1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/memblock.h> 23 #include <linux/cache.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/genalloc.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-noncoherent.h> 29 #include <linux/dma-contiguous.h> 30 #include <linux/vmalloc.h> 31 #include <linux/swiotlb.h> 32 #include <linux/pci.h> 33 34 #include <asm/cacheflush.h> 35 36 static struct gen_pool *atomic_pool __ro_after_init; 37 38 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 39 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 40 41 static int __init early_coherent_pool(char *p) 42 { 43 atomic_pool_size = memparse(p, &p); 44 return 0; 45 } 46 early_param("coherent_pool", early_coherent_pool); 47 48 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 49 { 50 unsigned long val; 51 void *ptr = NULL; 52 53 if (!atomic_pool) { 54 WARN(1, "coherent pool not initialised!\n"); 55 return NULL; 56 } 57 58 val = gen_pool_alloc(atomic_pool, size); 59 if (val) { 60 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 61 62 *ret_page = phys_to_page(phys); 63 ptr = (void *)val; 64 memset(ptr, 0, size); 65 } 66 67 return ptr; 68 } 69 70 static bool __in_atomic_pool(void *start, size_t size) 71 { 72 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 73 } 74 75 static int __free_from_pool(void *start, size_t size) 76 { 77 if (!__in_atomic_pool(start, size)) 78 return 0; 79 80 gen_pool_free(atomic_pool, (unsigned long)start, size); 81 82 return 1; 83 } 84 85 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 86 gfp_t flags, unsigned long attrs) 87 { 88 struct page *page; 89 void *ptr, *coherent_ptr; 90 pgprot_t prot = pgprot_writecombine(PAGE_KERNEL); 91 92 size = PAGE_ALIGN(size); 93 94 if (!gfpflags_allow_blocking(flags)) { 95 struct page *page = NULL; 96 void *addr = __alloc_from_pool(size, &page, flags); 97 98 if (addr) 99 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 100 101 return addr; 102 } 103 104 ptr = dma_direct_alloc_pages(dev, size, dma_handle, flags, attrs); 105 if (!ptr) 106 goto no_mem; 107 108 /* remove any dirty cache lines on the kernel alias */ 109 __dma_flush_area(ptr, size); 110 111 /* create a coherent mapping */ 112 page = virt_to_page(ptr); 113 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 114 prot, __builtin_return_address(0)); 115 if (!coherent_ptr) 116 goto no_map; 117 118 return coherent_ptr; 119 120 no_map: 121 dma_direct_free_pages(dev, size, ptr, *dma_handle, attrs); 122 no_mem: 123 return NULL; 124 } 125 126 void arch_dma_free(struct device *dev, size_t size, void *vaddr, 127 dma_addr_t dma_handle, unsigned long attrs) 128 { 129 if (!__free_from_pool(vaddr, PAGE_ALIGN(size))) { 130 void *kaddr = phys_to_virt(dma_to_phys(dev, dma_handle)); 131 132 vunmap(vaddr); 133 dma_direct_free_pages(dev, size, kaddr, dma_handle, attrs); 134 } 135 } 136 137 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr, 138 dma_addr_t dma_addr) 139 { 140 return __phys_to_pfn(dma_to_phys(dev, dma_addr)); 141 } 142 143 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, 144 unsigned long attrs) 145 { 146 if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE)) 147 return pgprot_writecombine(prot); 148 return prot; 149 } 150 151 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, 152 size_t size, enum dma_data_direction dir) 153 { 154 __dma_map_area(phys_to_virt(paddr), size, dir); 155 } 156 157 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 158 size_t size, enum dma_data_direction dir) 159 { 160 __dma_unmap_area(phys_to_virt(paddr), size, dir); 161 } 162 163 #ifdef CONFIG_IOMMU_DMA 164 static int __swiotlb_get_sgtable_page(struct sg_table *sgt, 165 struct page *page, size_t size) 166 { 167 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 168 169 if (!ret) 170 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 171 172 return ret; 173 } 174 175 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, 176 unsigned long pfn, size_t size) 177 { 178 int ret = -ENXIO; 179 unsigned long nr_vma_pages = vma_pages(vma); 180 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 181 unsigned long off = vma->vm_pgoff; 182 183 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 184 ret = remap_pfn_range(vma, vma->vm_start, 185 pfn + off, 186 vma->vm_end - vma->vm_start, 187 vma->vm_page_prot); 188 } 189 190 return ret; 191 } 192 #endif /* CONFIG_IOMMU_DMA */ 193 194 static int __init atomic_pool_init(void) 195 { 196 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 197 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 198 struct page *page; 199 void *addr; 200 unsigned int pool_size_order = get_order(atomic_pool_size); 201 202 if (dev_get_cma_area(NULL)) 203 page = dma_alloc_from_contiguous(NULL, nr_pages, 204 pool_size_order, false); 205 else 206 page = alloc_pages(GFP_DMA32, pool_size_order); 207 208 if (page) { 209 int ret; 210 void *page_addr = page_address(page); 211 212 memset(page_addr, 0, atomic_pool_size); 213 __dma_flush_area(page_addr, atomic_pool_size); 214 215 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 216 if (!atomic_pool) 217 goto free_page; 218 219 addr = dma_common_contiguous_remap(page, atomic_pool_size, 220 VM_USERMAP, prot, atomic_pool_init); 221 222 if (!addr) 223 goto destroy_genpool; 224 225 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 226 page_to_phys(page), 227 atomic_pool_size, -1); 228 if (ret) 229 goto remove_mapping; 230 231 gen_pool_set_algo(atomic_pool, 232 gen_pool_first_fit_order_align, 233 NULL); 234 235 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 236 atomic_pool_size / 1024); 237 return 0; 238 } 239 goto out; 240 241 remove_mapping: 242 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 243 destroy_genpool: 244 gen_pool_destroy(atomic_pool); 245 atomic_pool = NULL; 246 free_page: 247 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 248 __free_pages(page, pool_size_order); 249 out: 250 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 251 atomic_pool_size / 1024); 252 return -ENOMEM; 253 } 254 255 /******************************************** 256 * The following APIs are for dummy DMA ops * 257 ********************************************/ 258 259 static void *__dummy_alloc(struct device *dev, size_t size, 260 dma_addr_t *dma_handle, gfp_t flags, 261 unsigned long attrs) 262 { 263 return NULL; 264 } 265 266 static void __dummy_free(struct device *dev, size_t size, 267 void *vaddr, dma_addr_t dma_handle, 268 unsigned long attrs) 269 { 270 } 271 272 static int __dummy_mmap(struct device *dev, 273 struct vm_area_struct *vma, 274 void *cpu_addr, dma_addr_t dma_addr, size_t size, 275 unsigned long attrs) 276 { 277 return -ENXIO; 278 } 279 280 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 281 unsigned long offset, size_t size, 282 enum dma_data_direction dir, 283 unsigned long attrs) 284 { 285 return 0; 286 } 287 288 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 289 size_t size, enum dma_data_direction dir, 290 unsigned long attrs) 291 { 292 } 293 294 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 295 int nelems, enum dma_data_direction dir, 296 unsigned long attrs) 297 { 298 return 0; 299 } 300 301 static void __dummy_unmap_sg(struct device *dev, 302 struct scatterlist *sgl, int nelems, 303 enum dma_data_direction dir, 304 unsigned long attrs) 305 { 306 } 307 308 static void __dummy_sync_single(struct device *dev, 309 dma_addr_t dev_addr, size_t size, 310 enum dma_data_direction dir) 311 { 312 } 313 314 static void __dummy_sync_sg(struct device *dev, 315 struct scatterlist *sgl, int nelems, 316 enum dma_data_direction dir) 317 { 318 } 319 320 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 321 { 322 return 1; 323 } 324 325 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 326 { 327 return 0; 328 } 329 330 const struct dma_map_ops dummy_dma_ops = { 331 .alloc = __dummy_alloc, 332 .free = __dummy_free, 333 .mmap = __dummy_mmap, 334 .map_page = __dummy_map_page, 335 .unmap_page = __dummy_unmap_page, 336 .map_sg = __dummy_map_sg, 337 .unmap_sg = __dummy_unmap_sg, 338 .sync_single_for_cpu = __dummy_sync_single, 339 .sync_single_for_device = __dummy_sync_single, 340 .sync_sg_for_cpu = __dummy_sync_sg, 341 .sync_sg_for_device = __dummy_sync_sg, 342 .mapping_error = __dummy_mapping_error, 343 .dma_supported = __dummy_dma_supported, 344 }; 345 EXPORT_SYMBOL(dummy_dma_ops); 346 347 static int __init arm64_dma_init(void) 348 { 349 WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(), 350 TAINT_CPU_OUT_OF_SPEC, 351 "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)", 352 ARCH_DMA_MINALIGN, cache_line_size()); 353 354 return atomic_pool_init(); 355 } 356 arch_initcall(arm64_dma_init); 357 358 #ifdef CONFIG_IOMMU_DMA 359 #include <linux/dma-iommu.h> 360 #include <linux/platform_device.h> 361 #include <linux/amba/bus.h> 362 363 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 364 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 365 { 366 __dma_flush_area(virt, PAGE_SIZE); 367 } 368 369 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 370 dma_addr_t *handle, gfp_t gfp, 371 unsigned long attrs) 372 { 373 bool coherent = dev_is_dma_coherent(dev); 374 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 375 size_t iosize = size; 376 void *addr; 377 378 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 379 return NULL; 380 381 size = PAGE_ALIGN(size); 382 383 /* 384 * Some drivers rely on this, and we probably don't want the 385 * possibility of stale kernel data being read by devices anyway. 386 */ 387 gfp |= __GFP_ZERO; 388 389 if (!gfpflags_allow_blocking(gfp)) { 390 struct page *page; 391 /* 392 * In atomic context we can't remap anything, so we'll only 393 * get the virtually contiguous buffer we need by way of a 394 * physically contiguous allocation. 395 */ 396 if (coherent) { 397 page = alloc_pages(gfp, get_order(size)); 398 addr = page ? page_address(page) : NULL; 399 } else { 400 addr = __alloc_from_pool(size, &page, gfp); 401 } 402 if (!addr) 403 return NULL; 404 405 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 406 if (iommu_dma_mapping_error(dev, *handle)) { 407 if (coherent) 408 __free_pages(page, get_order(size)); 409 else 410 __free_from_pool(addr, size); 411 addr = NULL; 412 } 413 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 414 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); 415 struct page *page; 416 417 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 418 get_order(size), gfp & __GFP_NOWARN); 419 if (!page) 420 return NULL; 421 422 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 423 if (iommu_dma_mapping_error(dev, *handle)) { 424 dma_release_from_contiguous(dev, page, 425 size >> PAGE_SHIFT); 426 return NULL; 427 } 428 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, 429 prot, 430 __builtin_return_address(0)); 431 if (addr) { 432 memset(addr, 0, size); 433 if (!coherent) 434 __dma_flush_area(page_to_virt(page), iosize); 435 } else { 436 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); 437 dma_release_from_contiguous(dev, page, 438 size >> PAGE_SHIFT); 439 } 440 } else { 441 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); 442 struct page **pages; 443 444 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 445 handle, flush_page); 446 if (!pages) 447 return NULL; 448 449 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 450 __builtin_return_address(0)); 451 if (!addr) 452 iommu_dma_free(dev, pages, iosize, handle); 453 } 454 return addr; 455 } 456 457 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 458 dma_addr_t handle, unsigned long attrs) 459 { 460 size_t iosize = size; 461 462 size = PAGE_ALIGN(size); 463 /* 464 * @cpu_addr will be one of 4 things depending on how it was allocated: 465 * - A remapped array of pages for contiguous allocations. 466 * - A remapped array of pages from iommu_dma_alloc(), for all 467 * non-atomic allocations. 468 * - A non-cacheable alias from the atomic pool, for atomic 469 * allocations by non-coherent devices. 470 * - A normal lowmem address, for atomic allocations by 471 * coherent devices. 472 * Hence how dodgy the below logic looks... 473 */ 474 if (__in_atomic_pool(cpu_addr, size)) { 475 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 476 __free_from_pool(cpu_addr, size); 477 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 478 struct page *page = vmalloc_to_page(cpu_addr); 479 480 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); 481 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 482 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 483 } else if (is_vmalloc_addr(cpu_addr)){ 484 struct vm_struct *area = find_vm_area(cpu_addr); 485 486 if (WARN_ON(!area || !area->pages)) 487 return; 488 iommu_dma_free(dev, area->pages, iosize, &handle); 489 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 490 } else { 491 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 492 __free_pages(virt_to_page(cpu_addr), get_order(size)); 493 } 494 } 495 496 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 497 void *cpu_addr, dma_addr_t dma_addr, size_t size, 498 unsigned long attrs) 499 { 500 struct vm_struct *area; 501 int ret; 502 503 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs); 504 505 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 506 return ret; 507 508 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 509 /* 510 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 511 * hence in the vmalloc space. 512 */ 513 unsigned long pfn = vmalloc_to_pfn(cpu_addr); 514 return __swiotlb_mmap_pfn(vma, pfn, size); 515 } 516 517 area = find_vm_area(cpu_addr); 518 if (WARN_ON(!area || !area->pages)) 519 return -ENXIO; 520 521 return iommu_dma_mmap(area->pages, size, vma); 522 } 523 524 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 525 void *cpu_addr, dma_addr_t dma_addr, 526 size_t size, unsigned long attrs) 527 { 528 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 529 struct vm_struct *area = find_vm_area(cpu_addr); 530 531 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 532 /* 533 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 534 * hence in the vmalloc space. 535 */ 536 struct page *page = vmalloc_to_page(cpu_addr); 537 return __swiotlb_get_sgtable_page(sgt, page, size); 538 } 539 540 if (WARN_ON(!area || !area->pages)) 541 return -ENXIO; 542 543 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 544 GFP_KERNEL); 545 } 546 547 static void __iommu_sync_single_for_cpu(struct device *dev, 548 dma_addr_t dev_addr, size_t size, 549 enum dma_data_direction dir) 550 { 551 phys_addr_t phys; 552 553 if (dev_is_dma_coherent(dev)) 554 return; 555 556 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); 557 arch_sync_dma_for_cpu(dev, phys, size, dir); 558 } 559 560 static void __iommu_sync_single_for_device(struct device *dev, 561 dma_addr_t dev_addr, size_t size, 562 enum dma_data_direction dir) 563 { 564 phys_addr_t phys; 565 566 if (dev_is_dma_coherent(dev)) 567 return; 568 569 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); 570 arch_sync_dma_for_device(dev, phys, size, dir); 571 } 572 573 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 574 unsigned long offset, size_t size, 575 enum dma_data_direction dir, 576 unsigned long attrs) 577 { 578 bool coherent = dev_is_dma_coherent(dev); 579 int prot = dma_info_to_prot(dir, coherent, attrs); 580 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 581 582 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 583 !iommu_dma_mapping_error(dev, dev_addr)) 584 __dma_map_area(page_address(page) + offset, size, dir); 585 586 return dev_addr; 587 } 588 589 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 590 size_t size, enum dma_data_direction dir, 591 unsigned long attrs) 592 { 593 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 594 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 595 596 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 597 } 598 599 static void __iommu_sync_sg_for_cpu(struct device *dev, 600 struct scatterlist *sgl, int nelems, 601 enum dma_data_direction dir) 602 { 603 struct scatterlist *sg; 604 int i; 605 606 if (dev_is_dma_coherent(dev)) 607 return; 608 609 for_each_sg(sgl, sg, nelems, i) 610 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); 611 } 612 613 static void __iommu_sync_sg_for_device(struct device *dev, 614 struct scatterlist *sgl, int nelems, 615 enum dma_data_direction dir) 616 { 617 struct scatterlist *sg; 618 int i; 619 620 if (dev_is_dma_coherent(dev)) 621 return; 622 623 for_each_sg(sgl, sg, nelems, i) 624 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); 625 } 626 627 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 628 int nelems, enum dma_data_direction dir, 629 unsigned long attrs) 630 { 631 bool coherent = dev_is_dma_coherent(dev); 632 633 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 634 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 635 636 return iommu_dma_map_sg(dev, sgl, nelems, 637 dma_info_to_prot(dir, coherent, attrs)); 638 } 639 640 static void __iommu_unmap_sg_attrs(struct device *dev, 641 struct scatterlist *sgl, int nelems, 642 enum dma_data_direction dir, 643 unsigned long attrs) 644 { 645 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 646 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 647 648 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 649 } 650 651 static const struct dma_map_ops iommu_dma_ops = { 652 .alloc = __iommu_alloc_attrs, 653 .free = __iommu_free_attrs, 654 .mmap = __iommu_mmap_attrs, 655 .get_sgtable = __iommu_get_sgtable, 656 .map_page = __iommu_map_page, 657 .unmap_page = __iommu_unmap_page, 658 .map_sg = __iommu_map_sg_attrs, 659 .unmap_sg = __iommu_unmap_sg_attrs, 660 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 661 .sync_single_for_device = __iommu_sync_single_for_device, 662 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 663 .sync_sg_for_device = __iommu_sync_sg_for_device, 664 .map_resource = iommu_dma_map_resource, 665 .unmap_resource = iommu_dma_unmap_resource, 666 .mapping_error = iommu_dma_mapping_error, 667 }; 668 669 static int __init __iommu_dma_init(void) 670 { 671 return iommu_dma_init(); 672 } 673 arch_initcall(__iommu_dma_init); 674 675 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 676 const struct iommu_ops *ops) 677 { 678 struct iommu_domain *domain; 679 680 if (!ops) 681 return; 682 683 /* 684 * The IOMMU core code allocates the default DMA domain, which the 685 * underlying IOMMU driver needs to support via the dma-iommu layer. 686 */ 687 domain = iommu_get_domain_for_dev(dev); 688 689 if (!domain) 690 goto out_err; 691 692 if (domain->type == IOMMU_DOMAIN_DMA) { 693 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 694 goto out_err; 695 696 dev->dma_ops = &iommu_dma_ops; 697 } 698 699 return; 700 701 out_err: 702 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 703 dev_name(dev)); 704 } 705 706 void arch_teardown_dma_ops(struct device *dev) 707 { 708 dev->dma_ops = NULL; 709 } 710 711 #else 712 713 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 714 const struct iommu_ops *iommu) 715 { } 716 717 #endif /* CONFIG_IOMMU_DMA */ 718 719 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 720 const struct iommu_ops *iommu, bool coherent) 721 { 722 if (!dev->dma_ops) 723 dev->dma_ops = &swiotlb_dma_ops; 724 725 dev->dma_coherent = coherent; 726 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 727 728 #ifdef CONFIG_XEN 729 if (xen_initial_domain()) { 730 dev->archdata.dev_dma_ops = dev->dma_ops; 731 dev->dma_ops = xen_dma_ops; 732 } 733 #endif 734 } 735