1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/bootmem.h> 23 #include <linux/cache.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/genalloc.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/vmalloc.h> 30 #include <linux/swiotlb.h> 31 #include <linux/pci.h> 32 33 #include <asm/cacheflush.h> 34 35 static int swiotlb __ro_after_init; 36 37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot, 38 bool coherent) 39 { 40 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE)) 41 return pgprot_writecombine(prot); 42 return prot; 43 } 44 45 static struct gen_pool *atomic_pool; 46 47 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 49 50 static int __init early_coherent_pool(char *p) 51 { 52 atomic_pool_size = memparse(p, &p); 53 return 0; 54 } 55 early_param("coherent_pool", early_coherent_pool); 56 57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 58 { 59 unsigned long val; 60 void *ptr = NULL; 61 62 if (!atomic_pool) { 63 WARN(1, "coherent pool not initialised!\n"); 64 return NULL; 65 } 66 67 val = gen_pool_alloc(atomic_pool, size); 68 if (val) { 69 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 70 71 *ret_page = phys_to_page(phys); 72 ptr = (void *)val; 73 memset(ptr, 0, size); 74 } 75 76 return ptr; 77 } 78 79 static bool __in_atomic_pool(void *start, size_t size) 80 { 81 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 82 } 83 84 static int __free_from_pool(void *start, size_t size) 85 { 86 if (!__in_atomic_pool(start, size)) 87 return 0; 88 89 gen_pool_free(atomic_pool, (unsigned long)start, size); 90 91 return 1; 92 } 93 94 static void *__dma_alloc_coherent(struct device *dev, size_t size, 95 dma_addr_t *dma_handle, gfp_t flags, 96 unsigned long attrs) 97 { 98 if (IS_ENABLED(CONFIG_ZONE_DMA) && 99 dev->coherent_dma_mask <= DMA_BIT_MASK(32)) 100 flags |= GFP_DMA; 101 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { 102 struct page *page; 103 void *addr; 104 105 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 106 get_order(size), flags); 107 if (!page) 108 return NULL; 109 110 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 111 addr = page_address(page); 112 memset(addr, 0, size); 113 return addr; 114 } else { 115 return swiotlb_alloc_coherent(dev, size, dma_handle, flags); 116 } 117 } 118 119 static void __dma_free_coherent(struct device *dev, size_t size, 120 void *vaddr, dma_addr_t dma_handle, 121 unsigned long attrs) 122 { 123 bool freed; 124 phys_addr_t paddr = dma_to_phys(dev, dma_handle); 125 126 127 freed = dma_release_from_contiguous(dev, 128 phys_to_page(paddr), 129 size >> PAGE_SHIFT); 130 if (!freed) 131 swiotlb_free_coherent(dev, size, vaddr, dma_handle); 132 } 133 134 static void *__dma_alloc(struct device *dev, size_t size, 135 dma_addr_t *dma_handle, gfp_t flags, 136 unsigned long attrs) 137 { 138 struct page *page; 139 void *ptr, *coherent_ptr; 140 bool coherent = is_device_dma_coherent(dev); 141 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 142 143 size = PAGE_ALIGN(size); 144 145 if (!coherent && !gfpflags_allow_blocking(flags)) { 146 struct page *page = NULL; 147 void *addr = __alloc_from_pool(size, &page, flags); 148 149 if (addr) 150 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 151 152 return addr; 153 } 154 155 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); 156 if (!ptr) 157 goto no_mem; 158 159 /* no need for non-cacheable mapping if coherent */ 160 if (coherent) 161 return ptr; 162 163 /* remove any dirty cache lines on the kernel alias */ 164 __dma_flush_area(ptr, size); 165 166 /* create a coherent mapping */ 167 page = virt_to_page(ptr); 168 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 169 prot, NULL); 170 if (!coherent_ptr) 171 goto no_map; 172 173 return coherent_ptr; 174 175 no_map: 176 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); 177 no_mem: 178 return NULL; 179 } 180 181 static void __dma_free(struct device *dev, size_t size, 182 void *vaddr, dma_addr_t dma_handle, 183 unsigned long attrs) 184 { 185 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 186 187 size = PAGE_ALIGN(size); 188 189 if (!is_device_dma_coherent(dev)) { 190 if (__free_from_pool(vaddr, size)) 191 return; 192 vunmap(vaddr); 193 } 194 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); 195 } 196 197 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 198 unsigned long offset, size_t size, 199 enum dma_data_direction dir, 200 unsigned long attrs) 201 { 202 dma_addr_t dev_addr; 203 204 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 205 if (!is_device_dma_coherent(dev) && 206 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 207 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 208 209 return dev_addr; 210 } 211 212 213 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 214 size_t size, enum dma_data_direction dir, 215 unsigned long attrs) 216 { 217 if (!is_device_dma_coherent(dev) && 218 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 219 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 220 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 221 } 222 223 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 224 int nelems, enum dma_data_direction dir, 225 unsigned long attrs) 226 { 227 struct scatterlist *sg; 228 int i, ret; 229 230 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 231 if (!is_device_dma_coherent(dev) && 232 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 233 for_each_sg(sgl, sg, ret, i) 234 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 235 sg->length, dir); 236 237 return ret; 238 } 239 240 static void __swiotlb_unmap_sg_attrs(struct device *dev, 241 struct scatterlist *sgl, int nelems, 242 enum dma_data_direction dir, 243 unsigned long attrs) 244 { 245 struct scatterlist *sg; 246 int i; 247 248 if (!is_device_dma_coherent(dev) && 249 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 250 for_each_sg(sgl, sg, nelems, i) 251 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 252 sg->length, dir); 253 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 254 } 255 256 static void __swiotlb_sync_single_for_cpu(struct device *dev, 257 dma_addr_t dev_addr, size_t size, 258 enum dma_data_direction dir) 259 { 260 if (!is_device_dma_coherent(dev)) 261 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 262 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 263 } 264 265 static void __swiotlb_sync_single_for_device(struct device *dev, 266 dma_addr_t dev_addr, size_t size, 267 enum dma_data_direction dir) 268 { 269 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 270 if (!is_device_dma_coherent(dev)) 271 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 272 } 273 274 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 275 struct scatterlist *sgl, int nelems, 276 enum dma_data_direction dir) 277 { 278 struct scatterlist *sg; 279 int i; 280 281 if (!is_device_dma_coherent(dev)) 282 for_each_sg(sgl, sg, nelems, i) 283 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 284 sg->length, dir); 285 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 286 } 287 288 static void __swiotlb_sync_sg_for_device(struct device *dev, 289 struct scatterlist *sgl, int nelems, 290 enum dma_data_direction dir) 291 { 292 struct scatterlist *sg; 293 int i; 294 295 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 296 if (!is_device_dma_coherent(dev)) 297 for_each_sg(sgl, sg, nelems, i) 298 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 299 sg->length, dir); 300 } 301 302 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, 303 unsigned long pfn, size_t size) 304 { 305 int ret = -ENXIO; 306 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> 307 PAGE_SHIFT; 308 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 309 unsigned long off = vma->vm_pgoff; 310 311 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 312 ret = remap_pfn_range(vma, vma->vm_start, 313 pfn + off, 314 vma->vm_end - vma->vm_start, 315 vma->vm_page_prot); 316 } 317 318 return ret; 319 } 320 321 static int __swiotlb_mmap(struct device *dev, 322 struct vm_area_struct *vma, 323 void *cpu_addr, dma_addr_t dma_addr, size_t size, 324 unsigned long attrs) 325 { 326 int ret; 327 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 328 329 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 330 is_device_dma_coherent(dev)); 331 332 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 333 return ret; 334 335 return __swiotlb_mmap_pfn(vma, pfn, size); 336 } 337 338 static int __swiotlb_get_sgtable_page(struct sg_table *sgt, 339 struct page *page, size_t size) 340 { 341 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 342 343 if (!ret) 344 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 345 346 return ret; 347 } 348 349 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 350 void *cpu_addr, dma_addr_t handle, size_t size, 351 unsigned long attrs) 352 { 353 struct page *page = phys_to_page(dma_to_phys(dev, handle)); 354 355 return __swiotlb_get_sgtable_page(sgt, page, size); 356 } 357 358 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask) 359 { 360 if (swiotlb) 361 return swiotlb_dma_supported(hwdev, mask); 362 return 1; 363 } 364 365 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr) 366 { 367 if (swiotlb) 368 return swiotlb_dma_mapping_error(hwdev, addr); 369 return 0; 370 } 371 372 static const struct dma_map_ops swiotlb_dma_ops = { 373 .alloc = __dma_alloc, 374 .free = __dma_free, 375 .mmap = __swiotlb_mmap, 376 .get_sgtable = __swiotlb_get_sgtable, 377 .map_page = __swiotlb_map_page, 378 .unmap_page = __swiotlb_unmap_page, 379 .map_sg = __swiotlb_map_sg_attrs, 380 .unmap_sg = __swiotlb_unmap_sg_attrs, 381 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 382 .sync_single_for_device = __swiotlb_sync_single_for_device, 383 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 384 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 385 .dma_supported = __swiotlb_dma_supported, 386 .mapping_error = __swiotlb_dma_mapping_error, 387 }; 388 389 static int __init atomic_pool_init(void) 390 { 391 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 392 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 393 struct page *page; 394 void *addr; 395 unsigned int pool_size_order = get_order(atomic_pool_size); 396 397 if (dev_get_cma_area(NULL)) 398 page = dma_alloc_from_contiguous(NULL, nr_pages, 399 pool_size_order, GFP_KERNEL); 400 else 401 page = alloc_pages(GFP_DMA, pool_size_order); 402 403 if (page) { 404 int ret; 405 void *page_addr = page_address(page); 406 407 memset(page_addr, 0, atomic_pool_size); 408 __dma_flush_area(page_addr, atomic_pool_size); 409 410 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 411 if (!atomic_pool) 412 goto free_page; 413 414 addr = dma_common_contiguous_remap(page, atomic_pool_size, 415 VM_USERMAP, prot, atomic_pool_init); 416 417 if (!addr) 418 goto destroy_genpool; 419 420 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 421 page_to_phys(page), 422 atomic_pool_size, -1); 423 if (ret) 424 goto remove_mapping; 425 426 gen_pool_set_algo(atomic_pool, 427 gen_pool_first_fit_order_align, 428 (void *)PAGE_SHIFT); 429 430 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 431 atomic_pool_size / 1024); 432 return 0; 433 } 434 goto out; 435 436 remove_mapping: 437 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 438 destroy_genpool: 439 gen_pool_destroy(atomic_pool); 440 atomic_pool = NULL; 441 free_page: 442 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 443 __free_pages(page, pool_size_order); 444 out: 445 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 446 atomic_pool_size / 1024); 447 return -ENOMEM; 448 } 449 450 /******************************************** 451 * The following APIs are for dummy DMA ops * 452 ********************************************/ 453 454 static void *__dummy_alloc(struct device *dev, size_t size, 455 dma_addr_t *dma_handle, gfp_t flags, 456 unsigned long attrs) 457 { 458 return NULL; 459 } 460 461 static void __dummy_free(struct device *dev, size_t size, 462 void *vaddr, dma_addr_t dma_handle, 463 unsigned long attrs) 464 { 465 } 466 467 static int __dummy_mmap(struct device *dev, 468 struct vm_area_struct *vma, 469 void *cpu_addr, dma_addr_t dma_addr, size_t size, 470 unsigned long attrs) 471 { 472 return -ENXIO; 473 } 474 475 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 476 unsigned long offset, size_t size, 477 enum dma_data_direction dir, 478 unsigned long attrs) 479 { 480 return 0; 481 } 482 483 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 484 size_t size, enum dma_data_direction dir, 485 unsigned long attrs) 486 { 487 } 488 489 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 490 int nelems, enum dma_data_direction dir, 491 unsigned long attrs) 492 { 493 return 0; 494 } 495 496 static void __dummy_unmap_sg(struct device *dev, 497 struct scatterlist *sgl, int nelems, 498 enum dma_data_direction dir, 499 unsigned long attrs) 500 { 501 } 502 503 static void __dummy_sync_single(struct device *dev, 504 dma_addr_t dev_addr, size_t size, 505 enum dma_data_direction dir) 506 { 507 } 508 509 static void __dummy_sync_sg(struct device *dev, 510 struct scatterlist *sgl, int nelems, 511 enum dma_data_direction dir) 512 { 513 } 514 515 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 516 { 517 return 1; 518 } 519 520 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 521 { 522 return 0; 523 } 524 525 const struct dma_map_ops dummy_dma_ops = { 526 .alloc = __dummy_alloc, 527 .free = __dummy_free, 528 .mmap = __dummy_mmap, 529 .map_page = __dummy_map_page, 530 .unmap_page = __dummy_unmap_page, 531 .map_sg = __dummy_map_sg, 532 .unmap_sg = __dummy_unmap_sg, 533 .sync_single_for_cpu = __dummy_sync_single, 534 .sync_single_for_device = __dummy_sync_single, 535 .sync_sg_for_cpu = __dummy_sync_sg, 536 .sync_sg_for_device = __dummy_sync_sg, 537 .mapping_error = __dummy_mapping_error, 538 .dma_supported = __dummy_dma_supported, 539 }; 540 EXPORT_SYMBOL(dummy_dma_ops); 541 542 static int __init arm64_dma_init(void) 543 { 544 if (swiotlb_force == SWIOTLB_FORCE || 545 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 546 swiotlb = 1; 547 548 return atomic_pool_init(); 549 } 550 arch_initcall(arm64_dma_init); 551 552 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 553 554 static int __init dma_debug_do_init(void) 555 { 556 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 557 return 0; 558 } 559 fs_initcall(dma_debug_do_init); 560 561 562 #ifdef CONFIG_IOMMU_DMA 563 #include <linux/dma-iommu.h> 564 #include <linux/platform_device.h> 565 #include <linux/amba/bus.h> 566 567 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 568 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 569 { 570 __dma_flush_area(virt, PAGE_SIZE); 571 } 572 573 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 574 dma_addr_t *handle, gfp_t gfp, 575 unsigned long attrs) 576 { 577 bool coherent = is_device_dma_coherent(dev); 578 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 579 size_t iosize = size; 580 void *addr; 581 582 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 583 return NULL; 584 585 size = PAGE_ALIGN(size); 586 587 /* 588 * Some drivers rely on this, and we probably don't want the 589 * possibility of stale kernel data being read by devices anyway. 590 */ 591 gfp |= __GFP_ZERO; 592 593 if (!gfpflags_allow_blocking(gfp)) { 594 struct page *page; 595 /* 596 * In atomic context we can't remap anything, so we'll only 597 * get the virtually contiguous buffer we need by way of a 598 * physically contiguous allocation. 599 */ 600 if (coherent) { 601 page = alloc_pages(gfp, get_order(size)); 602 addr = page ? page_address(page) : NULL; 603 } else { 604 addr = __alloc_from_pool(size, &page, gfp); 605 } 606 if (!addr) 607 return NULL; 608 609 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 610 if (iommu_dma_mapping_error(dev, *handle)) { 611 if (coherent) 612 __free_pages(page, get_order(size)); 613 else 614 __free_from_pool(addr, size); 615 addr = NULL; 616 } 617 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 618 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 619 struct page *page; 620 621 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 622 get_order(size), gfp); 623 if (!page) 624 return NULL; 625 626 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 627 if (iommu_dma_mapping_error(dev, *handle)) { 628 dma_release_from_contiguous(dev, page, 629 size >> PAGE_SHIFT); 630 return NULL; 631 } 632 if (!coherent) 633 __dma_flush_area(page_to_virt(page), iosize); 634 635 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, 636 prot, 637 __builtin_return_address(0)); 638 if (!addr) { 639 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); 640 dma_release_from_contiguous(dev, page, 641 size >> PAGE_SHIFT); 642 } 643 } else { 644 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 645 struct page **pages; 646 647 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 648 handle, flush_page); 649 if (!pages) 650 return NULL; 651 652 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 653 __builtin_return_address(0)); 654 if (!addr) 655 iommu_dma_free(dev, pages, iosize, handle); 656 } 657 return addr; 658 } 659 660 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 661 dma_addr_t handle, unsigned long attrs) 662 { 663 size_t iosize = size; 664 665 size = PAGE_ALIGN(size); 666 /* 667 * @cpu_addr will be one of 4 things depending on how it was allocated: 668 * - A remapped array of pages for contiguous allocations. 669 * - A remapped array of pages from iommu_dma_alloc(), for all 670 * non-atomic allocations. 671 * - A non-cacheable alias from the atomic pool, for atomic 672 * allocations by non-coherent devices. 673 * - A normal lowmem address, for atomic allocations by 674 * coherent devices. 675 * Hence how dodgy the below logic looks... 676 */ 677 if (__in_atomic_pool(cpu_addr, size)) { 678 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 679 __free_from_pool(cpu_addr, size); 680 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 681 struct page *page = vmalloc_to_page(cpu_addr); 682 683 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); 684 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 685 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 686 } else if (is_vmalloc_addr(cpu_addr)){ 687 struct vm_struct *area = find_vm_area(cpu_addr); 688 689 if (WARN_ON(!area || !area->pages)) 690 return; 691 iommu_dma_free(dev, area->pages, iosize, &handle); 692 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 693 } else { 694 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 695 __free_pages(virt_to_page(cpu_addr), get_order(size)); 696 } 697 } 698 699 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 700 void *cpu_addr, dma_addr_t dma_addr, size_t size, 701 unsigned long attrs) 702 { 703 struct vm_struct *area; 704 int ret; 705 706 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 707 is_device_dma_coherent(dev)); 708 709 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 710 return ret; 711 712 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 713 /* 714 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 715 * hence in the vmalloc space. 716 */ 717 unsigned long pfn = vmalloc_to_pfn(cpu_addr); 718 return __swiotlb_mmap_pfn(vma, pfn, size); 719 } 720 721 area = find_vm_area(cpu_addr); 722 if (WARN_ON(!area || !area->pages)) 723 return -ENXIO; 724 725 return iommu_dma_mmap(area->pages, size, vma); 726 } 727 728 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 729 void *cpu_addr, dma_addr_t dma_addr, 730 size_t size, unsigned long attrs) 731 { 732 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 733 struct vm_struct *area = find_vm_area(cpu_addr); 734 735 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 736 /* 737 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 738 * hence in the vmalloc space. 739 */ 740 struct page *page = vmalloc_to_page(cpu_addr); 741 return __swiotlb_get_sgtable_page(sgt, page, size); 742 } 743 744 if (WARN_ON(!area || !area->pages)) 745 return -ENXIO; 746 747 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 748 GFP_KERNEL); 749 } 750 751 static void __iommu_sync_single_for_cpu(struct device *dev, 752 dma_addr_t dev_addr, size_t size, 753 enum dma_data_direction dir) 754 { 755 phys_addr_t phys; 756 757 if (is_device_dma_coherent(dev)) 758 return; 759 760 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 761 __dma_unmap_area(phys_to_virt(phys), size, dir); 762 } 763 764 static void __iommu_sync_single_for_device(struct device *dev, 765 dma_addr_t dev_addr, size_t size, 766 enum dma_data_direction dir) 767 { 768 phys_addr_t phys; 769 770 if (is_device_dma_coherent(dev)) 771 return; 772 773 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 774 __dma_map_area(phys_to_virt(phys), size, dir); 775 } 776 777 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 778 unsigned long offset, size_t size, 779 enum dma_data_direction dir, 780 unsigned long attrs) 781 { 782 bool coherent = is_device_dma_coherent(dev); 783 int prot = dma_info_to_prot(dir, coherent, attrs); 784 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 785 786 if (!iommu_dma_mapping_error(dev, dev_addr) && 787 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 788 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 789 790 return dev_addr; 791 } 792 793 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 794 size_t size, enum dma_data_direction dir, 795 unsigned long attrs) 796 { 797 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 798 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 799 800 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 801 } 802 803 static void __iommu_sync_sg_for_cpu(struct device *dev, 804 struct scatterlist *sgl, int nelems, 805 enum dma_data_direction dir) 806 { 807 struct scatterlist *sg; 808 int i; 809 810 if (is_device_dma_coherent(dev)) 811 return; 812 813 for_each_sg(sgl, sg, nelems, i) 814 __dma_unmap_area(sg_virt(sg), sg->length, dir); 815 } 816 817 static void __iommu_sync_sg_for_device(struct device *dev, 818 struct scatterlist *sgl, int nelems, 819 enum dma_data_direction dir) 820 { 821 struct scatterlist *sg; 822 int i; 823 824 if (is_device_dma_coherent(dev)) 825 return; 826 827 for_each_sg(sgl, sg, nelems, i) 828 __dma_map_area(sg_virt(sg), sg->length, dir); 829 } 830 831 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 832 int nelems, enum dma_data_direction dir, 833 unsigned long attrs) 834 { 835 bool coherent = is_device_dma_coherent(dev); 836 837 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 838 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 839 840 return iommu_dma_map_sg(dev, sgl, nelems, 841 dma_info_to_prot(dir, coherent, attrs)); 842 } 843 844 static void __iommu_unmap_sg_attrs(struct device *dev, 845 struct scatterlist *sgl, int nelems, 846 enum dma_data_direction dir, 847 unsigned long attrs) 848 { 849 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 850 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 851 852 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 853 } 854 855 static const struct dma_map_ops iommu_dma_ops = { 856 .alloc = __iommu_alloc_attrs, 857 .free = __iommu_free_attrs, 858 .mmap = __iommu_mmap_attrs, 859 .get_sgtable = __iommu_get_sgtable, 860 .map_page = __iommu_map_page, 861 .unmap_page = __iommu_unmap_page, 862 .map_sg = __iommu_map_sg_attrs, 863 .unmap_sg = __iommu_unmap_sg_attrs, 864 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 865 .sync_single_for_device = __iommu_sync_single_for_device, 866 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 867 .sync_sg_for_device = __iommu_sync_sg_for_device, 868 .map_resource = iommu_dma_map_resource, 869 .unmap_resource = iommu_dma_unmap_resource, 870 .mapping_error = iommu_dma_mapping_error, 871 }; 872 873 static int __init __iommu_dma_init(void) 874 { 875 return iommu_dma_init(); 876 } 877 arch_initcall(__iommu_dma_init); 878 879 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 880 const struct iommu_ops *ops) 881 { 882 struct iommu_domain *domain; 883 884 if (!ops) 885 return; 886 887 /* 888 * The IOMMU core code allocates the default DMA domain, which the 889 * underlying IOMMU driver needs to support via the dma-iommu layer. 890 */ 891 domain = iommu_get_domain_for_dev(dev); 892 893 if (!domain) 894 goto out_err; 895 896 if (domain->type == IOMMU_DOMAIN_DMA) { 897 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 898 goto out_err; 899 900 dev->dma_ops = &iommu_dma_ops; 901 } 902 903 return; 904 905 out_err: 906 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 907 dev_name(dev)); 908 } 909 910 void arch_teardown_dma_ops(struct device *dev) 911 { 912 dev->dma_ops = NULL; 913 } 914 915 #else 916 917 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 918 const struct iommu_ops *iommu) 919 { } 920 921 #endif /* CONFIG_IOMMU_DMA */ 922 923 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 924 const struct iommu_ops *iommu, bool coherent) 925 { 926 if (!dev->dma_ops) 927 dev->dma_ops = &swiotlb_dma_ops; 928 929 dev->archdata.dma_coherent = coherent; 930 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 931 932 #ifdef CONFIG_XEN 933 if (xen_initial_domain()) { 934 dev->archdata.dev_dma_ops = dev->dma_ops; 935 dev->dma_ops = xen_dma_ops; 936 } 937 #endif 938 } 939