xref: /openbmc/linux/arch/arm64/mm/context.c (revision 2c684d89)
1 /*
2  * Based on arch/arm/mm/context.c
3  *
4  * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bitops.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/mm.h>
24 
25 #include <asm/cpufeature.h>
26 #include <asm/mmu_context.h>
27 #include <asm/tlbflush.h>
28 
29 static u32 asid_bits;
30 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
31 
32 static atomic64_t asid_generation;
33 static unsigned long *asid_map;
34 
35 static DEFINE_PER_CPU(atomic64_t, active_asids);
36 static DEFINE_PER_CPU(u64, reserved_asids);
37 static cpumask_t tlb_flush_pending;
38 
39 #define ASID_MASK		(~GENMASK(asid_bits - 1, 0))
40 #define ASID_FIRST_VERSION	(1UL << asid_bits)
41 #define NUM_USER_ASIDS		ASID_FIRST_VERSION
42 
43 static void flush_context(unsigned int cpu)
44 {
45 	int i;
46 	u64 asid;
47 
48 	/* Update the list of reserved ASIDs and the ASID bitmap. */
49 	bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
50 
51 	/*
52 	 * Ensure the generation bump is observed before we xchg the
53 	 * active_asids.
54 	 */
55 	smp_wmb();
56 
57 	for_each_possible_cpu(i) {
58 		asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
59 		/*
60 		 * If this CPU has already been through a
61 		 * rollover, but hasn't run another task in
62 		 * the meantime, we must preserve its reserved
63 		 * ASID, as this is the only trace we have of
64 		 * the process it is still running.
65 		 */
66 		if (asid == 0)
67 			asid = per_cpu(reserved_asids, i);
68 		__set_bit(asid & ~ASID_MASK, asid_map);
69 		per_cpu(reserved_asids, i) = asid;
70 	}
71 
72 	/* Queue a TLB invalidate and flush the I-cache if necessary. */
73 	cpumask_setall(&tlb_flush_pending);
74 
75 	if (icache_is_aivivt())
76 		__flush_icache_all();
77 }
78 
79 static bool check_update_reserved_asid(u64 asid, u64 newasid)
80 {
81 	int cpu;
82 	bool hit = false;
83 
84 	/*
85 	 * Iterate over the set of reserved ASIDs looking for a match.
86 	 * If we find one, then we can update our mm to use newasid
87 	 * (i.e. the same ASID in the current generation) but we can't
88 	 * exit the loop early, since we need to ensure that all copies
89 	 * of the old ASID are updated to reflect the mm. Failure to do
90 	 * so could result in us missing the reserved ASID in a future
91 	 * generation.
92 	 */
93 	for_each_possible_cpu(cpu) {
94 		if (per_cpu(reserved_asids, cpu) == asid) {
95 			hit = true;
96 			per_cpu(reserved_asids, cpu) = newasid;
97 		}
98 	}
99 
100 	return hit;
101 }
102 
103 static u64 new_context(struct mm_struct *mm, unsigned int cpu)
104 {
105 	static u32 cur_idx = 1;
106 	u64 asid = atomic64_read(&mm->context.id);
107 	u64 generation = atomic64_read(&asid_generation);
108 
109 	if (asid != 0) {
110 		u64 newasid = generation | (asid & ~ASID_MASK);
111 
112 		/*
113 		 * If our current ASID was active during a rollover, we
114 		 * can continue to use it and this was just a false alarm.
115 		 */
116 		if (check_update_reserved_asid(asid, newasid))
117 			return newasid;
118 
119 		/*
120 		 * We had a valid ASID in a previous life, so try to re-use
121 		 * it if possible.
122 		 */
123 		asid &= ~ASID_MASK;
124 		if (!__test_and_set_bit(asid, asid_map))
125 			return newasid;
126 	}
127 
128 	/*
129 	 * Allocate a free ASID. If we can't find one, take a note of the
130 	 * currently active ASIDs and mark the TLBs as requiring flushes.
131 	 * We always count from ASID #1, as we use ASID #0 when setting a
132 	 * reserved TTBR0 for the init_mm.
133 	 */
134 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
135 	if (asid != NUM_USER_ASIDS)
136 		goto set_asid;
137 
138 	/* We're out of ASIDs, so increment the global generation count */
139 	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
140 						 &asid_generation);
141 	flush_context(cpu);
142 
143 	/* We have at least 1 ASID per CPU, so this will always succeed */
144 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
145 
146 set_asid:
147 	__set_bit(asid, asid_map);
148 	cur_idx = asid;
149 	return asid | generation;
150 }
151 
152 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
153 {
154 	unsigned long flags;
155 	u64 asid;
156 
157 	asid = atomic64_read(&mm->context.id);
158 
159 	/*
160 	 * The memory ordering here is subtle. We rely on the control
161 	 * dependency between the generation read and the update of
162 	 * active_asids to ensure that we are synchronised with a
163 	 * parallel rollover (i.e. this pairs with the smp_wmb() in
164 	 * flush_context).
165 	 */
166 	if (!((asid ^ atomic64_read(&asid_generation)) >> asid_bits)
167 	    && atomic64_xchg_relaxed(&per_cpu(active_asids, cpu), asid))
168 		goto switch_mm_fastpath;
169 
170 	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
171 	/* Check that our ASID belongs to the current generation. */
172 	asid = atomic64_read(&mm->context.id);
173 	if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
174 		asid = new_context(mm, cpu);
175 		atomic64_set(&mm->context.id, asid);
176 	}
177 
178 	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
179 		local_flush_tlb_all();
180 
181 	atomic64_set(&per_cpu(active_asids, cpu), asid);
182 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
183 
184 switch_mm_fastpath:
185 	cpu_switch_mm(mm->pgd, mm);
186 }
187 
188 static int asids_init(void)
189 {
190 	int fld = cpuid_feature_extract_field(read_cpuid(ID_AA64MMFR0_EL1), 4);
191 
192 	switch (fld) {
193 	default:
194 		pr_warn("Unknown ASID size (%d); assuming 8-bit\n", fld);
195 		/* Fallthrough */
196 	case 0:
197 		asid_bits = 8;
198 		break;
199 	case 2:
200 		asid_bits = 16;
201 	}
202 
203 	/* If we end up with more CPUs than ASIDs, expect things to crash */
204 	WARN_ON(NUM_USER_ASIDS < num_possible_cpus());
205 	atomic64_set(&asid_generation, ASID_FIRST_VERSION);
206 	asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map),
207 			   GFP_KERNEL);
208 	if (!asid_map)
209 		panic("Failed to allocate bitmap for %lu ASIDs\n",
210 		      NUM_USER_ASIDS);
211 
212 	pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
213 	return 0;
214 }
215 early_initcall(asids_init);
216