xref: /openbmc/linux/arch/arm64/mm/context.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/context.c
4  *
5  * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/bitops.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 
15 #include <asm/cpufeature.h>
16 #include <asm/mmu_context.h>
17 #include <asm/smp.h>
18 #include <asm/tlbflush.h>
19 
20 static u32 asid_bits;
21 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
22 
23 static atomic64_t asid_generation;
24 static unsigned long *asid_map;
25 
26 static DEFINE_PER_CPU(atomic64_t, active_asids);
27 static DEFINE_PER_CPU(u64, reserved_asids);
28 static cpumask_t tlb_flush_pending;
29 
30 static unsigned long max_pinned_asids;
31 static unsigned long nr_pinned_asids;
32 static unsigned long *pinned_asid_map;
33 
34 #define ASID_MASK		(~GENMASK(asid_bits - 1, 0))
35 #define ASID_FIRST_VERSION	(1UL << asid_bits)
36 
37 #define NUM_USER_ASIDS		ASID_FIRST_VERSION
38 #define ctxid2asid(asid)	((asid) & ~ASID_MASK)
39 #define asid2ctxid(asid, genid)	((asid) | (genid))
40 
41 /* Get the ASIDBits supported by the current CPU */
42 static u32 get_cpu_asid_bits(void)
43 {
44 	u32 asid;
45 	int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
46 						ID_AA64MMFR0_EL1_ASIDBITS_SHIFT);
47 
48 	switch (fld) {
49 	default:
50 		pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
51 					smp_processor_id(),  fld);
52 		fallthrough;
53 	case ID_AA64MMFR0_EL1_ASIDBITS_8:
54 		asid = 8;
55 		break;
56 	case ID_AA64MMFR0_EL1_ASIDBITS_16:
57 		asid = 16;
58 	}
59 
60 	return asid;
61 }
62 
63 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
64 void verify_cpu_asid_bits(void)
65 {
66 	u32 asid = get_cpu_asid_bits();
67 
68 	if (asid < asid_bits) {
69 		/*
70 		 * We cannot decrease the ASID size at runtime, so panic if we support
71 		 * fewer ASID bits than the boot CPU.
72 		 */
73 		pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
74 				smp_processor_id(), asid, asid_bits);
75 		cpu_panic_kernel();
76 	}
77 }
78 
79 static void set_kpti_asid_bits(unsigned long *map)
80 {
81 	unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
82 	/*
83 	 * In case of KPTI kernel/user ASIDs are allocated in
84 	 * pairs, the bottom bit distinguishes the two: if it
85 	 * is set, then the ASID will map only userspace. Thus
86 	 * mark even as reserved for kernel.
87 	 */
88 	memset(map, 0xaa, len);
89 }
90 
91 static void set_reserved_asid_bits(void)
92 {
93 	if (pinned_asid_map)
94 		bitmap_copy(asid_map, pinned_asid_map, NUM_USER_ASIDS);
95 	else if (arm64_kernel_unmapped_at_el0())
96 		set_kpti_asid_bits(asid_map);
97 	else
98 		bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
99 }
100 
101 #define asid_gen_match(asid) \
102 	(!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits))
103 
104 static void flush_context(void)
105 {
106 	int i;
107 	u64 asid;
108 
109 	/* Update the list of reserved ASIDs and the ASID bitmap. */
110 	set_reserved_asid_bits();
111 
112 	for_each_possible_cpu(i) {
113 		asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
114 		/*
115 		 * If this CPU has already been through a
116 		 * rollover, but hasn't run another task in
117 		 * the meantime, we must preserve its reserved
118 		 * ASID, as this is the only trace we have of
119 		 * the process it is still running.
120 		 */
121 		if (asid == 0)
122 			asid = per_cpu(reserved_asids, i);
123 		__set_bit(ctxid2asid(asid), asid_map);
124 		per_cpu(reserved_asids, i) = asid;
125 	}
126 
127 	/*
128 	 * Queue a TLB invalidation for each CPU to perform on next
129 	 * context-switch
130 	 */
131 	cpumask_setall(&tlb_flush_pending);
132 }
133 
134 static bool check_update_reserved_asid(u64 asid, u64 newasid)
135 {
136 	int cpu;
137 	bool hit = false;
138 
139 	/*
140 	 * Iterate over the set of reserved ASIDs looking for a match.
141 	 * If we find one, then we can update our mm to use newasid
142 	 * (i.e. the same ASID in the current generation) but we can't
143 	 * exit the loop early, since we need to ensure that all copies
144 	 * of the old ASID are updated to reflect the mm. Failure to do
145 	 * so could result in us missing the reserved ASID in a future
146 	 * generation.
147 	 */
148 	for_each_possible_cpu(cpu) {
149 		if (per_cpu(reserved_asids, cpu) == asid) {
150 			hit = true;
151 			per_cpu(reserved_asids, cpu) = newasid;
152 		}
153 	}
154 
155 	return hit;
156 }
157 
158 static u64 new_context(struct mm_struct *mm)
159 {
160 	static u32 cur_idx = 1;
161 	u64 asid = atomic64_read(&mm->context.id);
162 	u64 generation = atomic64_read(&asid_generation);
163 
164 	if (asid != 0) {
165 		u64 newasid = asid2ctxid(ctxid2asid(asid), generation);
166 
167 		/*
168 		 * If our current ASID was active during a rollover, we
169 		 * can continue to use it and this was just a false alarm.
170 		 */
171 		if (check_update_reserved_asid(asid, newasid))
172 			return newasid;
173 
174 		/*
175 		 * If it is pinned, we can keep using it. Note that reserved
176 		 * takes priority, because even if it is also pinned, we need to
177 		 * update the generation into the reserved_asids.
178 		 */
179 		if (refcount_read(&mm->context.pinned))
180 			return newasid;
181 
182 		/*
183 		 * We had a valid ASID in a previous life, so try to re-use
184 		 * it if possible.
185 		 */
186 		if (!__test_and_set_bit(ctxid2asid(asid), asid_map))
187 			return newasid;
188 	}
189 
190 	/*
191 	 * Allocate a free ASID. If we can't find one, take a note of the
192 	 * currently active ASIDs and mark the TLBs as requiring flushes.  We
193 	 * always count from ASID #2 (index 1), as we use ASID #0 when setting
194 	 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
195 	 * pairs.
196 	 */
197 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
198 	if (asid != NUM_USER_ASIDS)
199 		goto set_asid;
200 
201 	/* We're out of ASIDs, so increment the global generation count */
202 	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
203 						 &asid_generation);
204 	flush_context();
205 
206 	/* We have more ASIDs than CPUs, so this will always succeed */
207 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
208 
209 set_asid:
210 	__set_bit(asid, asid_map);
211 	cur_idx = asid;
212 	return asid2ctxid(asid, generation);
213 }
214 
215 void check_and_switch_context(struct mm_struct *mm)
216 {
217 	unsigned long flags;
218 	unsigned int cpu;
219 	u64 asid, old_active_asid;
220 
221 	if (system_supports_cnp())
222 		cpu_set_reserved_ttbr0();
223 
224 	asid = atomic64_read(&mm->context.id);
225 
226 	/*
227 	 * The memory ordering here is subtle.
228 	 * If our active_asids is non-zero and the ASID matches the current
229 	 * generation, then we update the active_asids entry with a relaxed
230 	 * cmpxchg. Racing with a concurrent rollover means that either:
231 	 *
232 	 * - We get a zero back from the cmpxchg and end up waiting on the
233 	 *   lock. Taking the lock synchronises with the rollover and so
234 	 *   we are forced to see the updated generation.
235 	 *
236 	 * - We get a valid ASID back from the cmpxchg, which means the
237 	 *   relaxed xchg in flush_context will treat us as reserved
238 	 *   because atomic RmWs are totally ordered for a given location.
239 	 */
240 	old_active_asid = atomic64_read(this_cpu_ptr(&active_asids));
241 	if (old_active_asid && asid_gen_match(asid) &&
242 	    atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids),
243 				     old_active_asid, asid))
244 		goto switch_mm_fastpath;
245 
246 	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
247 	/* Check that our ASID belongs to the current generation. */
248 	asid = atomic64_read(&mm->context.id);
249 	if (!asid_gen_match(asid)) {
250 		asid = new_context(mm);
251 		atomic64_set(&mm->context.id, asid);
252 	}
253 
254 	cpu = smp_processor_id();
255 	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
256 		local_flush_tlb_all();
257 
258 	atomic64_set(this_cpu_ptr(&active_asids), asid);
259 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
260 
261 switch_mm_fastpath:
262 
263 	arm64_apply_bp_hardening();
264 
265 	/*
266 	 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
267 	 * emulating PAN.
268 	 */
269 	if (!system_uses_ttbr0_pan())
270 		cpu_switch_mm(mm->pgd, mm);
271 }
272 
273 unsigned long arm64_mm_context_get(struct mm_struct *mm)
274 {
275 	unsigned long flags;
276 	u64 asid;
277 
278 	if (!pinned_asid_map)
279 		return 0;
280 
281 	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
282 
283 	asid = atomic64_read(&mm->context.id);
284 
285 	if (refcount_inc_not_zero(&mm->context.pinned))
286 		goto out_unlock;
287 
288 	if (nr_pinned_asids >= max_pinned_asids) {
289 		asid = 0;
290 		goto out_unlock;
291 	}
292 
293 	if (!asid_gen_match(asid)) {
294 		/*
295 		 * We went through one or more rollover since that ASID was
296 		 * used. Ensure that it is still valid, or generate a new one.
297 		 */
298 		asid = new_context(mm);
299 		atomic64_set(&mm->context.id, asid);
300 	}
301 
302 	nr_pinned_asids++;
303 	__set_bit(ctxid2asid(asid), pinned_asid_map);
304 	refcount_set(&mm->context.pinned, 1);
305 
306 out_unlock:
307 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
308 
309 	asid = ctxid2asid(asid);
310 
311 	/* Set the equivalent of USER_ASID_BIT */
312 	if (asid && arm64_kernel_unmapped_at_el0())
313 		asid |= 1;
314 
315 	return asid;
316 }
317 EXPORT_SYMBOL_GPL(arm64_mm_context_get);
318 
319 void arm64_mm_context_put(struct mm_struct *mm)
320 {
321 	unsigned long flags;
322 	u64 asid = atomic64_read(&mm->context.id);
323 
324 	if (!pinned_asid_map)
325 		return;
326 
327 	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
328 
329 	if (refcount_dec_and_test(&mm->context.pinned)) {
330 		__clear_bit(ctxid2asid(asid), pinned_asid_map);
331 		nr_pinned_asids--;
332 	}
333 
334 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
335 }
336 EXPORT_SYMBOL_GPL(arm64_mm_context_put);
337 
338 /* Errata workaround post TTBRx_EL1 update. */
339 asmlinkage void post_ttbr_update_workaround(void)
340 {
341 	if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456))
342 		return;
343 
344 	asm(ALTERNATIVE("nop; nop; nop",
345 			"ic iallu; dsb nsh; isb",
346 			ARM64_WORKAROUND_CAVIUM_27456));
347 }
348 
349 void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
350 {
351 	unsigned long ttbr1 = read_sysreg(ttbr1_el1);
352 	unsigned long asid = ASID(mm);
353 	unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
354 
355 	/* Skip CNP for the reserved ASID */
356 	if (system_supports_cnp() && asid)
357 		ttbr0 |= TTBR_CNP_BIT;
358 
359 	/* SW PAN needs a copy of the ASID in TTBR0 for entry */
360 	if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
361 		ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
362 
363 	/* Set ASID in TTBR1 since TCR.A1 is set */
364 	ttbr1 &= ~TTBR_ASID_MASK;
365 	ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
366 
367 	write_sysreg(ttbr1, ttbr1_el1);
368 	isb();
369 	write_sysreg(ttbr0, ttbr0_el1);
370 	isb();
371 	post_ttbr_update_workaround();
372 }
373 
374 static int asids_update_limit(void)
375 {
376 	unsigned long num_available_asids = NUM_USER_ASIDS;
377 
378 	if (arm64_kernel_unmapped_at_el0()) {
379 		num_available_asids /= 2;
380 		if (pinned_asid_map)
381 			set_kpti_asid_bits(pinned_asid_map);
382 	}
383 	/*
384 	 * Expect allocation after rollover to fail if we don't have at least
385 	 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
386 	 */
387 	WARN_ON(num_available_asids - 1 <= num_possible_cpus());
388 	pr_info("ASID allocator initialised with %lu entries\n",
389 		num_available_asids);
390 
391 	/*
392 	 * There must always be an ASID available after rollover. Ensure that,
393 	 * even if all CPUs have a reserved ASID and the maximum number of ASIDs
394 	 * are pinned, there still is at least one empty slot in the ASID map.
395 	 */
396 	max_pinned_asids = num_available_asids - num_possible_cpus() - 2;
397 	return 0;
398 }
399 arch_initcall(asids_update_limit);
400 
401 static int asids_init(void)
402 {
403 	asid_bits = get_cpu_asid_bits();
404 	atomic64_set(&asid_generation, ASID_FIRST_VERSION);
405 	asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
406 	if (!asid_map)
407 		panic("Failed to allocate bitmap for %lu ASIDs\n",
408 		      NUM_USER_ASIDS);
409 
410 	pinned_asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
411 	nr_pinned_asids = 0;
412 
413 	/*
414 	 * We cannot call set_reserved_asid_bits() here because CPU
415 	 * caps are not finalized yet, so it is safer to assume KPTI
416 	 * and reserve kernel ASID's from beginning.
417 	 */
418 	if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
419 		set_kpti_asid_bits(asid_map);
420 	return 0;
421 }
422 early_initcall(asids_init);
423