1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/export.h> 22 #include <linux/slab.h> 23 #include <linux/genalloc.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dma-contiguous.h> 26 #include <linux/vmalloc.h> 27 #include <linux/swiotlb.h> 28 29 #include <asm/cacheflush.h> 30 31 struct dma_map_ops *dma_ops; 32 EXPORT_SYMBOL(dma_ops); 33 34 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, 35 bool coherent) 36 { 37 if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) 38 return pgprot_writecombine(prot); 39 return prot; 40 } 41 42 static struct gen_pool *atomic_pool; 43 44 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 45 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 46 47 static int __init early_coherent_pool(char *p) 48 { 49 atomic_pool_size = memparse(p, &p); 50 return 0; 51 } 52 early_param("coherent_pool", early_coherent_pool); 53 54 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 55 { 56 unsigned long val; 57 void *ptr = NULL; 58 59 if (!atomic_pool) { 60 WARN(1, "coherent pool not initialised!\n"); 61 return NULL; 62 } 63 64 val = gen_pool_alloc(atomic_pool, size); 65 if (val) { 66 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 67 68 *ret_page = phys_to_page(phys); 69 ptr = (void *)val; 70 memset(ptr, 0, size); 71 } 72 73 return ptr; 74 } 75 76 static bool __in_atomic_pool(void *start, size_t size) 77 { 78 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 79 } 80 81 static int __free_from_pool(void *start, size_t size) 82 { 83 if (!__in_atomic_pool(start, size)) 84 return 0; 85 86 gen_pool_free(atomic_pool, (unsigned long)start, size); 87 88 return 1; 89 } 90 91 static void *__dma_alloc_coherent(struct device *dev, size_t size, 92 dma_addr_t *dma_handle, gfp_t flags, 93 struct dma_attrs *attrs) 94 { 95 if (dev == NULL) { 96 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 97 return NULL; 98 } 99 100 if (IS_ENABLED(CONFIG_ZONE_DMA) && 101 dev->coherent_dma_mask <= DMA_BIT_MASK(32)) 102 flags |= GFP_DMA; 103 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { 104 struct page *page; 105 void *addr; 106 107 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 108 get_order(size)); 109 if (!page) 110 return NULL; 111 112 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 113 addr = page_address(page); 114 memset(addr, 0, size); 115 return addr; 116 } else { 117 return swiotlb_alloc_coherent(dev, size, dma_handle, flags); 118 } 119 } 120 121 static void __dma_free_coherent(struct device *dev, size_t size, 122 void *vaddr, dma_addr_t dma_handle, 123 struct dma_attrs *attrs) 124 { 125 bool freed; 126 phys_addr_t paddr = dma_to_phys(dev, dma_handle); 127 128 if (dev == NULL) { 129 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 130 return; 131 } 132 133 freed = dma_release_from_contiguous(dev, 134 phys_to_page(paddr), 135 size >> PAGE_SHIFT); 136 if (!freed) 137 swiotlb_free_coherent(dev, size, vaddr, dma_handle); 138 } 139 140 static void *__dma_alloc(struct device *dev, size_t size, 141 dma_addr_t *dma_handle, gfp_t flags, 142 struct dma_attrs *attrs) 143 { 144 struct page *page; 145 void *ptr, *coherent_ptr; 146 bool coherent = is_device_dma_coherent(dev); 147 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 148 149 size = PAGE_ALIGN(size); 150 151 if (!coherent && !gfpflags_allow_blocking(flags)) { 152 struct page *page = NULL; 153 void *addr = __alloc_from_pool(size, &page, flags); 154 155 if (addr) 156 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 157 158 return addr; 159 } 160 161 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); 162 if (!ptr) 163 goto no_mem; 164 165 /* no need for non-cacheable mapping if coherent */ 166 if (coherent) 167 return ptr; 168 169 /* remove any dirty cache lines on the kernel alias */ 170 __dma_flush_range(ptr, ptr + size); 171 172 /* create a coherent mapping */ 173 page = virt_to_page(ptr); 174 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 175 prot, NULL); 176 if (!coherent_ptr) 177 goto no_map; 178 179 return coherent_ptr; 180 181 no_map: 182 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); 183 no_mem: 184 *dma_handle = DMA_ERROR_CODE; 185 return NULL; 186 } 187 188 static void __dma_free(struct device *dev, size_t size, 189 void *vaddr, dma_addr_t dma_handle, 190 struct dma_attrs *attrs) 191 { 192 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 193 194 size = PAGE_ALIGN(size); 195 196 if (!is_device_dma_coherent(dev)) { 197 if (__free_from_pool(vaddr, size)) 198 return; 199 vunmap(vaddr); 200 } 201 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); 202 } 203 204 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 205 unsigned long offset, size_t size, 206 enum dma_data_direction dir, 207 struct dma_attrs *attrs) 208 { 209 dma_addr_t dev_addr; 210 211 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 212 if (!is_device_dma_coherent(dev)) 213 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 214 215 return dev_addr; 216 } 217 218 219 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 220 size_t size, enum dma_data_direction dir, 221 struct dma_attrs *attrs) 222 { 223 if (!is_device_dma_coherent(dev)) 224 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 225 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 226 } 227 228 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 229 int nelems, enum dma_data_direction dir, 230 struct dma_attrs *attrs) 231 { 232 struct scatterlist *sg; 233 int i, ret; 234 235 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 236 if (!is_device_dma_coherent(dev)) 237 for_each_sg(sgl, sg, ret, i) 238 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 239 sg->length, dir); 240 241 return ret; 242 } 243 244 static void __swiotlb_unmap_sg_attrs(struct device *dev, 245 struct scatterlist *sgl, int nelems, 246 enum dma_data_direction dir, 247 struct dma_attrs *attrs) 248 { 249 struct scatterlist *sg; 250 int i; 251 252 if (!is_device_dma_coherent(dev)) 253 for_each_sg(sgl, sg, nelems, i) 254 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 255 sg->length, dir); 256 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 257 } 258 259 static void __swiotlb_sync_single_for_cpu(struct device *dev, 260 dma_addr_t dev_addr, size_t size, 261 enum dma_data_direction dir) 262 { 263 if (!is_device_dma_coherent(dev)) 264 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 265 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 266 } 267 268 static void __swiotlb_sync_single_for_device(struct device *dev, 269 dma_addr_t dev_addr, size_t size, 270 enum dma_data_direction dir) 271 { 272 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 273 if (!is_device_dma_coherent(dev)) 274 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 275 } 276 277 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 278 struct scatterlist *sgl, int nelems, 279 enum dma_data_direction dir) 280 { 281 struct scatterlist *sg; 282 int i; 283 284 if (!is_device_dma_coherent(dev)) 285 for_each_sg(sgl, sg, nelems, i) 286 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 287 sg->length, dir); 288 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 289 } 290 291 static void __swiotlb_sync_sg_for_device(struct device *dev, 292 struct scatterlist *sgl, int nelems, 293 enum dma_data_direction dir) 294 { 295 struct scatterlist *sg; 296 int i; 297 298 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 299 if (!is_device_dma_coherent(dev)) 300 for_each_sg(sgl, sg, nelems, i) 301 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 302 sg->length, dir); 303 } 304 305 static int __swiotlb_mmap(struct device *dev, 306 struct vm_area_struct *vma, 307 void *cpu_addr, dma_addr_t dma_addr, size_t size, 308 struct dma_attrs *attrs) 309 { 310 int ret = -ENXIO; 311 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> 312 PAGE_SHIFT; 313 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 314 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 315 unsigned long off = vma->vm_pgoff; 316 317 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 318 is_device_dma_coherent(dev)); 319 320 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 321 return ret; 322 323 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 324 ret = remap_pfn_range(vma, vma->vm_start, 325 pfn + off, 326 vma->vm_end - vma->vm_start, 327 vma->vm_page_prot); 328 } 329 330 return ret; 331 } 332 333 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 334 void *cpu_addr, dma_addr_t handle, size_t size, 335 struct dma_attrs *attrs) 336 { 337 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 338 339 if (!ret) 340 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), 341 PAGE_ALIGN(size), 0); 342 343 return ret; 344 } 345 346 static struct dma_map_ops swiotlb_dma_ops = { 347 .alloc = __dma_alloc, 348 .free = __dma_free, 349 .mmap = __swiotlb_mmap, 350 .get_sgtable = __swiotlb_get_sgtable, 351 .map_page = __swiotlb_map_page, 352 .unmap_page = __swiotlb_unmap_page, 353 .map_sg = __swiotlb_map_sg_attrs, 354 .unmap_sg = __swiotlb_unmap_sg_attrs, 355 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 356 .sync_single_for_device = __swiotlb_sync_single_for_device, 357 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 358 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 359 .dma_supported = swiotlb_dma_supported, 360 .mapping_error = swiotlb_dma_mapping_error, 361 }; 362 363 static int __init atomic_pool_init(void) 364 { 365 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 366 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 367 struct page *page; 368 void *addr; 369 unsigned int pool_size_order = get_order(atomic_pool_size); 370 371 if (dev_get_cma_area(NULL)) 372 page = dma_alloc_from_contiguous(NULL, nr_pages, 373 pool_size_order); 374 else 375 page = alloc_pages(GFP_DMA, pool_size_order); 376 377 if (page) { 378 int ret; 379 void *page_addr = page_address(page); 380 381 memset(page_addr, 0, atomic_pool_size); 382 __dma_flush_range(page_addr, page_addr + atomic_pool_size); 383 384 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 385 if (!atomic_pool) 386 goto free_page; 387 388 addr = dma_common_contiguous_remap(page, atomic_pool_size, 389 VM_USERMAP, prot, atomic_pool_init); 390 391 if (!addr) 392 goto destroy_genpool; 393 394 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 395 page_to_phys(page), 396 atomic_pool_size, -1); 397 if (ret) 398 goto remove_mapping; 399 400 gen_pool_set_algo(atomic_pool, 401 gen_pool_first_fit_order_align, 402 (void *)PAGE_SHIFT); 403 404 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 405 atomic_pool_size / 1024); 406 return 0; 407 } 408 goto out; 409 410 remove_mapping: 411 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 412 destroy_genpool: 413 gen_pool_destroy(atomic_pool); 414 atomic_pool = NULL; 415 free_page: 416 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 417 __free_pages(page, pool_size_order); 418 out: 419 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 420 atomic_pool_size / 1024); 421 return -ENOMEM; 422 } 423 424 /******************************************** 425 * The following APIs are for dummy DMA ops * 426 ********************************************/ 427 428 static void *__dummy_alloc(struct device *dev, size_t size, 429 dma_addr_t *dma_handle, gfp_t flags, 430 struct dma_attrs *attrs) 431 { 432 return NULL; 433 } 434 435 static void __dummy_free(struct device *dev, size_t size, 436 void *vaddr, dma_addr_t dma_handle, 437 struct dma_attrs *attrs) 438 { 439 } 440 441 static int __dummy_mmap(struct device *dev, 442 struct vm_area_struct *vma, 443 void *cpu_addr, dma_addr_t dma_addr, size_t size, 444 struct dma_attrs *attrs) 445 { 446 return -ENXIO; 447 } 448 449 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 450 unsigned long offset, size_t size, 451 enum dma_data_direction dir, 452 struct dma_attrs *attrs) 453 { 454 return DMA_ERROR_CODE; 455 } 456 457 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 458 size_t size, enum dma_data_direction dir, 459 struct dma_attrs *attrs) 460 { 461 } 462 463 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 464 int nelems, enum dma_data_direction dir, 465 struct dma_attrs *attrs) 466 { 467 return 0; 468 } 469 470 static void __dummy_unmap_sg(struct device *dev, 471 struct scatterlist *sgl, int nelems, 472 enum dma_data_direction dir, 473 struct dma_attrs *attrs) 474 { 475 } 476 477 static void __dummy_sync_single(struct device *dev, 478 dma_addr_t dev_addr, size_t size, 479 enum dma_data_direction dir) 480 { 481 } 482 483 static void __dummy_sync_sg(struct device *dev, 484 struct scatterlist *sgl, int nelems, 485 enum dma_data_direction dir) 486 { 487 } 488 489 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 490 { 491 return 1; 492 } 493 494 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 495 { 496 return 0; 497 } 498 499 struct dma_map_ops dummy_dma_ops = { 500 .alloc = __dummy_alloc, 501 .free = __dummy_free, 502 .mmap = __dummy_mmap, 503 .map_page = __dummy_map_page, 504 .unmap_page = __dummy_unmap_page, 505 .map_sg = __dummy_map_sg, 506 .unmap_sg = __dummy_unmap_sg, 507 .sync_single_for_cpu = __dummy_sync_single, 508 .sync_single_for_device = __dummy_sync_single, 509 .sync_sg_for_cpu = __dummy_sync_sg, 510 .sync_sg_for_device = __dummy_sync_sg, 511 .mapping_error = __dummy_mapping_error, 512 .dma_supported = __dummy_dma_supported, 513 }; 514 EXPORT_SYMBOL(dummy_dma_ops); 515 516 static int __init arm64_dma_init(void) 517 { 518 int ret; 519 520 dma_ops = &swiotlb_dma_ops; 521 522 ret = atomic_pool_init(); 523 524 return ret; 525 } 526 arch_initcall(arm64_dma_init); 527 528 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 529 530 static int __init dma_debug_do_init(void) 531 { 532 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 533 return 0; 534 } 535 fs_initcall(dma_debug_do_init); 536 537 538 #ifdef CONFIG_IOMMU_DMA 539 #include <linux/dma-iommu.h> 540 #include <linux/platform_device.h> 541 #include <linux/amba/bus.h> 542 543 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 544 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 545 { 546 __dma_flush_range(virt, virt + PAGE_SIZE); 547 } 548 549 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 550 dma_addr_t *handle, gfp_t gfp, 551 struct dma_attrs *attrs) 552 { 553 bool coherent = is_device_dma_coherent(dev); 554 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); 555 void *addr; 556 557 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 558 return NULL; 559 /* 560 * Some drivers rely on this, and we probably don't want the 561 * possibility of stale kernel data being read by devices anyway. 562 */ 563 gfp |= __GFP_ZERO; 564 565 if (gfpflags_allow_blocking(gfp)) { 566 struct page **pages; 567 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 568 569 pages = iommu_dma_alloc(dev, size, gfp, ioprot, handle, 570 flush_page); 571 if (!pages) 572 return NULL; 573 574 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 575 __builtin_return_address(0)); 576 if (!addr) 577 iommu_dma_free(dev, pages, size, handle); 578 } else { 579 struct page *page; 580 /* 581 * In atomic context we can't remap anything, so we'll only 582 * get the virtually contiguous buffer we need by way of a 583 * physically contiguous allocation. 584 */ 585 if (coherent) { 586 page = alloc_pages(gfp, get_order(size)); 587 addr = page ? page_address(page) : NULL; 588 } else { 589 addr = __alloc_from_pool(size, &page, gfp); 590 } 591 if (!addr) 592 return NULL; 593 594 *handle = iommu_dma_map_page(dev, page, 0, size, ioprot); 595 if (iommu_dma_mapping_error(dev, *handle)) { 596 if (coherent) 597 __free_pages(page, get_order(size)); 598 else 599 __free_from_pool(addr, size); 600 addr = NULL; 601 } 602 } 603 return addr; 604 } 605 606 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 607 dma_addr_t handle, struct dma_attrs *attrs) 608 { 609 /* 610 * @cpu_addr will be one of 3 things depending on how it was allocated: 611 * - A remapped array of pages from iommu_dma_alloc(), for all 612 * non-atomic allocations. 613 * - A non-cacheable alias from the atomic pool, for atomic 614 * allocations by non-coherent devices. 615 * - A normal lowmem address, for atomic allocations by 616 * coherent devices. 617 * Hence how dodgy the below logic looks... 618 */ 619 if (__in_atomic_pool(cpu_addr, size)) { 620 iommu_dma_unmap_page(dev, handle, size, 0, NULL); 621 __free_from_pool(cpu_addr, size); 622 } else if (is_vmalloc_addr(cpu_addr)){ 623 struct vm_struct *area = find_vm_area(cpu_addr); 624 625 if (WARN_ON(!area || !area->pages)) 626 return; 627 iommu_dma_free(dev, area->pages, size, &handle); 628 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 629 } else { 630 iommu_dma_unmap_page(dev, handle, size, 0, NULL); 631 __free_pages(virt_to_page(cpu_addr), get_order(size)); 632 } 633 } 634 635 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 636 void *cpu_addr, dma_addr_t dma_addr, size_t size, 637 struct dma_attrs *attrs) 638 { 639 struct vm_struct *area; 640 int ret; 641 642 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 643 is_device_dma_coherent(dev)); 644 645 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 646 return ret; 647 648 area = find_vm_area(cpu_addr); 649 if (WARN_ON(!area || !area->pages)) 650 return -ENXIO; 651 652 return iommu_dma_mmap(area->pages, size, vma); 653 } 654 655 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 656 void *cpu_addr, dma_addr_t dma_addr, 657 size_t size, struct dma_attrs *attrs) 658 { 659 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 660 struct vm_struct *area = find_vm_area(cpu_addr); 661 662 if (WARN_ON(!area || !area->pages)) 663 return -ENXIO; 664 665 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 666 GFP_KERNEL); 667 } 668 669 static void __iommu_sync_single_for_cpu(struct device *dev, 670 dma_addr_t dev_addr, size_t size, 671 enum dma_data_direction dir) 672 { 673 phys_addr_t phys; 674 675 if (is_device_dma_coherent(dev)) 676 return; 677 678 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 679 __dma_unmap_area(phys_to_virt(phys), size, dir); 680 } 681 682 static void __iommu_sync_single_for_device(struct device *dev, 683 dma_addr_t dev_addr, size_t size, 684 enum dma_data_direction dir) 685 { 686 phys_addr_t phys; 687 688 if (is_device_dma_coherent(dev)) 689 return; 690 691 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 692 __dma_map_area(phys_to_virt(phys), size, dir); 693 } 694 695 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 696 unsigned long offset, size_t size, 697 enum dma_data_direction dir, 698 struct dma_attrs *attrs) 699 { 700 bool coherent = is_device_dma_coherent(dev); 701 int prot = dma_direction_to_prot(dir, coherent); 702 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 703 704 if (!iommu_dma_mapping_error(dev, dev_addr) && 705 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 706 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 707 708 return dev_addr; 709 } 710 711 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 712 size_t size, enum dma_data_direction dir, 713 struct dma_attrs *attrs) 714 { 715 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 716 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 717 718 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 719 } 720 721 static void __iommu_sync_sg_for_cpu(struct device *dev, 722 struct scatterlist *sgl, int nelems, 723 enum dma_data_direction dir) 724 { 725 struct scatterlist *sg; 726 int i; 727 728 if (is_device_dma_coherent(dev)) 729 return; 730 731 for_each_sg(sgl, sg, nelems, i) 732 __dma_unmap_area(sg_virt(sg), sg->length, dir); 733 } 734 735 static void __iommu_sync_sg_for_device(struct device *dev, 736 struct scatterlist *sgl, int nelems, 737 enum dma_data_direction dir) 738 { 739 struct scatterlist *sg; 740 int i; 741 742 if (is_device_dma_coherent(dev)) 743 return; 744 745 for_each_sg(sgl, sg, nelems, i) 746 __dma_map_area(sg_virt(sg), sg->length, dir); 747 } 748 749 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 750 int nelems, enum dma_data_direction dir, 751 struct dma_attrs *attrs) 752 { 753 bool coherent = is_device_dma_coherent(dev); 754 755 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 756 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 757 758 return iommu_dma_map_sg(dev, sgl, nelems, 759 dma_direction_to_prot(dir, coherent)); 760 } 761 762 static void __iommu_unmap_sg_attrs(struct device *dev, 763 struct scatterlist *sgl, int nelems, 764 enum dma_data_direction dir, 765 struct dma_attrs *attrs) 766 { 767 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 768 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 769 770 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 771 } 772 773 static struct dma_map_ops iommu_dma_ops = { 774 .alloc = __iommu_alloc_attrs, 775 .free = __iommu_free_attrs, 776 .mmap = __iommu_mmap_attrs, 777 .get_sgtable = __iommu_get_sgtable, 778 .map_page = __iommu_map_page, 779 .unmap_page = __iommu_unmap_page, 780 .map_sg = __iommu_map_sg_attrs, 781 .unmap_sg = __iommu_unmap_sg_attrs, 782 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 783 .sync_single_for_device = __iommu_sync_single_for_device, 784 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 785 .sync_sg_for_device = __iommu_sync_sg_for_device, 786 .dma_supported = iommu_dma_supported, 787 .mapping_error = iommu_dma_mapping_error, 788 }; 789 790 /* 791 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do 792 * everything it needs to - the device is only partially created and the 793 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we 794 * need this delayed attachment dance. Once IOMMU probe ordering is sorted 795 * to move the arch_setup_dma_ops() call later, all the notifier bits below 796 * become unnecessary, and will go away. 797 */ 798 struct iommu_dma_notifier_data { 799 struct list_head list; 800 struct device *dev; 801 const struct iommu_ops *ops; 802 u64 dma_base; 803 u64 size; 804 }; 805 static LIST_HEAD(iommu_dma_masters); 806 static DEFINE_MUTEX(iommu_dma_notifier_lock); 807 808 /* 809 * Temporarily "borrow" a domain feature flag to to tell if we had to resort 810 * to creating our own domain here, in case we need to clean it up again. 811 */ 812 #define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31) 813 814 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, 815 u64 dma_base, u64 size) 816 { 817 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 818 819 /* 820 * Best case: The device is either part of a group which was 821 * already attached to a domain in a previous call, or it's 822 * been put in a default DMA domain by the IOMMU core. 823 */ 824 if (!domain) { 825 /* 826 * Urgh. The IOMMU core isn't going to do default domains 827 * for non-PCI devices anyway, until it has some means of 828 * abstracting the entirely implementation-specific 829 * sideband data/SoC topology/unicorn dust that may or 830 * may not differentiate upstream masters. 831 * So until then, HORRIBLE HACKS! 832 */ 833 domain = ops->domain_alloc(IOMMU_DOMAIN_DMA); 834 if (!domain) 835 goto out_no_domain; 836 837 domain->ops = ops; 838 domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT; 839 840 if (iommu_attach_device(domain, dev)) 841 goto out_put_domain; 842 } 843 844 if (iommu_dma_init_domain(domain, dma_base, size)) 845 goto out_detach; 846 847 dev->archdata.dma_ops = &iommu_dma_ops; 848 return true; 849 850 out_detach: 851 iommu_detach_device(domain, dev); 852 out_put_domain: 853 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) 854 iommu_domain_free(domain); 855 out_no_domain: 856 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 857 dev_name(dev)); 858 return false; 859 } 860 861 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, 862 u64 dma_base, u64 size) 863 { 864 struct iommu_dma_notifier_data *iommudata; 865 866 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); 867 if (!iommudata) 868 return; 869 870 iommudata->dev = dev; 871 iommudata->ops = ops; 872 iommudata->dma_base = dma_base; 873 iommudata->size = size; 874 875 mutex_lock(&iommu_dma_notifier_lock); 876 list_add(&iommudata->list, &iommu_dma_masters); 877 mutex_unlock(&iommu_dma_notifier_lock); 878 } 879 880 static int __iommu_attach_notifier(struct notifier_block *nb, 881 unsigned long action, void *data) 882 { 883 struct iommu_dma_notifier_data *master, *tmp; 884 885 if (action != BUS_NOTIFY_ADD_DEVICE) 886 return 0; 887 888 mutex_lock(&iommu_dma_notifier_lock); 889 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { 890 if (do_iommu_attach(master->dev, master->ops, 891 master->dma_base, master->size)) { 892 list_del(&master->list); 893 kfree(master); 894 } 895 } 896 mutex_unlock(&iommu_dma_notifier_lock); 897 return 0; 898 } 899 900 static int register_iommu_dma_ops_notifier(struct bus_type *bus) 901 { 902 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); 903 int ret; 904 905 if (!nb) 906 return -ENOMEM; 907 /* 908 * The device must be attached to a domain before the driver probe 909 * routine gets a chance to start allocating DMA buffers. However, 910 * the IOMMU driver also needs a chance to configure the iommu_group 911 * via its add_device callback first, so we need to make the attach 912 * happen between those two points. Since the IOMMU core uses a bus 913 * notifier with default priority for add_device, do the same but 914 * with a lower priority to ensure the appropriate ordering. 915 */ 916 nb->notifier_call = __iommu_attach_notifier; 917 nb->priority = -100; 918 919 ret = bus_register_notifier(bus, nb); 920 if (ret) { 921 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", 922 bus->name); 923 kfree(nb); 924 } 925 return ret; 926 } 927 928 static int __init __iommu_dma_init(void) 929 { 930 int ret; 931 932 ret = iommu_dma_init(); 933 if (!ret) 934 ret = register_iommu_dma_ops_notifier(&platform_bus_type); 935 if (!ret) 936 ret = register_iommu_dma_ops_notifier(&amba_bustype); 937 return ret; 938 } 939 arch_initcall(__iommu_dma_init); 940 941 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 942 const struct iommu_ops *ops) 943 { 944 struct iommu_group *group; 945 946 if (!ops) 947 return; 948 /* 949 * TODO: As a concession to the future, we're ready to handle being 950 * called both early and late (i.e. after bus_add_device). Once all 951 * the platform bus code is reworked to call us late and the notifier 952 * junk above goes away, move the body of do_iommu_attach here. 953 */ 954 group = iommu_group_get(dev); 955 if (group) { 956 do_iommu_attach(dev, ops, dma_base, size); 957 iommu_group_put(group); 958 } else { 959 queue_iommu_attach(dev, ops, dma_base, size); 960 } 961 } 962 963 void arch_teardown_dma_ops(struct device *dev) 964 { 965 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 966 967 if (domain) { 968 iommu_detach_device(domain, dev); 969 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) 970 iommu_domain_free(domain); 971 } 972 973 dev->archdata.dma_ops = NULL; 974 } 975 976 #else 977 978 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 979 struct iommu_ops *iommu) 980 { } 981 982 #endif /* CONFIG_IOMMU_DMA */ 983 984 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 985 struct iommu_ops *iommu, bool coherent) 986 { 987 if (!acpi_disabled && !dev->archdata.dma_ops) 988 dev->archdata.dma_ops = dma_ops; 989 990 dev->archdata.dma_coherent = coherent; 991 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 992 } 993