1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2013 ARM Ltd. 4 * Copyright (C) 2013 Linaro. 5 * 6 * This code is based on glibc cortex strings work originally authored by Linaro 7 * be found @ 8 * 9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ 10 * files/head:/src/aarch64/ 11 */ 12 13#include <linux/linkage.h> 14#include <asm/assembler.h> 15 16/* 17 * compare two strings 18 * 19 * Parameters: 20 * x0 - const string 1 pointer 21 * x1 - const string 2 pointer 22 * x2 - the maximal length to be compared 23 * Returns: 24 * x0 - an integer less than, equal to, or greater than zero if s1 is found, 25 * respectively, to be less than, to match, or be greater than s2. 26 */ 27 28#define REP8_01 0x0101010101010101 29#define REP8_7f 0x7f7f7f7f7f7f7f7f 30#define REP8_80 0x8080808080808080 31 32/* Parameters and result. */ 33src1 .req x0 34src2 .req x1 35limit .req x2 36result .req x0 37 38/* Internal variables. */ 39data1 .req x3 40data1w .req w3 41data2 .req x4 42data2w .req w4 43has_nul .req x5 44diff .req x6 45syndrome .req x7 46tmp1 .req x8 47tmp2 .req x9 48tmp3 .req x10 49zeroones .req x11 50pos .req x12 51limit_wd .req x13 52mask .req x14 53endloop .req x15 54 55SYM_FUNC_START_WEAK_PI(strncmp) 56 cbz limit, .Lret0 57 eor tmp1, src1, src2 58 mov zeroones, #REP8_01 59 tst tmp1, #7 60 b.ne .Lmisaligned8 61 ands tmp1, src1, #7 62 b.ne .Lmutual_align 63 /* Calculate the number of full and partial words -1. */ 64 /* 65 * when limit is mulitply of 8, if not sub 1, 66 * the judgement of last dword will wrong. 67 */ 68 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ 69 lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */ 70 71 /* 72 * NUL detection works on the principle that (X - 1) & (~X) & 0x80 73 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and 74 * can be done in parallel across the entire word. 75 */ 76.Lloop_aligned: 77 ldr data1, [src1], #8 78 ldr data2, [src2], #8 79.Lstart_realigned: 80 subs limit_wd, limit_wd, #1 81 sub tmp1, data1, zeroones 82 orr tmp2, data1, #REP8_7f 83 eor diff, data1, data2 /* Non-zero if differences found. */ 84 csinv endloop, diff, xzr, pl /* Last Dword or differences.*/ 85 bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ 86 ccmp endloop, #0, #0, eq 87 b.eq .Lloop_aligned 88 89 /*Not reached the limit, must have found the end or a diff. */ 90 tbz limit_wd, #63, .Lnot_limit 91 92 /* Limit % 8 == 0 => all bytes significant. */ 93 ands limit, limit, #7 94 b.eq .Lnot_limit 95 96 lsl limit, limit, #3 /* Bits -> bytes. */ 97 mov mask, #~0 98CPU_BE( lsr mask, mask, limit ) 99CPU_LE( lsl mask, mask, limit ) 100 bic data1, data1, mask 101 bic data2, data2, mask 102 103 /* Make sure that the NUL byte is marked in the syndrome. */ 104 orr has_nul, has_nul, mask 105 106.Lnot_limit: 107 orr syndrome, diff, has_nul 108 b .Lcal_cmpresult 109 110.Lmutual_align: 111 /* 112 * Sources are mutually aligned, but are not currently at an 113 * alignment boundary. Round down the addresses and then mask off 114 * the bytes that precede the start point. 115 * We also need to adjust the limit calculations, but without 116 * overflowing if the limit is near ULONG_MAX. 117 */ 118 bic src1, src1, #7 119 bic src2, src2, #7 120 ldr data1, [src1], #8 121 neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */ 122 ldr data2, [src2], #8 123 mov tmp2, #~0 124 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ 125 /* Big-endian. Early bytes are at MSB. */ 126CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ 127 /* Little-endian. Early bytes are at LSB. */ 128CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ 129 130 and tmp3, limit_wd, #7 131 lsr limit_wd, limit_wd, #3 132 /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/ 133 add limit, limit, tmp1 134 add tmp3, tmp3, tmp1 135 orr data1, data1, tmp2 136 orr data2, data2, tmp2 137 add limit_wd, limit_wd, tmp3, lsr #3 138 b .Lstart_realigned 139 140/*when src1 offset is not equal to src2 offset...*/ 141.Lmisaligned8: 142 cmp limit, #8 143 b.lo .Ltiny8proc /*limit < 8... */ 144 /* 145 * Get the align offset length to compare per byte first. 146 * After this process, one string's address will be aligned.*/ 147 and tmp1, src1, #7 148 neg tmp1, tmp1 149 add tmp1, tmp1, #8 150 and tmp2, src2, #7 151 neg tmp2, tmp2 152 add tmp2, tmp2, #8 153 subs tmp3, tmp1, tmp2 154 csel pos, tmp1, tmp2, hi /*Choose the maximum. */ 155 /* 156 * Here, limit is not less than 8, so directly run .Ltinycmp 157 * without checking the limit.*/ 158 sub limit, limit, pos 159.Ltinycmp: 160 ldrb data1w, [src1], #1 161 ldrb data2w, [src2], #1 162 subs pos, pos, #1 163 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ 164 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ 165 b.eq .Ltinycmp 166 cbnz pos, 1f /*find the null or unequal...*/ 167 cmp data1w, #1 168 ccmp data1w, data2w, #0, cs 169 b.eq .Lstart_align /*the last bytes are equal....*/ 1701: 171 sub result, data1, data2 172 ret 173 174.Lstart_align: 175 lsr limit_wd, limit, #3 176 cbz limit_wd, .Lremain8 177 /*process more leading bytes to make str1 aligned...*/ 178 ands xzr, src1, #7 179 b.eq .Lrecal_offset 180 add src1, src1, tmp3 /*tmp3 is positive in this branch.*/ 181 add src2, src2, tmp3 182 ldr data1, [src1], #8 183 ldr data2, [src2], #8 184 185 sub limit, limit, tmp3 186 lsr limit_wd, limit, #3 187 subs limit_wd, limit_wd, #1 188 189 sub tmp1, data1, zeroones 190 orr tmp2, data1, #REP8_7f 191 eor diff, data1, data2 /* Non-zero if differences found. */ 192 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ 193 bics has_nul, tmp1, tmp2 194 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ 195 b.ne .Lunequal_proc 196 /*How far is the current str2 from the alignment boundary...*/ 197 and tmp3, tmp3, #7 198.Lrecal_offset: 199 neg pos, tmp3 200.Lloopcmp_proc: 201 /* 202 * Divide the eight bytes into two parts. First,backwards the src2 203 * to an alignment boundary,load eight bytes from the SRC2 alignment 204 * boundary,then compare with the relative bytes from SRC1. 205 * If all 8 bytes are equal,then start the second part's comparison. 206 * Otherwise finish the comparison. 207 * This special handle can garantee all the accesses are in the 208 * thread/task space in avoid to overrange access. 209 */ 210 ldr data1, [src1,pos] 211 ldr data2, [src2,pos] 212 sub tmp1, data1, zeroones 213 orr tmp2, data1, #REP8_7f 214 bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ 215 eor diff, data1, data2 /* Non-zero if differences found. */ 216 csinv endloop, diff, xzr, eq 217 cbnz endloop, .Lunequal_proc 218 219 /*The second part process*/ 220 ldr data1, [src1], #8 221 ldr data2, [src2], #8 222 subs limit_wd, limit_wd, #1 223 sub tmp1, data1, zeroones 224 orr tmp2, data1, #REP8_7f 225 eor diff, data1, data2 /* Non-zero if differences found. */ 226 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ 227 bics has_nul, tmp1, tmp2 228 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ 229 b.eq .Lloopcmp_proc 230 231.Lunequal_proc: 232 orr syndrome, diff, has_nul 233 cbz syndrome, .Lremain8 234.Lcal_cmpresult: 235 /* 236 * reversed the byte-order as big-endian,then CLZ can find the most 237 * significant zero bits. 238 */ 239CPU_LE( rev syndrome, syndrome ) 240CPU_LE( rev data1, data1 ) 241CPU_LE( rev data2, data2 ) 242 /* 243 * For big-endian we cannot use the trick with the syndrome value 244 * as carry-propagation can corrupt the upper bits if the trailing 245 * bytes in the string contain 0x01. 246 * However, if there is no NUL byte in the dword, we can generate 247 * the result directly. We can't just subtract the bytes as the 248 * MSB might be significant. 249 */ 250CPU_BE( cbnz has_nul, 1f ) 251CPU_BE( cmp data1, data2 ) 252CPU_BE( cset result, ne ) 253CPU_BE( cneg result, result, lo ) 254CPU_BE( ret ) 255CPU_BE( 1: ) 256 /* Re-compute the NUL-byte detection, using a byte-reversed value.*/ 257CPU_BE( rev tmp3, data1 ) 258CPU_BE( sub tmp1, tmp3, zeroones ) 259CPU_BE( orr tmp2, tmp3, #REP8_7f ) 260CPU_BE( bic has_nul, tmp1, tmp2 ) 261CPU_BE( rev has_nul, has_nul ) 262CPU_BE( orr syndrome, diff, has_nul ) 263 /* 264 * The MS-non-zero bit of the syndrome marks either the first bit 265 * that is different, or the top bit of the first zero byte. 266 * Shifting left now will bring the critical information into the 267 * top bits. 268 */ 269 clz pos, syndrome 270 lsl data1, data1, pos 271 lsl data2, data2, pos 272 /* 273 * But we need to zero-extend (char is unsigned) the value and then 274 * perform a signed 32-bit subtraction. 275 */ 276 lsr data1, data1, #56 277 sub result, data1, data2, lsr #56 278 ret 279 280.Lremain8: 281 /* Limit % 8 == 0 => all bytes significant. */ 282 ands limit, limit, #7 283 b.eq .Lret0 284.Ltiny8proc: 285 ldrb data1w, [src1], #1 286 ldrb data2w, [src2], #1 287 subs limit, limit, #1 288 289 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ 290 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ 291 b.eq .Ltiny8proc 292 sub result, data1, data2 293 ret 294 295.Lret0: 296 mov result, #0 297 ret 298SYM_FUNC_END_PI(strncmp) 299EXPORT_SYMBOL_NOKASAN(strncmp) 300