xref: /openbmc/linux/arch/arm64/lib/strcmp.S (revision 323dd2c3)
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2013 ARM Ltd.
4 * Copyright (C) 2013 Linaro.
5 *
6 * This code is based on glibc cortex strings work originally authored by Linaro
7 * be found @
8 *
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
11 */
12
13#include <linux/linkage.h>
14#include <asm/assembler.h>
15
16/*
17 * compare two strings
18 *
19 * Parameters:
20 *	x0 - const string 1 pointer
21 *    x1 - const string 2 pointer
22 * Returns:
23 * x0 - an integer less than, equal to, or greater than zero
24 * if  s1  is  found, respectively, to be less than, to match,
25 * or be greater than s2.
26 */
27
28#define REP8_01 0x0101010101010101
29#define REP8_7f 0x7f7f7f7f7f7f7f7f
30#define REP8_80 0x8080808080808080
31
32/* Parameters and result.  */
33src1		.req	x0
34src2		.req	x1
35result		.req	x0
36
37/* Internal variables.  */
38data1		.req	x2
39data1w		.req	w2
40data2		.req	x3
41data2w		.req	w3
42has_nul		.req	x4
43diff		.req	x5
44syndrome	.req	x6
45tmp1		.req	x7
46tmp2		.req	x8
47tmp3		.req	x9
48zeroones	.req	x10
49pos		.req	x11
50
51WEAK(strcmp)
52	eor	tmp1, src1, src2
53	mov	zeroones, #REP8_01
54	tst	tmp1, #7
55	b.ne	.Lmisaligned8
56	ands	tmp1, src1, #7
57	b.ne	.Lmutual_align
58
59	/*
60	* NUL detection works on the principle that (X - 1) & (~X) & 0x80
61	* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
62	* can be done in parallel across the entire word.
63	*/
64.Lloop_aligned:
65	ldr	data1, [src1], #8
66	ldr	data2, [src2], #8
67.Lstart_realigned:
68	sub	tmp1, data1, zeroones
69	orr	tmp2, data1, #REP8_7f
70	eor	diff, data1, data2	/* Non-zero if differences found.  */
71	bic	has_nul, tmp1, tmp2	/* Non-zero if NUL terminator.  */
72	orr	syndrome, diff, has_nul
73	cbz	syndrome, .Lloop_aligned
74	b	.Lcal_cmpresult
75
76.Lmutual_align:
77	/*
78	* Sources are mutually aligned, but are not currently at an
79	* alignment boundary.  Round down the addresses and then mask off
80	* the bytes that preceed the start point.
81	*/
82	bic	src1, src1, #7
83	bic	src2, src2, #7
84	lsl	tmp1, tmp1, #3		/* Bytes beyond alignment -> bits.  */
85	ldr	data1, [src1], #8
86	neg	tmp1, tmp1		/* Bits to alignment -64.  */
87	ldr	data2, [src2], #8
88	mov	tmp2, #~0
89	/* Big-endian.  Early bytes are at MSB.  */
90CPU_BE( lsl	tmp2, tmp2, tmp1 )	/* Shift (tmp1 & 63).  */
91	/* Little-endian.  Early bytes are at LSB.  */
92CPU_LE( lsr	tmp2, tmp2, tmp1 )	/* Shift (tmp1 & 63).  */
93
94	orr	data1, data1, tmp2
95	orr	data2, data2, tmp2
96	b	.Lstart_realigned
97
98.Lmisaligned8:
99	/*
100	* Get the align offset length to compare per byte first.
101	* After this process, one string's address will be aligned.
102	*/
103	and	tmp1, src1, #7
104	neg	tmp1, tmp1
105	add	tmp1, tmp1, #8
106	and	tmp2, src2, #7
107	neg	tmp2, tmp2
108	add	tmp2, tmp2, #8
109	subs	tmp3, tmp1, tmp2
110	csel	pos, tmp1, tmp2, hi /*Choose the maximum. */
111.Ltinycmp:
112	ldrb	data1w, [src1], #1
113	ldrb	data2w, [src2], #1
114	subs	pos, pos, #1
115	ccmp	data1w, #1, #0, ne  /* NZCV = 0b0000.  */
116	ccmp	data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
117	b.eq	.Ltinycmp
118	cbnz	pos, 1f /*find the null or unequal...*/
119	cmp	data1w, #1
120	ccmp	data1w, data2w, #0, cs
121	b.eq	.Lstart_align /*the last bytes are equal....*/
1221:
123	sub	result, data1, data2
124	ret
125
126.Lstart_align:
127	ands	xzr, src1, #7
128	b.eq	.Lrecal_offset
129	/*process more leading bytes to make str1 aligned...*/
130	add	src1, src1, tmp3
131	add	src2, src2, tmp3
132	/*load 8 bytes from aligned str1 and non-aligned str2..*/
133	ldr	data1, [src1], #8
134	ldr	data2, [src2], #8
135
136	sub	tmp1, data1, zeroones
137	orr	tmp2, data1, #REP8_7f
138	bic	has_nul, tmp1, tmp2
139	eor	diff, data1, data2 /* Non-zero if differences found.  */
140	orr	syndrome, diff, has_nul
141	cbnz	syndrome, .Lcal_cmpresult
142	/*How far is the current str2 from the alignment boundary...*/
143	and	tmp3, tmp3, #7
144.Lrecal_offset:
145	neg	pos, tmp3
146.Lloopcmp_proc:
147	/*
148	* Divide the eight bytes into two parts. First,backwards the src2
149	* to an alignment boundary,load eight bytes from the SRC2 alignment
150	* boundary,then compare with the relative bytes from SRC1.
151	* If all 8 bytes are equal,then start the second part's comparison.
152	* Otherwise finish the comparison.
153	* This special handle can garantee all the accesses are in the
154	* thread/task space in avoid to overrange access.
155	*/
156	ldr	data1, [src1,pos]
157	ldr	data2, [src2,pos]
158	sub	tmp1, data1, zeroones
159	orr	tmp2, data1, #REP8_7f
160	bic	has_nul, tmp1, tmp2
161	eor	diff, data1, data2  /* Non-zero if differences found.  */
162	orr	syndrome, diff, has_nul
163	cbnz	syndrome, .Lcal_cmpresult
164
165	/*The second part process*/
166	ldr	data1, [src1], #8
167	ldr	data2, [src2], #8
168	sub	tmp1, data1, zeroones
169	orr	tmp2, data1, #REP8_7f
170	bic	has_nul, tmp1, tmp2
171	eor	diff, data1, data2  /* Non-zero if differences found.  */
172	orr	syndrome, diff, has_nul
173	cbz	syndrome, .Lloopcmp_proc
174
175.Lcal_cmpresult:
176	/*
177	* reversed the byte-order as big-endian,then CLZ can find the most
178	* significant zero bits.
179	*/
180CPU_LE( rev	syndrome, syndrome )
181CPU_LE( rev	data1, data1 )
182CPU_LE( rev	data2, data2 )
183
184	/*
185	* For big-endian we cannot use the trick with the syndrome value
186	* as carry-propagation can corrupt the upper bits if the trailing
187	* bytes in the string contain 0x01.
188	* However, if there is no NUL byte in the dword, we can generate
189	* the result directly.  We ca not just subtract the bytes as the
190	* MSB might be significant.
191	*/
192CPU_BE( cbnz	has_nul, 1f )
193CPU_BE( cmp	data1, data2 )
194CPU_BE( cset	result, ne )
195CPU_BE( cneg	result, result, lo )
196CPU_BE( ret )
197CPU_BE( 1: )
198	/*Re-compute the NUL-byte detection, using a byte-reversed value. */
199CPU_BE(	rev	tmp3, data1 )
200CPU_BE(	sub	tmp1, tmp3, zeroones )
201CPU_BE(	orr	tmp2, tmp3, #REP8_7f )
202CPU_BE(	bic	has_nul, tmp1, tmp2 )
203CPU_BE(	rev	has_nul, has_nul )
204CPU_BE(	orr	syndrome, diff, has_nul )
205
206	clz	pos, syndrome
207	/*
208	* The MS-non-zero bit of the syndrome marks either the first bit
209	* that is different, or the top bit of the first zero byte.
210	* Shifting left now will bring the critical information into the
211	* top bits.
212	*/
213	lsl	data1, data1, pos
214	lsl	data2, data2, pos
215	/*
216	* But we need to zero-extend (char is unsigned) the value and then
217	* perform a signed 32-bit subtraction.
218	*/
219	lsr	data1, data1, #56
220	sub	result, data1, data2, lsr #56
221	ret
222ENDPIPROC(strcmp)
223EXPORT_SYMBOL_NOKASAN(strcmp)
224