1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/bootmem.h> 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/genalloc.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dma-contiguous.h> 28 #include <linux/vmalloc.h> 29 #include <linux/swiotlb.h> 30 31 #include <asm/cacheflush.h> 32 33 static int swiotlb __read_mostly; 34 35 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, 36 bool coherent) 37 { 38 if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) 39 return pgprot_writecombine(prot); 40 return prot; 41 } 42 43 static struct gen_pool *atomic_pool; 44 45 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 46 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 47 48 static int __init early_coherent_pool(char *p) 49 { 50 atomic_pool_size = memparse(p, &p); 51 return 0; 52 } 53 early_param("coherent_pool", early_coherent_pool); 54 55 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 56 { 57 unsigned long val; 58 void *ptr = NULL; 59 60 if (!atomic_pool) { 61 WARN(1, "coherent pool not initialised!\n"); 62 return NULL; 63 } 64 65 val = gen_pool_alloc(atomic_pool, size); 66 if (val) { 67 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 68 69 *ret_page = phys_to_page(phys); 70 ptr = (void *)val; 71 memset(ptr, 0, size); 72 } 73 74 return ptr; 75 } 76 77 static bool __in_atomic_pool(void *start, size_t size) 78 { 79 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 80 } 81 82 static int __free_from_pool(void *start, size_t size) 83 { 84 if (!__in_atomic_pool(start, size)) 85 return 0; 86 87 gen_pool_free(atomic_pool, (unsigned long)start, size); 88 89 return 1; 90 } 91 92 static void *__dma_alloc_coherent(struct device *dev, size_t size, 93 dma_addr_t *dma_handle, gfp_t flags, 94 struct dma_attrs *attrs) 95 { 96 if (dev == NULL) { 97 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 98 return NULL; 99 } 100 101 if (IS_ENABLED(CONFIG_ZONE_DMA) && 102 dev->coherent_dma_mask <= DMA_BIT_MASK(32)) 103 flags |= GFP_DMA; 104 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { 105 struct page *page; 106 void *addr; 107 108 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 109 get_order(size)); 110 if (!page) 111 return NULL; 112 113 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 114 addr = page_address(page); 115 memset(addr, 0, size); 116 return addr; 117 } else { 118 return swiotlb_alloc_coherent(dev, size, dma_handle, flags); 119 } 120 } 121 122 static void __dma_free_coherent(struct device *dev, size_t size, 123 void *vaddr, dma_addr_t dma_handle, 124 struct dma_attrs *attrs) 125 { 126 bool freed; 127 phys_addr_t paddr = dma_to_phys(dev, dma_handle); 128 129 if (dev == NULL) { 130 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 131 return; 132 } 133 134 freed = dma_release_from_contiguous(dev, 135 phys_to_page(paddr), 136 size >> PAGE_SHIFT); 137 if (!freed) 138 swiotlb_free_coherent(dev, size, vaddr, dma_handle); 139 } 140 141 static void *__dma_alloc(struct device *dev, size_t size, 142 dma_addr_t *dma_handle, gfp_t flags, 143 struct dma_attrs *attrs) 144 { 145 struct page *page; 146 void *ptr, *coherent_ptr; 147 bool coherent = is_device_dma_coherent(dev); 148 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 149 150 size = PAGE_ALIGN(size); 151 152 if (!coherent && !gfpflags_allow_blocking(flags)) { 153 struct page *page = NULL; 154 void *addr = __alloc_from_pool(size, &page, flags); 155 156 if (addr) 157 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 158 159 return addr; 160 } 161 162 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); 163 if (!ptr) 164 goto no_mem; 165 166 /* no need for non-cacheable mapping if coherent */ 167 if (coherent) 168 return ptr; 169 170 /* remove any dirty cache lines on the kernel alias */ 171 __dma_flush_range(ptr, ptr + size); 172 173 /* create a coherent mapping */ 174 page = virt_to_page(ptr); 175 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 176 prot, NULL); 177 if (!coherent_ptr) 178 goto no_map; 179 180 return coherent_ptr; 181 182 no_map: 183 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); 184 no_mem: 185 *dma_handle = DMA_ERROR_CODE; 186 return NULL; 187 } 188 189 static void __dma_free(struct device *dev, size_t size, 190 void *vaddr, dma_addr_t dma_handle, 191 struct dma_attrs *attrs) 192 { 193 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 194 195 size = PAGE_ALIGN(size); 196 197 if (!is_device_dma_coherent(dev)) { 198 if (__free_from_pool(vaddr, size)) 199 return; 200 vunmap(vaddr); 201 } 202 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); 203 } 204 205 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 206 unsigned long offset, size_t size, 207 enum dma_data_direction dir, 208 struct dma_attrs *attrs) 209 { 210 dma_addr_t dev_addr; 211 212 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 213 if (!is_device_dma_coherent(dev)) 214 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 215 216 return dev_addr; 217 } 218 219 220 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 221 size_t size, enum dma_data_direction dir, 222 struct dma_attrs *attrs) 223 { 224 if (!is_device_dma_coherent(dev)) 225 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 226 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 227 } 228 229 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 230 int nelems, enum dma_data_direction dir, 231 struct dma_attrs *attrs) 232 { 233 struct scatterlist *sg; 234 int i, ret; 235 236 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 237 if (!is_device_dma_coherent(dev)) 238 for_each_sg(sgl, sg, ret, i) 239 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 240 sg->length, dir); 241 242 return ret; 243 } 244 245 static void __swiotlb_unmap_sg_attrs(struct device *dev, 246 struct scatterlist *sgl, int nelems, 247 enum dma_data_direction dir, 248 struct dma_attrs *attrs) 249 { 250 struct scatterlist *sg; 251 int i; 252 253 if (!is_device_dma_coherent(dev)) 254 for_each_sg(sgl, sg, nelems, i) 255 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 256 sg->length, dir); 257 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 258 } 259 260 static void __swiotlb_sync_single_for_cpu(struct device *dev, 261 dma_addr_t dev_addr, size_t size, 262 enum dma_data_direction dir) 263 { 264 if (!is_device_dma_coherent(dev)) 265 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 266 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 267 } 268 269 static void __swiotlb_sync_single_for_device(struct device *dev, 270 dma_addr_t dev_addr, size_t size, 271 enum dma_data_direction dir) 272 { 273 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 274 if (!is_device_dma_coherent(dev)) 275 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 276 } 277 278 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 279 struct scatterlist *sgl, int nelems, 280 enum dma_data_direction dir) 281 { 282 struct scatterlist *sg; 283 int i; 284 285 if (!is_device_dma_coherent(dev)) 286 for_each_sg(sgl, sg, nelems, i) 287 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 288 sg->length, dir); 289 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 290 } 291 292 static void __swiotlb_sync_sg_for_device(struct device *dev, 293 struct scatterlist *sgl, int nelems, 294 enum dma_data_direction dir) 295 { 296 struct scatterlist *sg; 297 int i; 298 299 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 300 if (!is_device_dma_coherent(dev)) 301 for_each_sg(sgl, sg, nelems, i) 302 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 303 sg->length, dir); 304 } 305 306 static int __swiotlb_mmap(struct device *dev, 307 struct vm_area_struct *vma, 308 void *cpu_addr, dma_addr_t dma_addr, size_t size, 309 struct dma_attrs *attrs) 310 { 311 int ret = -ENXIO; 312 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> 313 PAGE_SHIFT; 314 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 315 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 316 unsigned long off = vma->vm_pgoff; 317 318 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 319 is_device_dma_coherent(dev)); 320 321 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 322 return ret; 323 324 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 325 ret = remap_pfn_range(vma, vma->vm_start, 326 pfn + off, 327 vma->vm_end - vma->vm_start, 328 vma->vm_page_prot); 329 } 330 331 return ret; 332 } 333 334 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 335 void *cpu_addr, dma_addr_t handle, size_t size, 336 struct dma_attrs *attrs) 337 { 338 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 339 340 if (!ret) 341 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), 342 PAGE_ALIGN(size), 0); 343 344 return ret; 345 } 346 347 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask) 348 { 349 if (swiotlb) 350 return swiotlb_dma_supported(hwdev, mask); 351 return 1; 352 } 353 354 static struct dma_map_ops swiotlb_dma_ops = { 355 .alloc = __dma_alloc, 356 .free = __dma_free, 357 .mmap = __swiotlb_mmap, 358 .get_sgtable = __swiotlb_get_sgtable, 359 .map_page = __swiotlb_map_page, 360 .unmap_page = __swiotlb_unmap_page, 361 .map_sg = __swiotlb_map_sg_attrs, 362 .unmap_sg = __swiotlb_unmap_sg_attrs, 363 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 364 .sync_single_for_device = __swiotlb_sync_single_for_device, 365 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 366 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 367 .dma_supported = __swiotlb_dma_supported, 368 .mapping_error = swiotlb_dma_mapping_error, 369 }; 370 371 static int __init atomic_pool_init(void) 372 { 373 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 374 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 375 struct page *page; 376 void *addr; 377 unsigned int pool_size_order = get_order(atomic_pool_size); 378 379 if (dev_get_cma_area(NULL)) 380 page = dma_alloc_from_contiguous(NULL, nr_pages, 381 pool_size_order); 382 else 383 page = alloc_pages(GFP_DMA, pool_size_order); 384 385 if (page) { 386 int ret; 387 void *page_addr = page_address(page); 388 389 memset(page_addr, 0, atomic_pool_size); 390 __dma_flush_range(page_addr, page_addr + atomic_pool_size); 391 392 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 393 if (!atomic_pool) 394 goto free_page; 395 396 addr = dma_common_contiguous_remap(page, atomic_pool_size, 397 VM_USERMAP, prot, atomic_pool_init); 398 399 if (!addr) 400 goto destroy_genpool; 401 402 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 403 page_to_phys(page), 404 atomic_pool_size, -1); 405 if (ret) 406 goto remove_mapping; 407 408 gen_pool_set_algo(atomic_pool, 409 gen_pool_first_fit_order_align, 410 (void *)PAGE_SHIFT); 411 412 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 413 atomic_pool_size / 1024); 414 return 0; 415 } 416 goto out; 417 418 remove_mapping: 419 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 420 destroy_genpool: 421 gen_pool_destroy(atomic_pool); 422 atomic_pool = NULL; 423 free_page: 424 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 425 __free_pages(page, pool_size_order); 426 out: 427 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 428 atomic_pool_size / 1024); 429 return -ENOMEM; 430 } 431 432 /******************************************** 433 * The following APIs are for dummy DMA ops * 434 ********************************************/ 435 436 static void *__dummy_alloc(struct device *dev, size_t size, 437 dma_addr_t *dma_handle, gfp_t flags, 438 struct dma_attrs *attrs) 439 { 440 return NULL; 441 } 442 443 static void __dummy_free(struct device *dev, size_t size, 444 void *vaddr, dma_addr_t dma_handle, 445 struct dma_attrs *attrs) 446 { 447 } 448 449 static int __dummy_mmap(struct device *dev, 450 struct vm_area_struct *vma, 451 void *cpu_addr, dma_addr_t dma_addr, size_t size, 452 struct dma_attrs *attrs) 453 { 454 return -ENXIO; 455 } 456 457 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 458 unsigned long offset, size_t size, 459 enum dma_data_direction dir, 460 struct dma_attrs *attrs) 461 { 462 return DMA_ERROR_CODE; 463 } 464 465 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 466 size_t size, enum dma_data_direction dir, 467 struct dma_attrs *attrs) 468 { 469 } 470 471 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 472 int nelems, enum dma_data_direction dir, 473 struct dma_attrs *attrs) 474 { 475 return 0; 476 } 477 478 static void __dummy_unmap_sg(struct device *dev, 479 struct scatterlist *sgl, int nelems, 480 enum dma_data_direction dir, 481 struct dma_attrs *attrs) 482 { 483 } 484 485 static void __dummy_sync_single(struct device *dev, 486 dma_addr_t dev_addr, size_t size, 487 enum dma_data_direction dir) 488 { 489 } 490 491 static void __dummy_sync_sg(struct device *dev, 492 struct scatterlist *sgl, int nelems, 493 enum dma_data_direction dir) 494 { 495 } 496 497 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 498 { 499 return 1; 500 } 501 502 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 503 { 504 return 0; 505 } 506 507 struct dma_map_ops dummy_dma_ops = { 508 .alloc = __dummy_alloc, 509 .free = __dummy_free, 510 .mmap = __dummy_mmap, 511 .map_page = __dummy_map_page, 512 .unmap_page = __dummy_unmap_page, 513 .map_sg = __dummy_map_sg, 514 .unmap_sg = __dummy_unmap_sg, 515 .sync_single_for_cpu = __dummy_sync_single, 516 .sync_single_for_device = __dummy_sync_single, 517 .sync_sg_for_cpu = __dummy_sync_sg, 518 .sync_sg_for_device = __dummy_sync_sg, 519 .mapping_error = __dummy_mapping_error, 520 .dma_supported = __dummy_dma_supported, 521 }; 522 EXPORT_SYMBOL(dummy_dma_ops); 523 524 static int __init arm64_dma_init(void) 525 { 526 if (swiotlb_force || max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 527 swiotlb = 1; 528 529 return atomic_pool_init(); 530 } 531 arch_initcall(arm64_dma_init); 532 533 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 534 535 static int __init dma_debug_do_init(void) 536 { 537 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 538 return 0; 539 } 540 fs_initcall(dma_debug_do_init); 541 542 543 #ifdef CONFIG_IOMMU_DMA 544 #include <linux/dma-iommu.h> 545 #include <linux/platform_device.h> 546 #include <linux/amba/bus.h> 547 548 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 549 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 550 { 551 __dma_flush_range(virt, virt + PAGE_SIZE); 552 } 553 554 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 555 dma_addr_t *handle, gfp_t gfp, 556 struct dma_attrs *attrs) 557 { 558 bool coherent = is_device_dma_coherent(dev); 559 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); 560 size_t iosize = size; 561 void *addr; 562 563 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 564 return NULL; 565 566 size = PAGE_ALIGN(size); 567 568 /* 569 * Some drivers rely on this, and we probably don't want the 570 * possibility of stale kernel data being read by devices anyway. 571 */ 572 gfp |= __GFP_ZERO; 573 574 if (gfpflags_allow_blocking(gfp)) { 575 struct page **pages; 576 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 577 578 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 579 handle, flush_page); 580 if (!pages) 581 return NULL; 582 583 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 584 __builtin_return_address(0)); 585 if (!addr) 586 iommu_dma_free(dev, pages, iosize, handle); 587 } else { 588 struct page *page; 589 /* 590 * In atomic context we can't remap anything, so we'll only 591 * get the virtually contiguous buffer we need by way of a 592 * physically contiguous allocation. 593 */ 594 if (coherent) { 595 page = alloc_pages(gfp, get_order(size)); 596 addr = page ? page_address(page) : NULL; 597 } else { 598 addr = __alloc_from_pool(size, &page, gfp); 599 } 600 if (!addr) 601 return NULL; 602 603 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 604 if (iommu_dma_mapping_error(dev, *handle)) { 605 if (coherent) 606 __free_pages(page, get_order(size)); 607 else 608 __free_from_pool(addr, size); 609 addr = NULL; 610 } 611 } 612 return addr; 613 } 614 615 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 616 dma_addr_t handle, struct dma_attrs *attrs) 617 { 618 size_t iosize = size; 619 620 size = PAGE_ALIGN(size); 621 /* 622 * @cpu_addr will be one of 3 things depending on how it was allocated: 623 * - A remapped array of pages from iommu_dma_alloc(), for all 624 * non-atomic allocations. 625 * - A non-cacheable alias from the atomic pool, for atomic 626 * allocations by non-coherent devices. 627 * - A normal lowmem address, for atomic allocations by 628 * coherent devices. 629 * Hence how dodgy the below logic looks... 630 */ 631 if (__in_atomic_pool(cpu_addr, size)) { 632 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); 633 __free_from_pool(cpu_addr, size); 634 } else if (is_vmalloc_addr(cpu_addr)){ 635 struct vm_struct *area = find_vm_area(cpu_addr); 636 637 if (WARN_ON(!area || !area->pages)) 638 return; 639 iommu_dma_free(dev, area->pages, iosize, &handle); 640 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 641 } else { 642 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); 643 __free_pages(virt_to_page(cpu_addr), get_order(size)); 644 } 645 } 646 647 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 648 void *cpu_addr, dma_addr_t dma_addr, size_t size, 649 struct dma_attrs *attrs) 650 { 651 struct vm_struct *area; 652 int ret; 653 654 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 655 is_device_dma_coherent(dev)); 656 657 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 658 return ret; 659 660 area = find_vm_area(cpu_addr); 661 if (WARN_ON(!area || !area->pages)) 662 return -ENXIO; 663 664 return iommu_dma_mmap(area->pages, size, vma); 665 } 666 667 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 668 void *cpu_addr, dma_addr_t dma_addr, 669 size_t size, struct dma_attrs *attrs) 670 { 671 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 672 struct vm_struct *area = find_vm_area(cpu_addr); 673 674 if (WARN_ON(!area || !area->pages)) 675 return -ENXIO; 676 677 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 678 GFP_KERNEL); 679 } 680 681 static void __iommu_sync_single_for_cpu(struct device *dev, 682 dma_addr_t dev_addr, size_t size, 683 enum dma_data_direction dir) 684 { 685 phys_addr_t phys; 686 687 if (is_device_dma_coherent(dev)) 688 return; 689 690 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 691 __dma_unmap_area(phys_to_virt(phys), size, dir); 692 } 693 694 static void __iommu_sync_single_for_device(struct device *dev, 695 dma_addr_t dev_addr, size_t size, 696 enum dma_data_direction dir) 697 { 698 phys_addr_t phys; 699 700 if (is_device_dma_coherent(dev)) 701 return; 702 703 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 704 __dma_map_area(phys_to_virt(phys), size, dir); 705 } 706 707 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 708 unsigned long offset, size_t size, 709 enum dma_data_direction dir, 710 struct dma_attrs *attrs) 711 { 712 bool coherent = is_device_dma_coherent(dev); 713 int prot = dma_direction_to_prot(dir, coherent); 714 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 715 716 if (!iommu_dma_mapping_error(dev, dev_addr) && 717 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 718 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 719 720 return dev_addr; 721 } 722 723 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 724 size_t size, enum dma_data_direction dir, 725 struct dma_attrs *attrs) 726 { 727 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 728 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 729 730 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 731 } 732 733 static void __iommu_sync_sg_for_cpu(struct device *dev, 734 struct scatterlist *sgl, int nelems, 735 enum dma_data_direction dir) 736 { 737 struct scatterlist *sg; 738 int i; 739 740 if (is_device_dma_coherent(dev)) 741 return; 742 743 for_each_sg(sgl, sg, nelems, i) 744 __dma_unmap_area(sg_virt(sg), sg->length, dir); 745 } 746 747 static void __iommu_sync_sg_for_device(struct device *dev, 748 struct scatterlist *sgl, int nelems, 749 enum dma_data_direction dir) 750 { 751 struct scatterlist *sg; 752 int i; 753 754 if (is_device_dma_coherent(dev)) 755 return; 756 757 for_each_sg(sgl, sg, nelems, i) 758 __dma_map_area(sg_virt(sg), sg->length, dir); 759 } 760 761 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 762 int nelems, enum dma_data_direction dir, 763 struct dma_attrs *attrs) 764 { 765 bool coherent = is_device_dma_coherent(dev); 766 767 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 768 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 769 770 return iommu_dma_map_sg(dev, sgl, nelems, 771 dma_direction_to_prot(dir, coherent)); 772 } 773 774 static void __iommu_unmap_sg_attrs(struct device *dev, 775 struct scatterlist *sgl, int nelems, 776 enum dma_data_direction dir, 777 struct dma_attrs *attrs) 778 { 779 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 780 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 781 782 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 783 } 784 785 static struct dma_map_ops iommu_dma_ops = { 786 .alloc = __iommu_alloc_attrs, 787 .free = __iommu_free_attrs, 788 .mmap = __iommu_mmap_attrs, 789 .get_sgtable = __iommu_get_sgtable, 790 .map_page = __iommu_map_page, 791 .unmap_page = __iommu_unmap_page, 792 .map_sg = __iommu_map_sg_attrs, 793 .unmap_sg = __iommu_unmap_sg_attrs, 794 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 795 .sync_single_for_device = __iommu_sync_single_for_device, 796 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 797 .sync_sg_for_device = __iommu_sync_sg_for_device, 798 .dma_supported = iommu_dma_supported, 799 .mapping_error = iommu_dma_mapping_error, 800 }; 801 802 /* 803 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do 804 * everything it needs to - the device is only partially created and the 805 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we 806 * need this delayed attachment dance. Once IOMMU probe ordering is sorted 807 * to move the arch_setup_dma_ops() call later, all the notifier bits below 808 * become unnecessary, and will go away. 809 */ 810 struct iommu_dma_notifier_data { 811 struct list_head list; 812 struct device *dev; 813 const struct iommu_ops *ops; 814 u64 dma_base; 815 u64 size; 816 }; 817 static LIST_HEAD(iommu_dma_masters); 818 static DEFINE_MUTEX(iommu_dma_notifier_lock); 819 820 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, 821 u64 dma_base, u64 size) 822 { 823 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 824 825 /* 826 * If the IOMMU driver has the DMA domain support that we require, 827 * then the IOMMU core will have already configured a group for this 828 * device, and allocated the default domain for that group. 829 */ 830 if (!domain || iommu_dma_init_domain(domain, dma_base, size)) { 831 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 832 dev_name(dev)); 833 return false; 834 } 835 836 dev->archdata.dma_ops = &iommu_dma_ops; 837 return true; 838 } 839 840 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, 841 u64 dma_base, u64 size) 842 { 843 struct iommu_dma_notifier_data *iommudata; 844 845 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); 846 if (!iommudata) 847 return; 848 849 iommudata->dev = dev; 850 iommudata->ops = ops; 851 iommudata->dma_base = dma_base; 852 iommudata->size = size; 853 854 mutex_lock(&iommu_dma_notifier_lock); 855 list_add(&iommudata->list, &iommu_dma_masters); 856 mutex_unlock(&iommu_dma_notifier_lock); 857 } 858 859 static int __iommu_attach_notifier(struct notifier_block *nb, 860 unsigned long action, void *data) 861 { 862 struct iommu_dma_notifier_data *master, *tmp; 863 864 if (action != BUS_NOTIFY_BIND_DRIVER) 865 return 0; 866 867 mutex_lock(&iommu_dma_notifier_lock); 868 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { 869 if (data == master->dev && do_iommu_attach(master->dev, 870 master->ops, master->dma_base, master->size)) { 871 list_del(&master->list); 872 kfree(master); 873 break; 874 } 875 } 876 mutex_unlock(&iommu_dma_notifier_lock); 877 return 0; 878 } 879 880 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus) 881 { 882 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); 883 int ret; 884 885 if (!nb) 886 return -ENOMEM; 887 888 nb->notifier_call = __iommu_attach_notifier; 889 890 ret = bus_register_notifier(bus, nb); 891 if (ret) { 892 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", 893 bus->name); 894 kfree(nb); 895 } 896 return ret; 897 } 898 899 static int __init __iommu_dma_init(void) 900 { 901 int ret; 902 903 ret = iommu_dma_init(); 904 if (!ret) 905 ret = register_iommu_dma_ops_notifier(&platform_bus_type); 906 if (!ret) 907 ret = register_iommu_dma_ops_notifier(&amba_bustype); 908 #ifdef CONFIG_PCI 909 if (!ret) 910 ret = register_iommu_dma_ops_notifier(&pci_bus_type); 911 #endif 912 return ret; 913 } 914 arch_initcall(__iommu_dma_init); 915 916 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 917 const struct iommu_ops *ops) 918 { 919 struct iommu_group *group; 920 921 if (!ops) 922 return; 923 /* 924 * TODO: As a concession to the future, we're ready to handle being 925 * called both early and late (i.e. after bus_add_device). Once all 926 * the platform bus code is reworked to call us late and the notifier 927 * junk above goes away, move the body of do_iommu_attach here. 928 */ 929 group = iommu_group_get(dev); 930 if (group) { 931 do_iommu_attach(dev, ops, dma_base, size); 932 iommu_group_put(group); 933 } else { 934 queue_iommu_attach(dev, ops, dma_base, size); 935 } 936 } 937 938 void arch_teardown_dma_ops(struct device *dev) 939 { 940 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 941 942 if (WARN_ON(domain)) 943 iommu_detach_device(domain, dev); 944 945 dev->archdata.dma_ops = NULL; 946 } 947 948 #else 949 950 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 951 const struct iommu_ops *iommu) 952 { } 953 954 #endif /* CONFIG_IOMMU_DMA */ 955 956 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 957 const struct iommu_ops *iommu, bool coherent) 958 { 959 if (!dev->archdata.dma_ops) 960 dev->archdata.dma_ops = &swiotlb_dma_ops; 961 962 dev->archdata.dma_coherent = coherent; 963 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 964 } 965