1/* 2 * Copyright (C) 2013 ARM Ltd. 3 * Copyright (C) 2013 Linaro. 4 * 5 * This code is based on glibc cortex strings work originally authored by Linaro 6 * and re-licensed under GPLv2 for the Linux kernel. The original code can 7 * be found @ 8 * 9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ 10 * files/head:/src/aarch64/ 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program. If not, see <http://www.gnu.org/licenses/>. 23 */ 24 25#include <linux/linkage.h> 26#include <asm/assembler.h> 27 28/* 29 * determine the length of a fixed-size string 30 * 31 * Parameters: 32 * x0 - const string pointer 33 * x1 - maximal string length 34 * Returns: 35 * x0 - the return length of specific string 36 */ 37 38/* Arguments and results. */ 39srcin .req x0 40len .req x0 41limit .req x1 42 43/* Locals and temporaries. */ 44src .req x2 45data1 .req x3 46data2 .req x4 47data2a .req x5 48has_nul1 .req x6 49has_nul2 .req x7 50tmp1 .req x8 51tmp2 .req x9 52tmp3 .req x10 53tmp4 .req x11 54zeroones .req x12 55pos .req x13 56limit_wd .req x14 57 58#define REP8_01 0x0101010101010101 59#define REP8_7f 0x7f7f7f7f7f7f7f7f 60#define REP8_80 0x8080808080808080 61 62WEAK(strnlen) 63 cbz limit, .Lhit_limit 64 mov zeroones, #REP8_01 65 bic src, srcin, #15 66 ands tmp1, srcin, #15 67 b.ne .Lmisaligned 68 /* Calculate the number of full and partial words -1. */ 69 sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */ 70 lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */ 71 72 /* 73 * NUL detection works on the principle that (X - 1) & (~X) & 0x80 74 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and 75 * can be done in parallel across the entire word. 76 */ 77 /* 78 * The inner loop deals with two Dwords at a time. This has a 79 * slightly higher start-up cost, but we should win quite quickly, 80 * especially on cores with a high number of issue slots per 81 * cycle, as we get much better parallelism out of the operations. 82 */ 83.Lloop: 84 ldp data1, data2, [src], #16 85.Lrealigned: 86 sub tmp1, data1, zeroones 87 orr tmp2, data1, #REP8_7f 88 sub tmp3, data2, zeroones 89 orr tmp4, data2, #REP8_7f 90 bic has_nul1, tmp1, tmp2 91 bic has_nul2, tmp3, tmp4 92 subs limit_wd, limit_wd, #1 93 orr tmp1, has_nul1, has_nul2 94 ccmp tmp1, #0, #0, pl /* NZCV = 0000 */ 95 b.eq .Lloop 96 97 cbz tmp1, .Lhit_limit /* No null in final Qword. */ 98 99 /* 100 * We know there's a null in the final Qword. The easiest thing 101 * to do now is work out the length of the string and return 102 * MIN (len, limit). 103 */ 104 sub len, src, srcin 105 cbz has_nul1, .Lnul_in_data2 106CPU_BE( mov data2, data1 ) /*perpare data to re-calculate the syndrome*/ 107 108 sub len, len, #8 109 mov has_nul2, has_nul1 110.Lnul_in_data2: 111 /* 112 * For big-endian, carry propagation (if the final byte in the 113 * string is 0x01) means we cannot use has_nul directly. The 114 * easiest way to get the correct byte is to byte-swap the data 115 * and calculate the syndrome a second time. 116 */ 117CPU_BE( rev data2, data2 ) 118CPU_BE( sub tmp1, data2, zeroones ) 119CPU_BE( orr tmp2, data2, #REP8_7f ) 120CPU_BE( bic has_nul2, tmp1, tmp2 ) 121 122 sub len, len, #8 123 rev has_nul2, has_nul2 124 clz pos, has_nul2 125 add len, len, pos, lsr #3 /* Bits to bytes. */ 126 cmp len, limit 127 csel len, len, limit, ls /* Return the lower value. */ 128 ret 129 130.Lmisaligned: 131 /* 132 * Deal with a partial first word. 133 * We're doing two things in parallel here; 134 * 1) Calculate the number of words (but avoiding overflow if 135 * limit is near ULONG_MAX) - to do this we need to work out 136 * limit + tmp1 - 1 as a 65-bit value before shifting it; 137 * 2) Load and mask the initial data words - we force the bytes 138 * before the ones we are interested in to 0xff - this ensures 139 * early bytes will not hit any zero detection. 140 */ 141 ldp data1, data2, [src], #16 142 143 sub limit_wd, limit, #1 144 and tmp3, limit_wd, #15 145 lsr limit_wd, limit_wd, #4 146 147 add tmp3, tmp3, tmp1 148 add limit_wd, limit_wd, tmp3, lsr #4 149 150 neg tmp4, tmp1 151 lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */ 152 153 mov tmp2, #~0 154 /* Big-endian. Early bytes are at MSB. */ 155CPU_BE( lsl tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */ 156 /* Little-endian. Early bytes are at LSB. */ 157CPU_LE( lsr tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */ 158 159 cmp tmp1, #8 160 161 orr data1, data1, tmp2 162 orr data2a, data2, tmp2 163 164 csinv data1, data1, xzr, le 165 csel data2, data2, data2a, le 166 b .Lrealigned 167 168.Lhit_limit: 169 mov len, limit 170 ret 171ENDPIPROC(strnlen) 172