xref: /openbmc/linux/arch/arm64/mm/cache.S (revision 867a0e05)
1/*
2 * Cache maintenance
3 *
4 * Copyright (C) 2001 Deep Blue Solutions Ltd.
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/errno.h>
21#include <linux/linkage.h>
22#include <linux/init.h>
23#include <asm/assembler.h>
24#include <asm/cpufeature.h>
25#include <asm/alternative-asm.h>
26
27#include "proc-macros.S"
28
29/*
30 *	__flush_dcache_all()
31 *
32 *	Flush the whole D-cache.
33 *
34 *	Corrupted registers: x0-x7, x9-x11
35 */
36__flush_dcache_all:
37	dmb	sy				// ensure ordering with previous memory accesses
38	mrs	x0, clidr_el1			// read clidr
39	and	x3, x0, #0x7000000		// extract loc from clidr
40	lsr	x3, x3, #23			// left align loc bit field
41	cbz	x3, finished			// if loc is 0, then no need to clean
42	mov	x10, #0				// start clean at cache level 0
43loop1:
44	add	x2, x10, x10, lsr #1		// work out 3x current cache level
45	lsr	x1, x0, x2			// extract cache type bits from clidr
46	and	x1, x1, #7			// mask of the bits for current cache only
47	cmp	x1, #2				// see what cache we have at this level
48	b.lt	skip				// skip if no cache, or just i-cache
49	save_and_disable_irqs x9		// make CSSELR and CCSIDR access atomic
50	msr	csselr_el1, x10			// select current cache level in csselr
51	isb					// isb to sych the new cssr&csidr
52	mrs	x1, ccsidr_el1			// read the new ccsidr
53	restore_irqs x9
54	and	x2, x1, #7			// extract the length of the cache lines
55	add	x2, x2, #4			// add 4 (line length offset)
56	mov	x4, #0x3ff
57	and	x4, x4, x1, lsr #3		// find maximum number on the way size
58	clz	w5, w4				// find bit position of way size increment
59	mov	x7, #0x7fff
60	and	x7, x7, x1, lsr #13		// extract max number of the index size
61loop2:
62	mov	x9, x4				// create working copy of max way size
63loop3:
64	lsl	x6, x9, x5
65	orr	x11, x10, x6			// factor way and cache number into x11
66	lsl	x6, x7, x2
67	orr	x11, x11, x6			// factor index number into x11
68	dc	cisw, x11			// clean & invalidate by set/way
69	subs	x9, x9, #1			// decrement the way
70	b.ge	loop3
71	subs	x7, x7, #1			// decrement the index
72	b.ge	loop2
73skip:
74	add	x10, x10, #2			// increment cache number
75	cmp	x3, x10
76	b.gt	loop1
77finished:
78	mov	x10, #0				// swith back to cache level 0
79	msr	csselr_el1, x10			// select current cache level in csselr
80	dsb	sy
81	isb
82	ret
83ENDPROC(__flush_dcache_all)
84
85/*
86 *	flush_cache_all()
87 *
88 *	Flush the entire cache system.  The data cache flush is now achieved
89 *	using atomic clean / invalidates working outwards from L1 cache. This
90 *	is done using Set/Way based cache maintainance instructions.  The
91 *	instruction cache can still be invalidated back to the point of
92 *	unification in a single instruction.
93 */
94ENTRY(flush_cache_all)
95	mov	x12, lr
96	bl	__flush_dcache_all
97	mov	x0, #0
98	ic	ialluis				// I+BTB cache invalidate
99	ret	x12
100ENDPROC(flush_cache_all)
101
102/*
103 *	flush_icache_range(start,end)
104 *
105 *	Ensure that the I and D caches are coherent within specified region.
106 *	This is typically used when code has been written to a memory region,
107 *	and will be executed.
108 *
109 *	- start   - virtual start address of region
110 *	- end     - virtual end address of region
111 */
112ENTRY(flush_icache_range)
113	/* FALLTHROUGH */
114
115/*
116 *	__flush_cache_user_range(start,end)
117 *
118 *	Ensure that the I and D caches are coherent within specified region.
119 *	This is typically used when code has been written to a memory region,
120 *	and will be executed.
121 *
122 *	- start   - virtual start address of region
123 *	- end     - virtual end address of region
124 */
125ENTRY(__flush_cache_user_range)
126	dcache_line_size x2, x3
127	sub	x3, x2, #1
128	bic	x4, x0, x3
1291:
130USER(9f, dc	cvau, x4	)		// clean D line to PoU
131	add	x4, x4, x2
132	cmp	x4, x1
133	b.lo	1b
134	dsb	ish
135
136	icache_line_size x2, x3
137	sub	x3, x2, #1
138	bic	x4, x0, x3
1391:
140USER(9f, ic	ivau, x4	)		// invalidate I line PoU
141	add	x4, x4, x2
142	cmp	x4, x1
143	b.lo	1b
144	dsb	ish
145	isb
146	mov	x0, #0
147	ret
1489:
149	mov	x0, #-EFAULT
150	ret
151ENDPROC(flush_icache_range)
152ENDPROC(__flush_cache_user_range)
153
154/*
155 *	__flush_dcache_area(kaddr, size)
156 *
157 *	Ensure that the data held in the page kaddr is written back to the
158 *	page in question.
159 *
160 *	- kaddr   - kernel address
161 *	- size    - size in question
162 */
163ENTRY(__flush_dcache_area)
164	dcache_line_size x2, x3
165	add	x1, x0, x1
166	sub	x3, x2, #1
167	bic	x0, x0, x3
1681:	dc	civac, x0			// clean & invalidate D line / unified line
169	add	x0, x0, x2
170	cmp	x0, x1
171	b.lo	1b
172	dsb	sy
173	ret
174ENDPROC(__flush_dcache_area)
175
176/*
177 *	__inval_cache_range(start, end)
178 *	- start   - start address of region
179 *	- end     - end address of region
180 */
181ENTRY(__inval_cache_range)
182	/* FALLTHROUGH */
183
184/*
185 *	__dma_inv_range(start, end)
186 *	- start   - virtual start address of region
187 *	- end     - virtual end address of region
188 */
189__dma_inv_range:
190	dcache_line_size x2, x3
191	sub	x3, x2, #1
192	tst	x1, x3				// end cache line aligned?
193	bic	x1, x1, x3
194	b.eq	1f
195	dc	civac, x1			// clean & invalidate D / U line
1961:	tst	x0, x3				// start cache line aligned?
197	bic	x0, x0, x3
198	b.eq	2f
199	dc	civac, x0			// clean & invalidate D / U line
200	b	3f
2012:	dc	ivac, x0			// invalidate D / U line
2023:	add	x0, x0, x2
203	cmp	x0, x1
204	b.lo	2b
205	dsb	sy
206	ret
207ENDPROC(__inval_cache_range)
208ENDPROC(__dma_inv_range)
209
210/*
211 *	__dma_clean_range(start, end)
212 *	- start   - virtual start address of region
213 *	- end     - virtual end address of region
214 */
215__dma_clean_range:
216	dcache_line_size x2, x3
217	sub	x3, x2, #1
218	bic	x0, x0, x3
2191:	alternative_insn "dc cvac, x0", "dc civac, x0", ARM64_WORKAROUND_CLEAN_CACHE
220	add	x0, x0, x2
221	cmp	x0, x1
222	b.lo	1b
223	dsb	sy
224	ret
225ENDPROC(__dma_clean_range)
226
227/*
228 *	__dma_flush_range(start, end)
229 *	- start   - virtual start address of region
230 *	- end     - virtual end address of region
231 */
232ENTRY(__dma_flush_range)
233	dcache_line_size x2, x3
234	sub	x3, x2, #1
235	bic	x0, x0, x3
2361:	dc	civac, x0			// clean & invalidate D / U line
237	add	x0, x0, x2
238	cmp	x0, x1
239	b.lo	1b
240	dsb	sy
241	ret
242ENDPROC(__dma_flush_range)
243
244/*
245 *	__dma_map_area(start, size, dir)
246 *	- start	- kernel virtual start address
247 *	- size	- size of region
248 *	- dir	- DMA direction
249 */
250ENTRY(__dma_map_area)
251	add	x1, x1, x0
252	cmp	w2, #DMA_FROM_DEVICE
253	b.eq	__dma_inv_range
254	b	__dma_clean_range
255ENDPROC(__dma_map_area)
256
257/*
258 *	__dma_unmap_area(start, size, dir)
259 *	- start	- kernel virtual start address
260 *	- size	- size of region
261 *	- dir	- DMA direction
262 */
263ENTRY(__dma_unmap_area)
264	add	x1, x1, x0
265	cmp	w2, #DMA_TO_DEVICE
266	b.ne	__dma_inv_range
267	ret
268ENDPROC(__dma_unmap_area)
269