xref: /openbmc/linux/arch/arm64/mm/dma-mapping.c (revision 10b62a2f)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32 
33 #include <asm/cacheflush.h>
34 
35 static int swiotlb __ro_after_init;
36 
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38 				 bool coherent)
39 {
40 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41 		return pgprot_writecombine(prot);
42 	return prot;
43 }
44 
45 static struct gen_pool *atomic_pool __ro_after_init;
46 
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49 
50 static int __init early_coherent_pool(char *p)
51 {
52 	atomic_pool_size = memparse(p, &p);
53 	return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56 
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59 	unsigned long val;
60 	void *ptr = NULL;
61 
62 	if (!atomic_pool) {
63 		WARN(1, "coherent pool not initialised!\n");
64 		return NULL;
65 	}
66 
67 	val = gen_pool_alloc(atomic_pool, size);
68 	if (val) {
69 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70 
71 		*ret_page = phys_to_page(phys);
72 		ptr = (void *)val;
73 		memset(ptr, 0, size);
74 	}
75 
76 	return ptr;
77 }
78 
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83 
84 static int __free_from_pool(void *start, size_t size)
85 {
86 	if (!__in_atomic_pool(start, size))
87 		return 0;
88 
89 	gen_pool_free(atomic_pool, (unsigned long)start, size);
90 
91 	return 1;
92 }
93 
94 static void *__dma_alloc_coherent(struct device *dev, size_t size,
95 				  dma_addr_t *dma_handle, gfp_t flags,
96 				  unsigned long attrs)
97 {
98 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
99 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
100 		flags |= GFP_DMA;
101 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
102 		struct page *page;
103 		void *addr;
104 
105 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
106 						 get_order(size), flags);
107 		if (!page)
108 			return NULL;
109 
110 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
111 		addr = page_address(page);
112 		memset(addr, 0, size);
113 		return addr;
114 	} else {
115 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
116 	}
117 }
118 
119 static void __dma_free_coherent(struct device *dev, size_t size,
120 				void *vaddr, dma_addr_t dma_handle,
121 				unsigned long attrs)
122 {
123 	bool freed;
124 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
125 
126 
127 	freed = dma_release_from_contiguous(dev,
128 					phys_to_page(paddr),
129 					size >> PAGE_SHIFT);
130 	if (!freed)
131 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
132 }
133 
134 static void *__dma_alloc(struct device *dev, size_t size,
135 			 dma_addr_t *dma_handle, gfp_t flags,
136 			 unsigned long attrs)
137 {
138 	struct page *page;
139 	void *ptr, *coherent_ptr;
140 	bool coherent = is_device_dma_coherent(dev);
141 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
142 
143 	size = PAGE_ALIGN(size);
144 
145 	if (!coherent && !gfpflags_allow_blocking(flags)) {
146 		struct page *page = NULL;
147 		void *addr = __alloc_from_pool(size, &page, flags);
148 
149 		if (addr)
150 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
151 
152 		return addr;
153 	}
154 
155 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
156 	if (!ptr)
157 		goto no_mem;
158 
159 	/* no need for non-cacheable mapping if coherent */
160 	if (coherent)
161 		return ptr;
162 
163 	/* remove any dirty cache lines on the kernel alias */
164 	__dma_flush_area(ptr, size);
165 
166 	/* create a coherent mapping */
167 	page = virt_to_page(ptr);
168 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
169 						   prot, NULL);
170 	if (!coherent_ptr)
171 		goto no_map;
172 
173 	return coherent_ptr;
174 
175 no_map:
176 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
177 no_mem:
178 	return NULL;
179 }
180 
181 static void __dma_free(struct device *dev, size_t size,
182 		       void *vaddr, dma_addr_t dma_handle,
183 		       unsigned long attrs)
184 {
185 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
186 
187 	size = PAGE_ALIGN(size);
188 
189 	if (!is_device_dma_coherent(dev)) {
190 		if (__free_from_pool(vaddr, size))
191 			return;
192 		vunmap(vaddr);
193 	}
194 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
195 }
196 
197 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
198 				     unsigned long offset, size_t size,
199 				     enum dma_data_direction dir,
200 				     unsigned long attrs)
201 {
202 	dma_addr_t dev_addr;
203 
204 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
205 	if (!is_device_dma_coherent(dev) &&
206 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
207 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
208 
209 	return dev_addr;
210 }
211 
212 
213 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
214 				 size_t size, enum dma_data_direction dir,
215 				 unsigned long attrs)
216 {
217 	if (!is_device_dma_coherent(dev) &&
218 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
219 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
220 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
221 }
222 
223 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
224 				  int nelems, enum dma_data_direction dir,
225 				  unsigned long attrs)
226 {
227 	struct scatterlist *sg;
228 	int i, ret;
229 
230 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
231 	if (!is_device_dma_coherent(dev) &&
232 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
233 		for_each_sg(sgl, sg, ret, i)
234 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
235 				       sg->length, dir);
236 
237 	return ret;
238 }
239 
240 static void __swiotlb_unmap_sg_attrs(struct device *dev,
241 				     struct scatterlist *sgl, int nelems,
242 				     enum dma_data_direction dir,
243 				     unsigned long attrs)
244 {
245 	struct scatterlist *sg;
246 	int i;
247 
248 	if (!is_device_dma_coherent(dev) &&
249 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
250 		for_each_sg(sgl, sg, nelems, i)
251 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
252 					 sg->length, dir);
253 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
254 }
255 
256 static void __swiotlb_sync_single_for_cpu(struct device *dev,
257 					  dma_addr_t dev_addr, size_t size,
258 					  enum dma_data_direction dir)
259 {
260 	if (!is_device_dma_coherent(dev))
261 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
262 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
263 }
264 
265 static void __swiotlb_sync_single_for_device(struct device *dev,
266 					     dma_addr_t dev_addr, size_t size,
267 					     enum dma_data_direction dir)
268 {
269 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
270 	if (!is_device_dma_coherent(dev))
271 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
272 }
273 
274 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
275 				      struct scatterlist *sgl, int nelems,
276 				      enum dma_data_direction dir)
277 {
278 	struct scatterlist *sg;
279 	int i;
280 
281 	if (!is_device_dma_coherent(dev))
282 		for_each_sg(sgl, sg, nelems, i)
283 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
284 					 sg->length, dir);
285 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
286 }
287 
288 static void __swiotlb_sync_sg_for_device(struct device *dev,
289 					 struct scatterlist *sgl, int nelems,
290 					 enum dma_data_direction dir)
291 {
292 	struct scatterlist *sg;
293 	int i;
294 
295 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
296 	if (!is_device_dma_coherent(dev))
297 		for_each_sg(sgl, sg, nelems, i)
298 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
299 				       sg->length, dir);
300 }
301 
302 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
303 			      unsigned long pfn, size_t size)
304 {
305 	int ret = -ENXIO;
306 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
307 					PAGE_SHIFT;
308 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
309 	unsigned long off = vma->vm_pgoff;
310 
311 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
312 		ret = remap_pfn_range(vma, vma->vm_start,
313 				      pfn + off,
314 				      vma->vm_end - vma->vm_start,
315 				      vma->vm_page_prot);
316 	}
317 
318 	return ret;
319 }
320 
321 static int __swiotlb_mmap(struct device *dev,
322 			  struct vm_area_struct *vma,
323 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
324 			  unsigned long attrs)
325 {
326 	int ret;
327 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
328 
329 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
330 					     is_device_dma_coherent(dev));
331 
332 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
333 		return ret;
334 
335 	return __swiotlb_mmap_pfn(vma, pfn, size);
336 }
337 
338 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
339 				      struct page *page, size_t size)
340 {
341 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
342 
343 	if (!ret)
344 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
345 
346 	return ret;
347 }
348 
349 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
350 				 void *cpu_addr, dma_addr_t handle, size_t size,
351 				 unsigned long attrs)
352 {
353 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
354 
355 	return __swiotlb_get_sgtable_page(sgt, page, size);
356 }
357 
358 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
359 {
360 	if (swiotlb)
361 		return swiotlb_dma_supported(hwdev, mask);
362 	return 1;
363 }
364 
365 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
366 {
367 	if (swiotlb)
368 		return swiotlb_dma_mapping_error(hwdev, addr);
369 	return 0;
370 }
371 
372 static const struct dma_map_ops swiotlb_dma_ops = {
373 	.alloc = __dma_alloc,
374 	.free = __dma_free,
375 	.mmap = __swiotlb_mmap,
376 	.get_sgtable = __swiotlb_get_sgtable,
377 	.map_page = __swiotlb_map_page,
378 	.unmap_page = __swiotlb_unmap_page,
379 	.map_sg = __swiotlb_map_sg_attrs,
380 	.unmap_sg = __swiotlb_unmap_sg_attrs,
381 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
382 	.sync_single_for_device = __swiotlb_sync_single_for_device,
383 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
384 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
385 	.dma_supported = __swiotlb_dma_supported,
386 	.mapping_error = __swiotlb_dma_mapping_error,
387 };
388 
389 static int __init atomic_pool_init(void)
390 {
391 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
392 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
393 	struct page *page;
394 	void *addr;
395 	unsigned int pool_size_order = get_order(atomic_pool_size);
396 
397 	if (dev_get_cma_area(NULL))
398 		page = dma_alloc_from_contiguous(NULL, nr_pages,
399 						 pool_size_order, GFP_KERNEL);
400 	else
401 		page = alloc_pages(GFP_DMA, pool_size_order);
402 
403 	if (page) {
404 		int ret;
405 		void *page_addr = page_address(page);
406 
407 		memset(page_addr, 0, atomic_pool_size);
408 		__dma_flush_area(page_addr, atomic_pool_size);
409 
410 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
411 		if (!atomic_pool)
412 			goto free_page;
413 
414 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
415 					VM_USERMAP, prot, atomic_pool_init);
416 
417 		if (!addr)
418 			goto destroy_genpool;
419 
420 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
421 					page_to_phys(page),
422 					atomic_pool_size, -1);
423 		if (ret)
424 			goto remove_mapping;
425 
426 		gen_pool_set_algo(atomic_pool,
427 				  gen_pool_first_fit_order_align,
428 				  NULL);
429 
430 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
431 			atomic_pool_size / 1024);
432 		return 0;
433 	}
434 	goto out;
435 
436 remove_mapping:
437 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
438 destroy_genpool:
439 	gen_pool_destroy(atomic_pool);
440 	atomic_pool = NULL;
441 free_page:
442 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
443 		__free_pages(page, pool_size_order);
444 out:
445 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
446 		atomic_pool_size / 1024);
447 	return -ENOMEM;
448 }
449 
450 /********************************************
451  * The following APIs are for dummy DMA ops *
452  ********************************************/
453 
454 static void *__dummy_alloc(struct device *dev, size_t size,
455 			   dma_addr_t *dma_handle, gfp_t flags,
456 			   unsigned long attrs)
457 {
458 	return NULL;
459 }
460 
461 static void __dummy_free(struct device *dev, size_t size,
462 			 void *vaddr, dma_addr_t dma_handle,
463 			 unsigned long attrs)
464 {
465 }
466 
467 static int __dummy_mmap(struct device *dev,
468 			struct vm_area_struct *vma,
469 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
470 			unsigned long attrs)
471 {
472 	return -ENXIO;
473 }
474 
475 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
476 				   unsigned long offset, size_t size,
477 				   enum dma_data_direction dir,
478 				   unsigned long attrs)
479 {
480 	return 0;
481 }
482 
483 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
484 			       size_t size, enum dma_data_direction dir,
485 			       unsigned long attrs)
486 {
487 }
488 
489 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
490 			  int nelems, enum dma_data_direction dir,
491 			  unsigned long attrs)
492 {
493 	return 0;
494 }
495 
496 static void __dummy_unmap_sg(struct device *dev,
497 			     struct scatterlist *sgl, int nelems,
498 			     enum dma_data_direction dir,
499 			     unsigned long attrs)
500 {
501 }
502 
503 static void __dummy_sync_single(struct device *dev,
504 				dma_addr_t dev_addr, size_t size,
505 				enum dma_data_direction dir)
506 {
507 }
508 
509 static void __dummy_sync_sg(struct device *dev,
510 			    struct scatterlist *sgl, int nelems,
511 			    enum dma_data_direction dir)
512 {
513 }
514 
515 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
516 {
517 	return 1;
518 }
519 
520 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
521 {
522 	return 0;
523 }
524 
525 const struct dma_map_ops dummy_dma_ops = {
526 	.alloc                  = __dummy_alloc,
527 	.free                   = __dummy_free,
528 	.mmap                   = __dummy_mmap,
529 	.map_page               = __dummy_map_page,
530 	.unmap_page             = __dummy_unmap_page,
531 	.map_sg                 = __dummy_map_sg,
532 	.unmap_sg               = __dummy_unmap_sg,
533 	.sync_single_for_cpu    = __dummy_sync_single,
534 	.sync_single_for_device = __dummy_sync_single,
535 	.sync_sg_for_cpu        = __dummy_sync_sg,
536 	.sync_sg_for_device     = __dummy_sync_sg,
537 	.mapping_error          = __dummy_mapping_error,
538 	.dma_supported          = __dummy_dma_supported,
539 };
540 EXPORT_SYMBOL(dummy_dma_ops);
541 
542 static int __init arm64_dma_init(void)
543 {
544 	if (swiotlb_force == SWIOTLB_FORCE ||
545 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
546 		swiotlb = 1;
547 
548 	return atomic_pool_init();
549 }
550 arch_initcall(arm64_dma_init);
551 
552 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
553 
554 static int __init dma_debug_do_init(void)
555 {
556 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
557 	return 0;
558 }
559 fs_initcall(dma_debug_do_init);
560 
561 
562 #ifdef CONFIG_IOMMU_DMA
563 #include <linux/dma-iommu.h>
564 #include <linux/platform_device.h>
565 #include <linux/amba/bus.h>
566 
567 /* Thankfully, all cache ops are by VA so we can ignore phys here */
568 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
569 {
570 	__dma_flush_area(virt, PAGE_SIZE);
571 }
572 
573 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
574 				 dma_addr_t *handle, gfp_t gfp,
575 				 unsigned long attrs)
576 {
577 	bool coherent = is_device_dma_coherent(dev);
578 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
579 	size_t iosize = size;
580 	void *addr;
581 
582 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
583 		return NULL;
584 
585 	size = PAGE_ALIGN(size);
586 
587 	/*
588 	 * Some drivers rely on this, and we probably don't want the
589 	 * possibility of stale kernel data being read by devices anyway.
590 	 */
591 	gfp |= __GFP_ZERO;
592 
593 	if (!gfpflags_allow_blocking(gfp)) {
594 		struct page *page;
595 		/*
596 		 * In atomic context we can't remap anything, so we'll only
597 		 * get the virtually contiguous buffer we need by way of a
598 		 * physically contiguous allocation.
599 		 */
600 		if (coherent) {
601 			page = alloc_pages(gfp, get_order(size));
602 			addr = page ? page_address(page) : NULL;
603 		} else {
604 			addr = __alloc_from_pool(size, &page, gfp);
605 		}
606 		if (!addr)
607 			return NULL;
608 
609 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
610 		if (iommu_dma_mapping_error(dev, *handle)) {
611 			if (coherent)
612 				__free_pages(page, get_order(size));
613 			else
614 				__free_from_pool(addr, size);
615 			addr = NULL;
616 		}
617 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
618 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
619 		struct page *page;
620 
621 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
622 						 get_order(size), gfp);
623 		if (!page)
624 			return NULL;
625 
626 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
627 		if (iommu_dma_mapping_error(dev, *handle)) {
628 			dma_release_from_contiguous(dev, page,
629 						    size >> PAGE_SHIFT);
630 			return NULL;
631 		}
632 		if (!coherent)
633 			__dma_flush_area(page_to_virt(page), iosize);
634 
635 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
636 						   prot,
637 						   __builtin_return_address(0));
638 		if (!addr) {
639 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
640 			dma_release_from_contiguous(dev, page,
641 						    size >> PAGE_SHIFT);
642 		}
643 	} else {
644 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
645 		struct page **pages;
646 
647 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
648 					handle, flush_page);
649 		if (!pages)
650 			return NULL;
651 
652 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
653 					      __builtin_return_address(0));
654 		if (!addr)
655 			iommu_dma_free(dev, pages, iosize, handle);
656 	}
657 	return addr;
658 }
659 
660 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
661 			       dma_addr_t handle, unsigned long attrs)
662 {
663 	size_t iosize = size;
664 
665 	size = PAGE_ALIGN(size);
666 	/*
667 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
668 	 * - A remapped array of pages for contiguous allocations.
669 	 * - A remapped array of pages from iommu_dma_alloc(), for all
670 	 *   non-atomic allocations.
671 	 * - A non-cacheable alias from the atomic pool, for atomic
672 	 *   allocations by non-coherent devices.
673 	 * - A normal lowmem address, for atomic allocations by
674 	 *   coherent devices.
675 	 * Hence how dodgy the below logic looks...
676 	 */
677 	if (__in_atomic_pool(cpu_addr, size)) {
678 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
679 		__free_from_pool(cpu_addr, size);
680 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
681 		struct page *page = vmalloc_to_page(cpu_addr);
682 
683 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
684 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
685 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
686 	} else if (is_vmalloc_addr(cpu_addr)){
687 		struct vm_struct *area = find_vm_area(cpu_addr);
688 
689 		if (WARN_ON(!area || !area->pages))
690 			return;
691 		iommu_dma_free(dev, area->pages, iosize, &handle);
692 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
693 	} else {
694 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
695 		__free_pages(virt_to_page(cpu_addr), get_order(size));
696 	}
697 }
698 
699 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
700 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
701 			      unsigned long attrs)
702 {
703 	struct vm_struct *area;
704 	int ret;
705 
706 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
707 					     is_device_dma_coherent(dev));
708 
709 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
710 		return ret;
711 
712 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
713 		/*
714 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
715 		 * hence in the vmalloc space.
716 		 */
717 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
718 		return __swiotlb_mmap_pfn(vma, pfn, size);
719 	}
720 
721 	area = find_vm_area(cpu_addr);
722 	if (WARN_ON(!area || !area->pages))
723 		return -ENXIO;
724 
725 	return iommu_dma_mmap(area->pages, size, vma);
726 }
727 
728 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
729 			       void *cpu_addr, dma_addr_t dma_addr,
730 			       size_t size, unsigned long attrs)
731 {
732 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
733 	struct vm_struct *area = find_vm_area(cpu_addr);
734 
735 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
736 		/*
737 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
738 		 * hence in the vmalloc space.
739 		 */
740 		struct page *page = vmalloc_to_page(cpu_addr);
741 		return __swiotlb_get_sgtable_page(sgt, page, size);
742 	}
743 
744 	if (WARN_ON(!area || !area->pages))
745 		return -ENXIO;
746 
747 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
748 					 GFP_KERNEL);
749 }
750 
751 static void __iommu_sync_single_for_cpu(struct device *dev,
752 					dma_addr_t dev_addr, size_t size,
753 					enum dma_data_direction dir)
754 {
755 	phys_addr_t phys;
756 
757 	if (is_device_dma_coherent(dev))
758 		return;
759 
760 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
761 	__dma_unmap_area(phys_to_virt(phys), size, dir);
762 }
763 
764 static void __iommu_sync_single_for_device(struct device *dev,
765 					   dma_addr_t dev_addr, size_t size,
766 					   enum dma_data_direction dir)
767 {
768 	phys_addr_t phys;
769 
770 	if (is_device_dma_coherent(dev))
771 		return;
772 
773 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
774 	__dma_map_area(phys_to_virt(phys), size, dir);
775 }
776 
777 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
778 				   unsigned long offset, size_t size,
779 				   enum dma_data_direction dir,
780 				   unsigned long attrs)
781 {
782 	bool coherent = is_device_dma_coherent(dev);
783 	int prot = dma_info_to_prot(dir, coherent, attrs);
784 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
785 
786 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
787 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
788 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
789 
790 	return dev_addr;
791 }
792 
793 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
794 			       size_t size, enum dma_data_direction dir,
795 			       unsigned long attrs)
796 {
797 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
798 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
799 
800 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
801 }
802 
803 static void __iommu_sync_sg_for_cpu(struct device *dev,
804 				    struct scatterlist *sgl, int nelems,
805 				    enum dma_data_direction dir)
806 {
807 	struct scatterlist *sg;
808 	int i;
809 
810 	if (is_device_dma_coherent(dev))
811 		return;
812 
813 	for_each_sg(sgl, sg, nelems, i)
814 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
815 }
816 
817 static void __iommu_sync_sg_for_device(struct device *dev,
818 				       struct scatterlist *sgl, int nelems,
819 				       enum dma_data_direction dir)
820 {
821 	struct scatterlist *sg;
822 	int i;
823 
824 	if (is_device_dma_coherent(dev))
825 		return;
826 
827 	for_each_sg(sgl, sg, nelems, i)
828 		__dma_map_area(sg_virt(sg), sg->length, dir);
829 }
830 
831 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
832 				int nelems, enum dma_data_direction dir,
833 				unsigned long attrs)
834 {
835 	bool coherent = is_device_dma_coherent(dev);
836 
837 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
838 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
839 
840 	return iommu_dma_map_sg(dev, sgl, nelems,
841 				dma_info_to_prot(dir, coherent, attrs));
842 }
843 
844 static void __iommu_unmap_sg_attrs(struct device *dev,
845 				   struct scatterlist *sgl, int nelems,
846 				   enum dma_data_direction dir,
847 				   unsigned long attrs)
848 {
849 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
850 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
851 
852 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
853 }
854 
855 static const struct dma_map_ops iommu_dma_ops = {
856 	.alloc = __iommu_alloc_attrs,
857 	.free = __iommu_free_attrs,
858 	.mmap = __iommu_mmap_attrs,
859 	.get_sgtable = __iommu_get_sgtable,
860 	.map_page = __iommu_map_page,
861 	.unmap_page = __iommu_unmap_page,
862 	.map_sg = __iommu_map_sg_attrs,
863 	.unmap_sg = __iommu_unmap_sg_attrs,
864 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
865 	.sync_single_for_device = __iommu_sync_single_for_device,
866 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
867 	.sync_sg_for_device = __iommu_sync_sg_for_device,
868 	.map_resource = iommu_dma_map_resource,
869 	.unmap_resource = iommu_dma_unmap_resource,
870 	.mapping_error = iommu_dma_mapping_error,
871 };
872 
873 static int __init __iommu_dma_init(void)
874 {
875 	return iommu_dma_init();
876 }
877 arch_initcall(__iommu_dma_init);
878 
879 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
880 				  const struct iommu_ops *ops)
881 {
882 	struct iommu_domain *domain;
883 
884 	if (!ops)
885 		return;
886 
887 	/*
888 	 * The IOMMU core code allocates the default DMA domain, which the
889 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
890 	 */
891 	domain = iommu_get_domain_for_dev(dev);
892 
893 	if (!domain)
894 		goto out_err;
895 
896 	if (domain->type == IOMMU_DOMAIN_DMA) {
897 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
898 			goto out_err;
899 
900 		dev->dma_ops = &iommu_dma_ops;
901 	}
902 
903 	return;
904 
905 out_err:
906 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
907 		 dev_name(dev));
908 }
909 
910 void arch_teardown_dma_ops(struct device *dev)
911 {
912 	dev->dma_ops = NULL;
913 }
914 
915 #else
916 
917 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
918 				  const struct iommu_ops *iommu)
919 { }
920 
921 #endif  /* CONFIG_IOMMU_DMA */
922 
923 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
924 			const struct iommu_ops *iommu, bool coherent)
925 {
926 	if (!dev->dma_ops)
927 		dev->dma_ops = &swiotlb_dma_ops;
928 
929 	dev->archdata.dma_coherent = coherent;
930 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
931 
932 #ifdef CONFIG_XEN
933 	if (xen_initial_domain()) {
934 		dev->archdata.dev_dma_ops = dev->dma_ops;
935 		dev->dma_ops = xen_dma_ops;
936 	}
937 #endif
938 }
939