xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision 1b39eacd)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32 
33 #include <asm/cacheflush.h>
34 
35 static int swiotlb __ro_after_init;
36 
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38 				 bool coherent)
39 {
40 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41 		return pgprot_writecombine(prot);
42 	return prot;
43 }
44 
45 static struct gen_pool *atomic_pool __ro_after_init;
46 
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49 
50 static int __init early_coherent_pool(char *p)
51 {
52 	atomic_pool_size = memparse(p, &p);
53 	return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56 
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59 	unsigned long val;
60 	void *ptr = NULL;
61 
62 	if (!atomic_pool) {
63 		WARN(1, "coherent pool not initialised!\n");
64 		return NULL;
65 	}
66 
67 	val = gen_pool_alloc(atomic_pool, size);
68 	if (val) {
69 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70 
71 		*ret_page = phys_to_page(phys);
72 		ptr = (void *)val;
73 		memset(ptr, 0, size);
74 	}
75 
76 	return ptr;
77 }
78 
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83 
84 static int __free_from_pool(void *start, size_t size)
85 {
86 	if (!__in_atomic_pool(start, size))
87 		return 0;
88 
89 	gen_pool_free(atomic_pool, (unsigned long)start, size);
90 
91 	return 1;
92 }
93 
94 static void *__dma_alloc_coherent(struct device *dev, size_t size,
95 				  dma_addr_t *dma_handle, gfp_t flags,
96 				  unsigned long attrs)
97 {
98 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
99 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
100 		flags |= GFP_DMA;
101 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
102 		struct page *page;
103 		void *addr;
104 
105 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
106 						 get_order(size), flags);
107 		if (!page)
108 			return NULL;
109 
110 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
111 		addr = page_address(page);
112 		memset(addr, 0, size);
113 		return addr;
114 	} else {
115 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
116 	}
117 }
118 
119 static void __dma_free_coherent(struct device *dev, size_t size,
120 				void *vaddr, dma_addr_t dma_handle,
121 				unsigned long attrs)
122 {
123 	bool freed;
124 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
125 
126 
127 	freed = dma_release_from_contiguous(dev,
128 					phys_to_page(paddr),
129 					size >> PAGE_SHIFT);
130 	if (!freed)
131 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
132 }
133 
134 static void *__dma_alloc(struct device *dev, size_t size,
135 			 dma_addr_t *dma_handle, gfp_t flags,
136 			 unsigned long attrs)
137 {
138 	struct page *page;
139 	void *ptr, *coherent_ptr;
140 	bool coherent = is_device_dma_coherent(dev);
141 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
142 
143 	size = PAGE_ALIGN(size);
144 
145 	if (!coherent && !gfpflags_allow_blocking(flags)) {
146 		struct page *page = NULL;
147 		void *addr = __alloc_from_pool(size, &page, flags);
148 
149 		if (addr)
150 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
151 
152 		return addr;
153 	}
154 
155 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
156 	if (!ptr)
157 		goto no_mem;
158 
159 	/* no need for non-cacheable mapping if coherent */
160 	if (coherent)
161 		return ptr;
162 
163 	/* remove any dirty cache lines on the kernel alias */
164 	__dma_flush_area(ptr, size);
165 
166 	/* create a coherent mapping */
167 	page = virt_to_page(ptr);
168 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
169 						   prot, __builtin_return_address(0));
170 	if (!coherent_ptr)
171 		goto no_map;
172 
173 	return coherent_ptr;
174 
175 no_map:
176 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
177 no_mem:
178 	return NULL;
179 }
180 
181 static void __dma_free(struct device *dev, size_t size,
182 		       void *vaddr, dma_addr_t dma_handle,
183 		       unsigned long attrs)
184 {
185 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
186 
187 	size = PAGE_ALIGN(size);
188 
189 	if (!is_device_dma_coherent(dev)) {
190 		if (__free_from_pool(vaddr, size))
191 			return;
192 		vunmap(vaddr);
193 	}
194 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
195 }
196 
197 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
198 				     unsigned long offset, size_t size,
199 				     enum dma_data_direction dir,
200 				     unsigned long attrs)
201 {
202 	dma_addr_t dev_addr;
203 
204 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
205 	if (!is_device_dma_coherent(dev) &&
206 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
207 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
208 
209 	return dev_addr;
210 }
211 
212 
213 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
214 				 size_t size, enum dma_data_direction dir,
215 				 unsigned long attrs)
216 {
217 	if (!is_device_dma_coherent(dev) &&
218 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
219 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
220 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
221 }
222 
223 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
224 				  int nelems, enum dma_data_direction dir,
225 				  unsigned long attrs)
226 {
227 	struct scatterlist *sg;
228 	int i, ret;
229 
230 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
231 	if (!is_device_dma_coherent(dev) &&
232 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
233 		for_each_sg(sgl, sg, ret, i)
234 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
235 				       sg->length, dir);
236 
237 	return ret;
238 }
239 
240 static void __swiotlb_unmap_sg_attrs(struct device *dev,
241 				     struct scatterlist *sgl, int nelems,
242 				     enum dma_data_direction dir,
243 				     unsigned long attrs)
244 {
245 	struct scatterlist *sg;
246 	int i;
247 
248 	if (!is_device_dma_coherent(dev) &&
249 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
250 		for_each_sg(sgl, sg, nelems, i)
251 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
252 					 sg->length, dir);
253 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
254 }
255 
256 static void __swiotlb_sync_single_for_cpu(struct device *dev,
257 					  dma_addr_t dev_addr, size_t size,
258 					  enum dma_data_direction dir)
259 {
260 	if (!is_device_dma_coherent(dev))
261 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
262 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
263 }
264 
265 static void __swiotlb_sync_single_for_device(struct device *dev,
266 					     dma_addr_t dev_addr, size_t size,
267 					     enum dma_data_direction dir)
268 {
269 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
270 	if (!is_device_dma_coherent(dev))
271 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
272 }
273 
274 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
275 				      struct scatterlist *sgl, int nelems,
276 				      enum dma_data_direction dir)
277 {
278 	struct scatterlist *sg;
279 	int i;
280 
281 	if (!is_device_dma_coherent(dev))
282 		for_each_sg(sgl, sg, nelems, i)
283 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
284 					 sg->length, dir);
285 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
286 }
287 
288 static void __swiotlb_sync_sg_for_device(struct device *dev,
289 					 struct scatterlist *sgl, int nelems,
290 					 enum dma_data_direction dir)
291 {
292 	struct scatterlist *sg;
293 	int i;
294 
295 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
296 	if (!is_device_dma_coherent(dev))
297 		for_each_sg(sgl, sg, nelems, i)
298 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
299 				       sg->length, dir);
300 }
301 
302 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
303 			      unsigned long pfn, size_t size)
304 {
305 	int ret = -ENXIO;
306 	unsigned long nr_vma_pages = vma_pages(vma);
307 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
308 	unsigned long off = vma->vm_pgoff;
309 
310 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
311 		ret = remap_pfn_range(vma, vma->vm_start,
312 				      pfn + off,
313 				      vma->vm_end - vma->vm_start,
314 				      vma->vm_page_prot);
315 	}
316 
317 	return ret;
318 }
319 
320 static int __swiotlb_mmap(struct device *dev,
321 			  struct vm_area_struct *vma,
322 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
323 			  unsigned long attrs)
324 {
325 	int ret;
326 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
327 
328 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
329 					     is_device_dma_coherent(dev));
330 
331 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
332 		return ret;
333 
334 	return __swiotlb_mmap_pfn(vma, pfn, size);
335 }
336 
337 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
338 				      struct page *page, size_t size)
339 {
340 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
341 
342 	if (!ret)
343 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
344 
345 	return ret;
346 }
347 
348 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
349 				 void *cpu_addr, dma_addr_t handle, size_t size,
350 				 unsigned long attrs)
351 {
352 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
353 
354 	return __swiotlb_get_sgtable_page(sgt, page, size);
355 }
356 
357 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
358 {
359 	if (swiotlb)
360 		return swiotlb_dma_supported(hwdev, mask);
361 	return 1;
362 }
363 
364 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
365 {
366 	if (swiotlb)
367 		return swiotlb_dma_mapping_error(hwdev, addr);
368 	return 0;
369 }
370 
371 static const struct dma_map_ops swiotlb_dma_ops = {
372 	.alloc = __dma_alloc,
373 	.free = __dma_free,
374 	.mmap = __swiotlb_mmap,
375 	.get_sgtable = __swiotlb_get_sgtable,
376 	.map_page = __swiotlb_map_page,
377 	.unmap_page = __swiotlb_unmap_page,
378 	.map_sg = __swiotlb_map_sg_attrs,
379 	.unmap_sg = __swiotlb_unmap_sg_attrs,
380 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
381 	.sync_single_for_device = __swiotlb_sync_single_for_device,
382 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
383 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
384 	.dma_supported = __swiotlb_dma_supported,
385 	.mapping_error = __swiotlb_dma_mapping_error,
386 };
387 
388 static int __init atomic_pool_init(void)
389 {
390 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
391 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
392 	struct page *page;
393 	void *addr;
394 	unsigned int pool_size_order = get_order(atomic_pool_size);
395 
396 	if (dev_get_cma_area(NULL))
397 		page = dma_alloc_from_contiguous(NULL, nr_pages,
398 						 pool_size_order, GFP_KERNEL);
399 	else
400 		page = alloc_pages(GFP_DMA, pool_size_order);
401 
402 	if (page) {
403 		int ret;
404 		void *page_addr = page_address(page);
405 
406 		memset(page_addr, 0, atomic_pool_size);
407 		__dma_flush_area(page_addr, atomic_pool_size);
408 
409 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
410 		if (!atomic_pool)
411 			goto free_page;
412 
413 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
414 					VM_USERMAP, prot, atomic_pool_init);
415 
416 		if (!addr)
417 			goto destroy_genpool;
418 
419 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
420 					page_to_phys(page),
421 					atomic_pool_size, -1);
422 		if (ret)
423 			goto remove_mapping;
424 
425 		gen_pool_set_algo(atomic_pool,
426 				  gen_pool_first_fit_order_align,
427 				  NULL);
428 
429 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
430 			atomic_pool_size / 1024);
431 		return 0;
432 	}
433 	goto out;
434 
435 remove_mapping:
436 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
437 destroy_genpool:
438 	gen_pool_destroy(atomic_pool);
439 	atomic_pool = NULL;
440 free_page:
441 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
442 		__free_pages(page, pool_size_order);
443 out:
444 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
445 		atomic_pool_size / 1024);
446 	return -ENOMEM;
447 }
448 
449 /********************************************
450  * The following APIs are for dummy DMA ops *
451  ********************************************/
452 
453 static void *__dummy_alloc(struct device *dev, size_t size,
454 			   dma_addr_t *dma_handle, gfp_t flags,
455 			   unsigned long attrs)
456 {
457 	return NULL;
458 }
459 
460 static void __dummy_free(struct device *dev, size_t size,
461 			 void *vaddr, dma_addr_t dma_handle,
462 			 unsigned long attrs)
463 {
464 }
465 
466 static int __dummy_mmap(struct device *dev,
467 			struct vm_area_struct *vma,
468 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
469 			unsigned long attrs)
470 {
471 	return -ENXIO;
472 }
473 
474 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
475 				   unsigned long offset, size_t size,
476 				   enum dma_data_direction dir,
477 				   unsigned long attrs)
478 {
479 	return 0;
480 }
481 
482 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
483 			       size_t size, enum dma_data_direction dir,
484 			       unsigned long attrs)
485 {
486 }
487 
488 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
489 			  int nelems, enum dma_data_direction dir,
490 			  unsigned long attrs)
491 {
492 	return 0;
493 }
494 
495 static void __dummy_unmap_sg(struct device *dev,
496 			     struct scatterlist *sgl, int nelems,
497 			     enum dma_data_direction dir,
498 			     unsigned long attrs)
499 {
500 }
501 
502 static void __dummy_sync_single(struct device *dev,
503 				dma_addr_t dev_addr, size_t size,
504 				enum dma_data_direction dir)
505 {
506 }
507 
508 static void __dummy_sync_sg(struct device *dev,
509 			    struct scatterlist *sgl, int nelems,
510 			    enum dma_data_direction dir)
511 {
512 }
513 
514 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
515 {
516 	return 1;
517 }
518 
519 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
520 {
521 	return 0;
522 }
523 
524 const struct dma_map_ops dummy_dma_ops = {
525 	.alloc                  = __dummy_alloc,
526 	.free                   = __dummy_free,
527 	.mmap                   = __dummy_mmap,
528 	.map_page               = __dummy_map_page,
529 	.unmap_page             = __dummy_unmap_page,
530 	.map_sg                 = __dummy_map_sg,
531 	.unmap_sg               = __dummy_unmap_sg,
532 	.sync_single_for_cpu    = __dummy_sync_single,
533 	.sync_single_for_device = __dummy_sync_single,
534 	.sync_sg_for_cpu        = __dummy_sync_sg,
535 	.sync_sg_for_device     = __dummy_sync_sg,
536 	.mapping_error          = __dummy_mapping_error,
537 	.dma_supported          = __dummy_dma_supported,
538 };
539 EXPORT_SYMBOL(dummy_dma_ops);
540 
541 static int __init arm64_dma_init(void)
542 {
543 	if (swiotlb_force == SWIOTLB_FORCE ||
544 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
545 		swiotlb = 1;
546 
547 	return atomic_pool_init();
548 }
549 arch_initcall(arm64_dma_init);
550 
551 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
552 
553 static int __init dma_debug_do_init(void)
554 {
555 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
556 	return 0;
557 }
558 fs_initcall(dma_debug_do_init);
559 
560 
561 #ifdef CONFIG_IOMMU_DMA
562 #include <linux/dma-iommu.h>
563 #include <linux/platform_device.h>
564 #include <linux/amba/bus.h>
565 
566 /* Thankfully, all cache ops are by VA so we can ignore phys here */
567 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
568 {
569 	__dma_flush_area(virt, PAGE_SIZE);
570 }
571 
572 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
573 				 dma_addr_t *handle, gfp_t gfp,
574 				 unsigned long attrs)
575 {
576 	bool coherent = is_device_dma_coherent(dev);
577 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
578 	size_t iosize = size;
579 	void *addr;
580 
581 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
582 		return NULL;
583 
584 	size = PAGE_ALIGN(size);
585 
586 	/*
587 	 * Some drivers rely on this, and we probably don't want the
588 	 * possibility of stale kernel data being read by devices anyway.
589 	 */
590 	gfp |= __GFP_ZERO;
591 
592 	if (!gfpflags_allow_blocking(gfp)) {
593 		struct page *page;
594 		/*
595 		 * In atomic context we can't remap anything, so we'll only
596 		 * get the virtually contiguous buffer we need by way of a
597 		 * physically contiguous allocation.
598 		 */
599 		if (coherent) {
600 			page = alloc_pages(gfp, get_order(size));
601 			addr = page ? page_address(page) : NULL;
602 		} else {
603 			addr = __alloc_from_pool(size, &page, gfp);
604 		}
605 		if (!addr)
606 			return NULL;
607 
608 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
609 		if (iommu_dma_mapping_error(dev, *handle)) {
610 			if (coherent)
611 				__free_pages(page, get_order(size));
612 			else
613 				__free_from_pool(addr, size);
614 			addr = NULL;
615 		}
616 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
617 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
618 		struct page *page;
619 
620 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
621 						 get_order(size), gfp);
622 		if (!page)
623 			return NULL;
624 
625 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
626 		if (iommu_dma_mapping_error(dev, *handle)) {
627 			dma_release_from_contiguous(dev, page,
628 						    size >> PAGE_SHIFT);
629 			return NULL;
630 		}
631 		if (!coherent)
632 			__dma_flush_area(page_to_virt(page), iosize);
633 
634 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
635 						   prot,
636 						   __builtin_return_address(0));
637 		if (!addr) {
638 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
639 			dma_release_from_contiguous(dev, page,
640 						    size >> PAGE_SHIFT);
641 		}
642 	} else {
643 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
644 		struct page **pages;
645 
646 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
647 					handle, flush_page);
648 		if (!pages)
649 			return NULL;
650 
651 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
652 					      __builtin_return_address(0));
653 		if (!addr)
654 			iommu_dma_free(dev, pages, iosize, handle);
655 	}
656 	return addr;
657 }
658 
659 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
660 			       dma_addr_t handle, unsigned long attrs)
661 {
662 	size_t iosize = size;
663 
664 	size = PAGE_ALIGN(size);
665 	/*
666 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
667 	 * - A remapped array of pages for contiguous allocations.
668 	 * - A remapped array of pages from iommu_dma_alloc(), for all
669 	 *   non-atomic allocations.
670 	 * - A non-cacheable alias from the atomic pool, for atomic
671 	 *   allocations by non-coherent devices.
672 	 * - A normal lowmem address, for atomic allocations by
673 	 *   coherent devices.
674 	 * Hence how dodgy the below logic looks...
675 	 */
676 	if (__in_atomic_pool(cpu_addr, size)) {
677 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
678 		__free_from_pool(cpu_addr, size);
679 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
680 		struct page *page = vmalloc_to_page(cpu_addr);
681 
682 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
683 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
684 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
685 	} else if (is_vmalloc_addr(cpu_addr)){
686 		struct vm_struct *area = find_vm_area(cpu_addr);
687 
688 		if (WARN_ON(!area || !area->pages))
689 			return;
690 		iommu_dma_free(dev, area->pages, iosize, &handle);
691 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
692 	} else {
693 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
694 		__free_pages(virt_to_page(cpu_addr), get_order(size));
695 	}
696 }
697 
698 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
699 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
700 			      unsigned long attrs)
701 {
702 	struct vm_struct *area;
703 	int ret;
704 
705 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
706 					     is_device_dma_coherent(dev));
707 
708 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
709 		return ret;
710 
711 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
712 		/*
713 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
714 		 * hence in the vmalloc space.
715 		 */
716 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
717 		return __swiotlb_mmap_pfn(vma, pfn, size);
718 	}
719 
720 	area = find_vm_area(cpu_addr);
721 	if (WARN_ON(!area || !area->pages))
722 		return -ENXIO;
723 
724 	return iommu_dma_mmap(area->pages, size, vma);
725 }
726 
727 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
728 			       void *cpu_addr, dma_addr_t dma_addr,
729 			       size_t size, unsigned long attrs)
730 {
731 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
732 	struct vm_struct *area = find_vm_area(cpu_addr);
733 
734 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
735 		/*
736 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
737 		 * hence in the vmalloc space.
738 		 */
739 		struct page *page = vmalloc_to_page(cpu_addr);
740 		return __swiotlb_get_sgtable_page(sgt, page, size);
741 	}
742 
743 	if (WARN_ON(!area || !area->pages))
744 		return -ENXIO;
745 
746 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
747 					 GFP_KERNEL);
748 }
749 
750 static void __iommu_sync_single_for_cpu(struct device *dev,
751 					dma_addr_t dev_addr, size_t size,
752 					enum dma_data_direction dir)
753 {
754 	phys_addr_t phys;
755 
756 	if (is_device_dma_coherent(dev))
757 		return;
758 
759 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
760 	__dma_unmap_area(phys_to_virt(phys), size, dir);
761 }
762 
763 static void __iommu_sync_single_for_device(struct device *dev,
764 					   dma_addr_t dev_addr, size_t size,
765 					   enum dma_data_direction dir)
766 {
767 	phys_addr_t phys;
768 
769 	if (is_device_dma_coherent(dev))
770 		return;
771 
772 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
773 	__dma_map_area(phys_to_virt(phys), size, dir);
774 }
775 
776 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
777 				   unsigned long offset, size_t size,
778 				   enum dma_data_direction dir,
779 				   unsigned long attrs)
780 {
781 	bool coherent = is_device_dma_coherent(dev);
782 	int prot = dma_info_to_prot(dir, coherent, attrs);
783 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
784 
785 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
786 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
787 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
788 
789 	return dev_addr;
790 }
791 
792 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
793 			       size_t size, enum dma_data_direction dir,
794 			       unsigned long attrs)
795 {
796 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
797 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
798 
799 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
800 }
801 
802 static void __iommu_sync_sg_for_cpu(struct device *dev,
803 				    struct scatterlist *sgl, int nelems,
804 				    enum dma_data_direction dir)
805 {
806 	struct scatterlist *sg;
807 	int i;
808 
809 	if (is_device_dma_coherent(dev))
810 		return;
811 
812 	for_each_sg(sgl, sg, nelems, i)
813 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
814 }
815 
816 static void __iommu_sync_sg_for_device(struct device *dev,
817 				       struct scatterlist *sgl, int nelems,
818 				       enum dma_data_direction dir)
819 {
820 	struct scatterlist *sg;
821 	int i;
822 
823 	if (is_device_dma_coherent(dev))
824 		return;
825 
826 	for_each_sg(sgl, sg, nelems, i)
827 		__dma_map_area(sg_virt(sg), sg->length, dir);
828 }
829 
830 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
831 				int nelems, enum dma_data_direction dir,
832 				unsigned long attrs)
833 {
834 	bool coherent = is_device_dma_coherent(dev);
835 
836 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
837 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
838 
839 	return iommu_dma_map_sg(dev, sgl, nelems,
840 				dma_info_to_prot(dir, coherent, attrs));
841 }
842 
843 static void __iommu_unmap_sg_attrs(struct device *dev,
844 				   struct scatterlist *sgl, int nelems,
845 				   enum dma_data_direction dir,
846 				   unsigned long attrs)
847 {
848 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
849 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
850 
851 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
852 }
853 
854 static const struct dma_map_ops iommu_dma_ops = {
855 	.alloc = __iommu_alloc_attrs,
856 	.free = __iommu_free_attrs,
857 	.mmap = __iommu_mmap_attrs,
858 	.get_sgtable = __iommu_get_sgtable,
859 	.map_page = __iommu_map_page,
860 	.unmap_page = __iommu_unmap_page,
861 	.map_sg = __iommu_map_sg_attrs,
862 	.unmap_sg = __iommu_unmap_sg_attrs,
863 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
864 	.sync_single_for_device = __iommu_sync_single_for_device,
865 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
866 	.sync_sg_for_device = __iommu_sync_sg_for_device,
867 	.map_resource = iommu_dma_map_resource,
868 	.unmap_resource = iommu_dma_unmap_resource,
869 	.mapping_error = iommu_dma_mapping_error,
870 };
871 
872 static int __init __iommu_dma_init(void)
873 {
874 	return iommu_dma_init();
875 }
876 arch_initcall(__iommu_dma_init);
877 
878 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
879 				  const struct iommu_ops *ops)
880 {
881 	struct iommu_domain *domain;
882 
883 	if (!ops)
884 		return;
885 
886 	/*
887 	 * The IOMMU core code allocates the default DMA domain, which the
888 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
889 	 */
890 	domain = iommu_get_domain_for_dev(dev);
891 
892 	if (!domain)
893 		goto out_err;
894 
895 	if (domain->type == IOMMU_DOMAIN_DMA) {
896 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
897 			goto out_err;
898 
899 		dev->dma_ops = &iommu_dma_ops;
900 	}
901 
902 	return;
903 
904 out_err:
905 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
906 		 dev_name(dev));
907 }
908 
909 void arch_teardown_dma_ops(struct device *dev)
910 {
911 	dev->dma_ops = NULL;
912 }
913 
914 #else
915 
916 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
917 				  const struct iommu_ops *iommu)
918 { }
919 
920 #endif  /* CONFIG_IOMMU_DMA */
921 
922 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
923 			const struct iommu_ops *iommu, bool coherent)
924 {
925 	if (!dev->dma_ops)
926 		dev->dma_ops = &swiotlb_dma_ops;
927 
928 	dev->archdata.dma_coherent = coherent;
929 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
930 
931 #ifdef CONFIG_XEN
932 	if (xen_initial_domain()) {
933 		dev->archdata.dev_dma_ops = dev->dma_ops;
934 		dev->dma_ops = xen_dma_ops;
935 	}
936 #endif
937 }
938