 
565 	if (gfpflags_allow_blocking(gfp)) {
566 		struct page **pages;
567 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
568 
569 		pages = iommu_dma_alloc(dev, size, gfp, ioprot,	handle,
570 					flush_page);
571 		if (!pages)
572 			return NULL;
573 
574 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
575 					      __builtin_return_address(0));
576 		if (!addr)
577 			iommu_dma_free(dev, pages, size, handle);
578 	} else {
579 		struct page *page;
580 		/*
581 		 * In atomic context we can't remap anything, so we'll only
582 		 * get the virtually contiguous buffer we need by way of a
583 		 * physically contiguous allocation.
584 		 */
585 		if (coherent) {
586 			page = alloc_pages(gfp, get_order(size));
587 			addr = page ? page_address(page) : NULL;
588 		} else {
589 			addr = __alloc_from_pool(size, &page, gfp);
590 		}
591 		if (!addr)
592 			return NULL;
593 
594 		*handle = iommu_dma_map_page(dev, page, 0, size, ioprot);
595 		if (iommu_dma_mapping_error(dev, *handle)) {
596 			if (coherent)
597 				__free_pages(page, get_order(size));
598 			else
599 				__free_from_pool(addr, size);
600 			addr = NULL;
601 		}
602 	}
603 	return addr;
604 }
605 
606 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
607 			       dma_addr_t handle, struct dma_attrs *attrs)
608 {
609 	/*
610 	 * @cpu_addr will be one of 3 things depending on how it was allocated:
611 	 * - A remapped array of pages from iommu_dma_alloc(), for all
612 	 *   non-atomic allocations.
613 	 * - A non-cacheable alias from the atomic pool, for atomic
614 	 *   allocations by non-coherent devices.
615 	 * - A normal lowmem address, for atomic allocations by
616 	 *   coherent devices.
617 	 * Hence how dodgy the below logic looks...
618 	 */
619 	if (__in_atomic_pool(cpu_addr, size)) {
620 		iommu_dma_unmap_page(dev, handle, size, 0, NULL);
621 		__free_from_pool(cpu_addr, size);
622 	} else if (is_vmalloc_addr(cpu_addr)){
623 		struct vm_struct *area = find_vm_area(cpu_addr);
624 
625 		if (WARN_ON(!area || !area->pages))
626 			return;
627 		iommu_dma_free(dev, area->pages, size, &handle);
628 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
629 	} else {
630 		iommu_dma_unmap_page(dev, handle, size, 0, NULL);
631 		__free_pages(virt_to_page(cpu_addr), get_order(size));
632 	}
633 }
634 
635 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
636 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
637 			      struct dma_attrs *attrs)
638 {
639 	struct vm_struct *area;
640 	int ret;
641 
642 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
643 					     is_device_dma_coherent(dev));
644 
645 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
646 		return ret;
647 
648 	area = find_vm_area(cpu_addr);
649 	if (WARN_ON(!area || !area->pages))
650 		return -ENXIO;
651 
652 	return iommu_dma_mmap(area->pages, size, vma);
653 }
654 
655 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
656 			       void *cpu_addr, dma_addr_t dma_addr,
657 			       size_t size, struct dma_attrs *attrs)
658 {
659 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
660 	struct vm_struct *area = find_vm_area(cpu_addr);
661 
662 	if (WARN_ON(!area || !area->pages))
663 		return -ENXIO;
664 
665 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
666 					 GFP_KERNEL);
667 }
668 
669 static void __iommu_sync_single_for_cpu(struct device *dev,
670 					dma_addr_t dev_addr, size_t size,
671 					enum dma_data_direction dir)
672 {
673 	phys_addr_t phys;
674 
675 	if (is_device_dma_coherent(dev))
676 		return;
677 
678 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
679 	__dma_unmap_area(phys_to_virt(phys), size, dir);
680 }
681 
682 static void __iommu_sync_single_for_device(struct device *dev,
683 					   dma_addr_t dev_addr, size_t size,
684 					   enum dma_data_direction dir)
685 {
686 	phys_addr_t phys;
687 
688 	if (is_device_dma_coherent(dev))
689 		return;
690 
691 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
692 	__dma_map_area(phys_to_virt(phys), size, dir);
693 }
694 
695 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
696 				   unsigned long offset, size_t size,
697 				   enum dma_data_direction dir,
698 				   struct dma_attrs *attrs)
699 {
700 	bool coherent = is_device_dma_coherent(dev);
701 	int prot = dma_direction_to_prot(dir, coherent);
702 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
703 
704 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
705 	    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
706 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
707 
708 	return dev_addr;
709 }
710 
711 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
712 			       size_t size, enum dma_data_direction dir,
713 			       struct dma_attrs *attrs)
714 {
715 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
716 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
717 
718 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
719 }
720 
721 static void __iommu_sync_sg_for_cpu(struct device *dev,
722 				    struct scatterlist *sgl, int nelems,
723 				    enum dma_data_direction dir)
724 {
725 	struct scatterlist *sg;
726 	int i;
727 
728 	if (is_device_dma_coherent(dev))
729 		return;
730 
731 	for_each_sg(sgl, sg, nelems, i)
732 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
733 }
734 
735 static void __iommu_sync_sg_for_device(struct device *dev,
736 				       struct scatterlist *sgl, int nelems,
737 				       enum dma_data_direction dir)
738 {
739 	struct scatterlist *sg;
740 	int i;
741 
742 	if (is_device_dma_coherent(dev))
743 		return;
744 
745 	for_each_sg(sgl, sg, nelems, i)
746 		__dma_map_area(sg_virt(sg), sg->length, dir);
747 }
748 
749 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
750 				int nelems, enum dma_data_direction dir,
751 				struct dma_attrs *attrs)
752 {
753 	bool coherent = is_device_dma_coherent(dev);
754 
755 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
756 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
757 
758 	return iommu_dma_map_sg(dev, sgl, nelems,
759 			dma_direction_to_prot(dir, coherent));
760 }
761 
762 static void __iommu_unmap_sg_attrs(struct device *dev,
763 				   struct scatterlist *sgl, int nelems,
764 				   enum dma_data_direction dir,
765 				   struct dma_attrs *attrs)
766 {
767 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
768 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
769 
770 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
771 }
772 
773 static struct dma_map_ops iommu_dma_ops = {
774 	.alloc = __iommu_alloc_attrs,
775 	.free = __iommu_free_attrs,
776 	.mmap = __iommu_mmap_attrs,
777 	.get_sgtable = __iommu_get_sgtable,
778 	.map_page = __iommu_map_page,
779 	.unmap_page = __iommu_unmap_page,
780 	.map_sg = __iommu_map_sg_attrs,
781 	.unmap_sg = __iommu_unmap_sg_attrs,
782 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
783 	.sync_single_for_device = __iommu_sync_single_for_device,
784 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
785 	.sync_sg_for_device = __iommu_sync_sg_for_device,
786 	.dma_supported = iommu_dma_supported,
787 	.mapping_error = iommu_dma_mapping_error,
788 };
789 
790 /*
791  * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
792  * everything it needs to - the device is only partially created and the
793  * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
794  * need this delayed attachment dance. Once IOMMU probe ordering is sorted
795  * to move the arch_setup_dma_ops() call later, all the notifier bits below
796  * become unnecessary, and will go away.
797  */
798 struct iommu_dma_notifier_data {
799 	struct list_head list;
800 	struct device *dev;
801 	const struct iommu_ops *ops;
802 	u64 dma_base;
803 	u64 size;
804 };
805 static LIST_HEAD(iommu_dma_masters);
806 static DEFINE_MUTEX(iommu_dma_notifier_lock);
807 
808 /*
809  * Temporarily "borrow" a domain feature flag to to tell if we had to resort
810  * to creating our own domain here, in case we need to clean it up again.
811  */
812 #define __IOMMU_DOMAIN_FAKE_DEFAULT		(1U << 31)
813 
814 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
815 			   u64 dma_base, u64 size)
816 {
817 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
818 
819 	/*
820 	 * Best case: The device is either part of a group which was
821 	 * already attached to a domain in a previous call, or it's
822 	 * been put in a default DMA domain by the IOMMU core.
823 	 */
824 	if (!domain) {
825 		/*
826 		 * Urgh. The IOMMU core isn't going to do default domains
827 		 * for non-PCI devices anyway, until it has some means of
828 		 * abstracting the entirely implementation-specific
829 		 * sideband data/SoC topology/unicorn dust that may or
830 		 * may not differentiate upstream masters.
831 		 * So until then, HORRIBLE HACKS!
832 		 */
833 		domain = ops->domain_alloc(IOMMU_DOMAIN_DMA);
834 		if (!domain)
835 			goto out_no_domain;
836 
837 		domain->ops = ops;
838 		domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT;
839 
840 		if (iommu_attach_device(domain, dev))
841 			goto out_put_domain;
842 	}
843 
844 	if (iommu_dma_init_domain(domain, dma_base, size))
845 		goto out_detach;
846 
847 	dev->archdata.dma_ops = &iommu_dma_ops;
848 	return true;
849 
850 out_detach:
851 	iommu_detach_device(domain, dev);
852 out_put_domain:
853 	if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
854 		iommu_domain_free(domain);
855 out_no_domain:
856 	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
857 		dev_name(dev));
858 	return false;
859 }
860 
861 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
862 			      u64 dma_base, u64 size)
863 {
864 	struct iommu_dma_notifier_data *iommudata;
865 
866 	iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
867 	if (!iommudata)
868 		return;
869 
870 	iommudata->dev = dev;
871 	iommudata->ops = ops;
872 	iommudata->dma_base = dma_base;
873 	iommudata->size = size;
874 
875 	mutex_lock(&iommu_dma_notifier_lock);
876 	list_add(&iommudata->list, &iommu_dma_masters);
877 	mutex_unlock(&iommu_dma_notifier_lock);
878 }
879 
880 static int __iommu_attach_notifier(struct notifier_block *nb,
881 				   unsigned long action, void *data)
882 {
883 	struct iommu_dma_notifier_data *master, *tmp;
884 
885 	if (action != BUS_NOTIFY_ADD_DEVICE)
886 		return 0;
887 
888 	mutex_lock(&iommu_dma_notifier_lock);
889 	list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
890 		if (do_iommu_attach(master->dev, master->ops,
891 				master->dma_base, master->size)) {
892 			list_del(&master->list);
893 			kfree(master);
894 		}
895 	}
896 	mutex_unlock(&iommu_dma_notifier_lock);
897 	return 0;
898 }
899 
900 static int register_iommu_dma_ops_notifier(struct bus_type *bus)
901 {
902 	struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
903 	int ret;
904 
905 	if (!nb)
906 		return -ENOMEM;
907 	/*
908 	 * The device must be attached to a domain before the driver probe
909 	 * routine gets a chance to start allocating DMA buffers. However,
910 	 * the IOMMU driver also needs a chance to configure the iommu_group
911 	 * via its add_device callback first, so we need to make the attach
912 	 * happen between those two points. Since the IOMMU core uses a bus
913 	 * notifier with default priority for add_device, do the same but
914 	 * with a lower priority to ensure the appropriate ordering.
915 	 */
916 	nb->notifier_call = __iommu_attach_notifier;
917 	nb->priority = -100;
918 
919 	ret = bus_register_notifier(bus, nb);
920 	if (ret) {
921 		pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
922 			bus->name);
923 		kfree(nb);
924 	}
925 	return ret;
926 }
927 
928 static int __init __iommu_dma_init(void)
929 {
930 	int ret;
931 
932 	ret = iommu_dma_init();
933 	if (!ret)
934 		ret = register_iommu_dma_ops_notifier(&platform_bus_type);
935 	if (!ret)
936 		ret = register_iommu_dma_ops_notifier(&amba_bustype);
937 	return ret;
938 }
939 arch_initcall(__iommu_dma_init);
940 
941 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
942 				  const struct iommu_ops *ops)
943 {
944 	struct iommu_group *group;
945 
946 	if (!ops)
947 		return;
948 	/*
949 	 * TODO: As a concession to the future, we're ready to handle being
950 	 * called both early and late (i.e. after bus_add_device). Once all
951 	 * the platform bus code is reworked to call us late and the notifier
952 	 * junk above goes away, move the body of do_iommu_attach here.
953 	 */
954 	group = iommu_group_get(dev);
955 	if (group) {
956 		do_iommu_attach(dev, ops, dma_base, size);
957 		iommu_group_put(group);
958 	} else {
959 		queue_iommu_attach(dev, ops, dma_base, size);
960 	}
961 }
962 
963 void arch_teardown_dma_ops(struct device *dev)
964 {
965 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
966 
967 	if (domain) {
968 		iommu_detach_device(domain, dev);
969 		if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
970 			iommu_domain_free(domain);
971 	}
972 
973 	dev->archdata.dma_ops = NULL;
974 }
975 
976 #else
977 
978 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
979 				  struct iommu_ops *iommu)
980 { }
981 
982 #endif  /* CONFIG_IOMMU_DMA */
983 
984 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
985 			struct iommu_ops *iommu, bool coherent)
986 {
987 	if (!acpi_disabled && !dev->archdata.dma_ops)
988 		dev->archdata.dma_ops = dma_ops;
989 
990 	dev->archdata.dma_coherent = coherent;
991 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
992 }
993