xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/memblock.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-noncoherent.h>
29 #include <linux/dma-contiguous.h>
30 #include <linux/vmalloc.h>
31 #include <linux/swiotlb.h>
32 #include <linux/pci.h>
33 
34 #include <asm/cacheflush.h>
35 
36 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
37 		unsigned long attrs)
38 {
39 	if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE))
40 		return pgprot_writecombine(prot);
41 	return prot;
42 }
43 
44 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
45 		size_t size, enum dma_data_direction dir)
46 {
47 	__dma_map_area(phys_to_virt(paddr), size, dir);
48 }
49 
50 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
51 		size_t size, enum dma_data_direction dir)
52 {
53 	__dma_unmap_area(phys_to_virt(paddr), size, dir);
54 }
55 
56 void arch_dma_prep_coherent(struct page *page, size_t size)
57 {
58 	__dma_flush_area(page_address(page), size);
59 }
60 
61 #ifdef CONFIG_IOMMU_DMA
62 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
63 				      struct page *page, size_t size)
64 {
65 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
66 
67 	if (!ret)
68 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
69 
70 	return ret;
71 }
72 
73 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
74 			      unsigned long pfn, size_t size)
75 {
76 	int ret = -ENXIO;
77 	unsigned long nr_vma_pages = vma_pages(vma);
78 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
79 	unsigned long off = vma->vm_pgoff;
80 
81 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
82 		ret = remap_pfn_range(vma, vma->vm_start,
83 				      pfn + off,
84 				      vma->vm_end - vma->vm_start,
85 				      vma->vm_page_prot);
86 	}
87 
88 	return ret;
89 }
90 #endif /* CONFIG_IOMMU_DMA */
91 
92 static int __init arm64_dma_init(void)
93 {
94 	WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
95 		   TAINT_CPU_OUT_OF_SPEC,
96 		   "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
97 		   ARCH_DMA_MINALIGN, cache_line_size());
98 	return dma_atomic_pool_init(GFP_DMA32, __pgprot(PROT_NORMAL_NC));
99 }
100 arch_initcall(arm64_dma_init);
101 
102 #ifdef CONFIG_IOMMU_DMA
103 #include <linux/dma-iommu.h>
104 #include <linux/platform_device.h>
105 #include <linux/amba/bus.h>
106 
107 /* Thankfully, all cache ops are by VA so we can ignore phys here */
108 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
109 {
110 	__dma_flush_area(virt, PAGE_SIZE);
111 }
112 
113 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
114 				 dma_addr_t *handle, gfp_t gfp,
115 				 unsigned long attrs)
116 {
117 	bool coherent = dev_is_dma_coherent(dev);
118 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
119 	size_t iosize = size;
120 	void *addr;
121 
122 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
123 		return NULL;
124 
125 	size = PAGE_ALIGN(size);
126 
127 	/*
128 	 * Some drivers rely on this, and we probably don't want the
129 	 * possibility of stale kernel data being read by devices anyway.
130 	 */
131 	gfp |= __GFP_ZERO;
132 
133 	if (!gfpflags_allow_blocking(gfp)) {
134 		struct page *page;
135 		/*
136 		 * In atomic context we can't remap anything, so we'll only
137 		 * get the virtually contiguous buffer we need by way of a
138 		 * physically contiguous allocation.
139 		 */
140 		if (coherent) {
141 			page = alloc_pages(gfp, get_order(size));
142 			addr = page ? page_address(page) : NULL;
143 		} else {
144 			addr = dma_alloc_from_pool(size, &page, gfp);
145 		}
146 		if (!addr)
147 			return NULL;
148 
149 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
150 		if (*handle == DMA_MAPPING_ERROR) {
151 			if (coherent)
152 				__free_pages(page, get_order(size));
153 			else
154 				dma_free_from_pool(addr, size);
155 			addr = NULL;
156 		}
157 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
158 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
159 		struct page *page;
160 
161 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
162 					get_order(size), gfp & __GFP_NOWARN);
163 		if (!page)
164 			return NULL;
165 
166 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
167 		if (*handle == DMA_MAPPING_ERROR) {
168 			dma_release_from_contiguous(dev, page,
169 						    size >> PAGE_SHIFT);
170 			return NULL;
171 		}
172 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
173 						   prot,
174 						   __builtin_return_address(0));
175 		if (addr) {
176 			if (!coherent)
177 				__dma_flush_area(page_to_virt(page), iosize);
178 			memset(addr, 0, size);
179 		} else {
180 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
181 			dma_release_from_contiguous(dev, page,
182 						    size >> PAGE_SHIFT);
183 		}
184 	} else {
185 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
186 		struct page **pages;
187 
188 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
189 					handle, flush_page);
190 		if (!pages)
191 			return NULL;
192 
193 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
194 					      __builtin_return_address(0));
195 		if (!addr)
196 			iommu_dma_free(dev, pages, iosize, handle);
197 	}
198 	return addr;
199 }
200 
201 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
202 			       dma_addr_t handle, unsigned long attrs)
203 {
204 	size_t iosize = size;
205 
206 	size = PAGE_ALIGN(size);
207 	/*
208 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
209 	 * - A remapped array of pages for contiguous allocations.
210 	 * - A remapped array of pages from iommu_dma_alloc(), for all
211 	 *   non-atomic allocations.
212 	 * - A non-cacheable alias from the atomic pool, for atomic
213 	 *   allocations by non-coherent devices.
214 	 * - A normal lowmem address, for atomic allocations by
215 	 *   coherent devices.
216 	 * Hence how dodgy the below logic looks...
217 	 */
218 	if (dma_in_atomic_pool(cpu_addr, size)) {
219 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
220 		dma_free_from_pool(cpu_addr, size);
221 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
222 		struct page *page = vmalloc_to_page(cpu_addr);
223 
224 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
225 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
226 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
227 	} else if (is_vmalloc_addr(cpu_addr)){
228 		struct vm_struct *area = find_vm_area(cpu_addr);
229 
230 		if (WARN_ON(!area || !area->pages))
231 			return;
232 		iommu_dma_free(dev, area->pages, iosize, &handle);
233 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
234 	} else {
235 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
236 		__free_pages(virt_to_page(cpu_addr), get_order(size));
237 	}
238 }
239 
240 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
241 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
242 			      unsigned long attrs)
243 {
244 	struct vm_struct *area;
245 	int ret;
246 
247 	vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
248 
249 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
250 		return ret;
251 
252 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
253 		/*
254 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
255 		 * hence in the vmalloc space.
256 		 */
257 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
258 		return __swiotlb_mmap_pfn(vma, pfn, size);
259 	}
260 
261 	area = find_vm_area(cpu_addr);
262 	if (WARN_ON(!area || !area->pages))
263 		return -ENXIO;
264 
265 	return iommu_dma_mmap(area->pages, size, vma);
266 }
267 
268 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
269 			       void *cpu_addr, dma_addr_t dma_addr,
270 			       size_t size, unsigned long attrs)
271 {
272 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
273 	struct vm_struct *area = find_vm_area(cpu_addr);
274 
275 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
276 		/*
277 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
278 		 * hence in the vmalloc space.
279 		 */
280 		struct page *page = vmalloc_to_page(cpu_addr);
281 		return __swiotlb_get_sgtable_page(sgt, page, size);
282 	}
283 
284 	if (WARN_ON(!area || !area->pages))
285 		return -ENXIO;
286 
287 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
288 					 GFP_KERNEL);
289 }
290 
291 static void __iommu_sync_single_for_cpu(struct device *dev,
292 					dma_addr_t dev_addr, size_t size,
293 					enum dma_data_direction dir)
294 {
295 	phys_addr_t phys;
296 
297 	if (dev_is_dma_coherent(dev))
298 		return;
299 
300 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
301 	arch_sync_dma_for_cpu(dev, phys, size, dir);
302 }
303 
304 static void __iommu_sync_single_for_device(struct device *dev,
305 					   dma_addr_t dev_addr, size_t size,
306 					   enum dma_data_direction dir)
307 {
308 	phys_addr_t phys;
309 
310 	if (dev_is_dma_coherent(dev))
311 		return;
312 
313 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
314 	arch_sync_dma_for_device(dev, phys, size, dir);
315 }
316 
317 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
318 				   unsigned long offset, size_t size,
319 				   enum dma_data_direction dir,
320 				   unsigned long attrs)
321 {
322 	bool coherent = dev_is_dma_coherent(dev);
323 	int prot = dma_info_to_prot(dir, coherent, attrs);
324 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
325 
326 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
327 	    dev_addr != DMA_MAPPING_ERROR)
328 		__dma_map_area(page_address(page) + offset, size, dir);
329 
330 	return dev_addr;
331 }
332 
333 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
334 			       size_t size, enum dma_data_direction dir,
335 			       unsigned long attrs)
336 {
337 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
338 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
339 
340 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
341 }
342 
343 static void __iommu_sync_sg_for_cpu(struct device *dev,
344 				    struct scatterlist *sgl, int nelems,
345 				    enum dma_data_direction dir)
346 {
347 	struct scatterlist *sg;
348 	int i;
349 
350 	if (dev_is_dma_coherent(dev))
351 		return;
352 
353 	for_each_sg(sgl, sg, nelems, i)
354 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
355 }
356 
357 static void __iommu_sync_sg_for_device(struct device *dev,
358 				       struct scatterlist *sgl, int nelems,
359 				       enum dma_data_direction dir)
360 {
361 	struct scatterlist *sg;
362 	int i;
363 
364 	if (dev_is_dma_coherent(dev))
365 		return;
366 
367 	for_each_sg(sgl, sg, nelems, i)
368 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
369 }
370 
371 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
372 				int nelems, enum dma_data_direction dir,
373 				unsigned long attrs)
374 {
375 	bool coherent = dev_is_dma_coherent(dev);
376 
377 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
378 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
379 
380 	return iommu_dma_map_sg(dev, sgl, nelems,
381 				dma_info_to_prot(dir, coherent, attrs));
382 }
383 
384 static void __iommu_unmap_sg_attrs(struct device *dev,
385 				   struct scatterlist *sgl, int nelems,
386 				   enum dma_data_direction dir,
387 				   unsigned long attrs)
388 {
389 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
390 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
391 
392 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
393 }
394 
395 static const struct dma_map_ops iommu_dma_ops = {
396 	.alloc = __iommu_alloc_attrs,
397 	.free = __iommu_free_attrs,
398 	.mmap = __iommu_mmap_attrs,
399 	.get_sgtable = __iommu_get_sgtable,
400 	.map_page = __iommu_map_page,
401 	.unmap_page = __iommu_unmap_page,
402 	.map_sg = __iommu_map_sg_attrs,
403 	.unmap_sg = __iommu_unmap_sg_attrs,
404 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
405 	.sync_single_for_device = __iommu_sync_single_for_device,
406 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
407 	.sync_sg_for_device = __iommu_sync_sg_for_device,
408 	.map_resource = iommu_dma_map_resource,
409 	.unmap_resource = iommu_dma_unmap_resource,
410 };
411 
412 static int __init __iommu_dma_init(void)
413 {
414 	return iommu_dma_init();
415 }
416 arch_initcall(__iommu_dma_init);
417 
418 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
419 				  const struct iommu_ops *ops)
420 {
421 	struct iommu_domain *domain;
422 
423 	if (!ops)
424 		return;
425 
426 	/*
427 	 * The IOMMU core code allocates the default DMA domain, which the
428 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
429 	 */
430 	domain = iommu_get_domain_for_dev(dev);
431 
432 	if (!domain)
433 		goto out_err;
434 
435 	if (domain->type == IOMMU_DOMAIN_DMA) {
436 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
437 			goto out_err;
438 
439 		dev->dma_ops = &iommu_dma_ops;
440 	}
441 
442 	return;
443 
444 out_err:
445 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
446 		 dev_name(dev));
447 }
448 
449 void arch_teardown_dma_ops(struct device *dev)
450 {
451 	dev->dma_ops = NULL;
452 }
453 
454 #else
455 
456 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
457 				  const struct iommu_ops *iommu)
458 { }
459 
460 #endif  /* CONFIG_IOMMU_DMA */
461 
462 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
463 			const struct iommu_ops *iommu, bool coherent)
464 {
465 	dev->dma_coherent = coherent;
466 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
467 
468 #ifdef CONFIG_XEN
469 	if (xen_initial_domain())
470 		dev->dma_ops = xen_dma_ops;
471 #endif
472 }
473