xref: /openbmc/linux/arch/arm64/lib/strcmp.S (revision 788b041a)
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2013 ARM Ltd.
4 * Copyright (C) 2013 Linaro.
5 *
6 * This code is based on glibc cortex strings work originally authored by Linaro
7 * be found @
8 *
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
11 */
12
13#include <linux/linkage.h>
14#include <asm/assembler.h>
15
16/*
17 * compare two strings
18 *
19 * Parameters:
20 *	x0 - const string 1 pointer
21 *    x1 - const string 2 pointer
22 * Returns:
23 * x0 - an integer less than, equal to, or greater than zero
24 * if  s1  is  found, respectively, to be less than, to match,
25 * or be greater than s2.
26 */
27
28#define REP8_01 0x0101010101010101
29#define REP8_7f 0x7f7f7f7f7f7f7f7f
30#define REP8_80 0x8080808080808080
31
32/* Parameters and result.  */
33src1		.req	x0
34src2		.req	x1
35result		.req	x0
36
37/* Internal variables.  */
38data1		.req	x2
39data1w		.req	w2
40data2		.req	x3
41data2w		.req	w3
42has_nul		.req	x4
43diff		.req	x5
44syndrome	.req	x6
45tmp1		.req	x7
46tmp2		.req	x8
47tmp3		.req	x9
48zeroones	.req	x10
49pos		.req	x11
50
51SYM_FUNC_START_WEAK_PI(strcmp)
52	eor	tmp1, src1, src2
53	mov	zeroones, #REP8_01
54	tst	tmp1, #7
55	b.ne	.Lmisaligned8
56	ands	tmp1, src1, #7
57	b.ne	.Lmutual_align
58
59	/*
60	* NUL detection works on the principle that (X - 1) & (~X) & 0x80
61	* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
62	* can be done in parallel across the entire word.
63	*/
64.Lloop_aligned:
65	ldr	data1, [src1], #8
66	ldr	data2, [src2], #8
67.Lstart_realigned:
68	sub	tmp1, data1, zeroones
69	orr	tmp2, data1, #REP8_7f
70	eor	diff, data1, data2	/* Non-zero if differences found.  */
71	bic	has_nul, tmp1, tmp2	/* Non-zero if NUL terminator.  */
72	orr	syndrome, diff, has_nul
73	cbz	syndrome, .Lloop_aligned
74	b	.Lcal_cmpresult
75
76.Lmutual_align:
77	/*
78	* Sources are mutually aligned, but are not currently at an
79	* alignment boundary.  Round down the addresses and then mask off
80	* the bytes that preceed the start point.
81	*/
82	bic	src1, src1, #7
83	bic	src2, src2, #7
84	lsl	tmp1, tmp1, #3		/* Bytes beyond alignment -> bits.  */
85	ldr	data1, [src1], #8
86	neg	tmp1, tmp1		/* Bits to alignment -64.  */
87	ldr	data2, [src2], #8
88	mov	tmp2, #~0
89	/* Big-endian.  Early bytes are at MSB.  */
90CPU_BE( lsl	tmp2, tmp2, tmp1 )	/* Shift (tmp1 & 63).  */
91	/* Little-endian.  Early bytes are at LSB.  */
92CPU_LE( lsr	tmp2, tmp2, tmp1 )	/* Shift (tmp1 & 63).  */
93
94	orr	data1, data1, tmp2
95	orr	data2, data2, tmp2
96	b	.Lstart_realigned
97
98.Lmisaligned8:
99	/*
100	* Get the align offset length to compare per byte first.
101	* After this process, one string's address will be aligned.
102	*/
103	and	tmp1, src1, #7
104	neg	tmp1, tmp1
105	add	tmp1, tmp1, #8
106	and	tmp2, src2, #7
107	neg	tmp2, tmp2
108	add	tmp2, tmp2, #8
109	subs	tmp3, tmp1, tmp2
110	csel	pos, tmp1, tmp2, hi /*Choose the maximum. */
111.Ltinycmp:
112	ldrb	data1w, [src1], #1
113	ldrb	data2w, [src2], #1
114	subs	pos, pos, #1
115	ccmp	data1w, #1, #0, ne  /* NZCV = 0b0000.  */
116	ccmp	data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
117	b.eq	.Ltinycmp
118	cbnz	pos, 1f /*find the null or unequal...*/
119	cmp	data1w, #1
120	ccmp	data1w, data2w, #0, cs
121	b.eq	.Lstart_align /*the last bytes are equal....*/
1221:
123	sub	result, data1, data2
124	ret
125
126.Lstart_align:
127	ands	xzr, src1, #7
128	b.eq	.Lrecal_offset
129	/*process more leading bytes to make str1 aligned...*/
130	add	src1, src1, tmp3
131	add	src2, src2, tmp3
132	/*load 8 bytes from aligned str1 and non-aligned str2..*/
133	ldr	data1, [src1], #8
134	ldr	data2, [src2], #8
135
136	sub	tmp1, data1, zeroones
137	orr	tmp2, data1, #REP8_7f
138	bic	has_nul, tmp1, tmp2
139	eor	diff, data1, data2 /* Non-zero if differences found.  */
140	orr	syndrome, diff, has_nul
141	cbnz	syndrome, .Lcal_cmpresult
142	/*How far is the current str2 from the alignment boundary...*/
143	and	tmp3, tmp3, #7
144.Lrecal_offset:
145	neg	pos, tmp3
146.Lloopcmp_proc:
147	/*
148	* Divide the eight bytes into two parts. First,backwards the src2
149	* to an alignment boundary,load eight bytes from the SRC2 alignment
150	* boundary,then compare with the relative bytes from SRC1.
151	* If all 8 bytes are equal,then start the second part's comparison.
152	* Otherwise finish the comparison.
153	* This special handle can garantee all the accesses are in the
154	* thread/task space in avoid to overrange access.
155	*/
156	ldr	data1, [src1,pos]
157	ldr	data2, [src2,pos]
158	sub	tmp1, data1, zeroones
159	orr	tmp2, data1, #REP8_7f
160	bic	has_nul, tmp1, tmp2
161	eor	diff, data1, data2  /* Non-zero if differences found.  */
162	orr	syndrome, diff, has_nul
163	cbnz	syndrome, .Lcal_cmpresult
164
165	/*The second part process*/
166	ldr	data1, [src1], #8
167	ldr	data2, [src2], #8
168	sub	tmp1, data1, zeroones
169	orr	tmp2, data1, #REP8_7f
170	bic	has_nul, tmp1, tmp2
171	eor	diff, data1, data2  /* Non-zero if differences found.  */
172	orr	syndrome, diff, has_nul
173	cbz	syndrome, .Lloopcmp_proc
174
175.Lcal_cmpresult:
176	/*
177	* reversed the byte-order as big-endian,then CLZ can find the most
178	* significant zero bits.
179	*/
180CPU_LE( rev	syndrome, syndrome )
181CPU_LE( rev	data1, data1 )
182CPU_LE( rev	data2, data2 )
183
184	/*
185	* For big-endian we cannot use the trick with the syndrome value
186	* as carry-propagation can corrupt the upper bits if the trailing
187	* bytes in the string contain 0x01.
188	* However, if there is no NUL byte in the dword, we can generate
189	* the result directly.  We ca not just subtract the bytes as the
190	* MSB might be significant.
191	*/
192CPU_BE( cbnz	has_nul, 1f )
193CPU_BE( cmp	data1, data2 )
194CPU_BE( cset	result, ne )
195CPU_BE( cneg	result, result, lo )
196CPU_BE( ret )
197CPU_BE( 1: )
198	/*Re-compute the NUL-byte detection, using a byte-reversed value. */
199CPU_BE(	rev	tmp3, data1 )
200CPU_BE(	sub	tmp1, tmp3, zeroones )
201CPU_BE(	orr	tmp2, tmp3, #REP8_7f )
202CPU_BE(	bic	has_nul, tmp1, tmp2 )
203CPU_BE(	rev	has_nul, has_nul )
204CPU_BE(	orr	syndrome, diff, has_nul )
205
206	clz	pos, syndrome
207	/*
208	* The MS-non-zero bit of the syndrome marks either the first bit
209	* that is different, or the top bit of the first zero byte.
210	* Shifting left now will bring the critical information into the
211	* top bits.
212	*/
213	lsl	data1, data1, pos
214	lsl	data2, data2, pos
215	/*
216	* But we need to zero-extend (char is unsigned) the value and then
217	* perform a signed 32-bit subtraction.
218	*/
219	lsr	data1, data1, #56
220	sub	result, data1, data2, lsr #56
221	ret
222SYM_FUNC_END_PI(strcmp)
223EXPORT_SYMBOL_NOKASAN(strcmp)
224