xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic.c (revision f3956ebb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/kvm_hyp.h>
14 
15 #include "vgic.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19 
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 	.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23 
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   its->cmd_lock (mutex)
28  *     its->its_lock (mutex)
29  *       vgic_cpu->ap_list_lock		must be taken with IRQs disabled
30  *         kvm->lpi_list_lock		must be taken with IRQs disabled
31  *           vgic_irq->irq_lock		must be taken with IRQs disabled
32  *
33  * As the ap_list_lock might be taken from the timer interrupt handler,
34  * we have to disable IRQs before taking this lock and everything lower
35  * than it.
36  *
37  * If you need to take multiple locks, always take the upper lock first,
38  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
39  * If you are already holding a lock and need to take a higher one, you
40  * have to drop the lower ranking lock first and re-aquire it after having
41  * taken the upper one.
42  *
43  * When taking more than one ap_list_lock at the same time, always take the
44  * lowest numbered VCPU's ap_list_lock first, so:
45  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
46  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
47  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
48  *
49  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
50  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
51  * spinlocks for any lock that may be taken while injecting an interrupt.
52  */
53 
54 /*
55  * Iterate over the VM's list of mapped LPIs to find the one with a
56  * matching interrupt ID and return a reference to the IRQ structure.
57  */
58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
59 {
60 	struct vgic_dist *dist = &kvm->arch.vgic;
61 	struct vgic_irq *irq = NULL;
62 	unsigned long flags;
63 
64 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
65 
66 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
67 		if (irq->intid != intid)
68 			continue;
69 
70 		/*
71 		 * This increases the refcount, the caller is expected to
72 		 * call vgic_put_irq() later once it's finished with the IRQ.
73 		 */
74 		vgic_get_irq_kref(irq);
75 		goto out_unlock;
76 	}
77 	irq = NULL;
78 
79 out_unlock:
80 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
81 
82 	return irq;
83 }
84 
85 /*
86  * This looks up the virtual interrupt ID to get the corresponding
87  * struct vgic_irq. It also increases the refcount, so any caller is expected
88  * to call vgic_put_irq() once it's finished with this IRQ.
89  */
90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
91 			      u32 intid)
92 {
93 	/* SGIs and PPIs */
94 	if (intid <= VGIC_MAX_PRIVATE) {
95 		intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
96 		return &vcpu->arch.vgic_cpu.private_irqs[intid];
97 	}
98 
99 	/* SPIs */
100 	if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
101 		intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
102 		return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
103 	}
104 
105 	/* LPIs */
106 	if (intid >= VGIC_MIN_LPI)
107 		return vgic_get_lpi(kvm, intid);
108 
109 	return NULL;
110 }
111 
112 /*
113  * We can't do anything in here, because we lack the kvm pointer to
114  * lock and remove the item from the lpi_list. So we keep this function
115  * empty and use the return value of kref_put() to trigger the freeing.
116  */
117 static void vgic_irq_release(struct kref *ref)
118 {
119 }
120 
121 /*
122  * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
123  */
124 void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
125 {
126 	struct vgic_dist *dist = &kvm->arch.vgic;
127 
128 	if (!kref_put(&irq->refcount, vgic_irq_release))
129 		return;
130 
131 	list_del(&irq->lpi_list);
132 	dist->lpi_list_count--;
133 
134 	kfree(irq);
135 }
136 
137 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
138 {
139 	struct vgic_dist *dist = &kvm->arch.vgic;
140 	unsigned long flags;
141 
142 	if (irq->intid < VGIC_MIN_LPI)
143 		return;
144 
145 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
146 	__vgic_put_lpi_locked(kvm, irq);
147 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
148 }
149 
150 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
151 {
152 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
153 	struct vgic_irq *irq, *tmp;
154 	unsigned long flags;
155 
156 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
157 
158 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
159 		if (irq->intid >= VGIC_MIN_LPI) {
160 			raw_spin_lock(&irq->irq_lock);
161 			list_del(&irq->ap_list);
162 			irq->vcpu = NULL;
163 			raw_spin_unlock(&irq->irq_lock);
164 			vgic_put_irq(vcpu->kvm, irq);
165 		}
166 	}
167 
168 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
169 }
170 
171 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
172 {
173 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
174 				      IRQCHIP_STATE_PENDING,
175 				      pending));
176 }
177 
178 bool vgic_get_phys_line_level(struct vgic_irq *irq)
179 {
180 	bool line_level;
181 
182 	BUG_ON(!irq->hw);
183 
184 	if (irq->ops && irq->ops->get_input_level)
185 		return irq->ops->get_input_level(irq->intid);
186 
187 	WARN_ON(irq_get_irqchip_state(irq->host_irq,
188 				      IRQCHIP_STATE_PENDING,
189 				      &line_level));
190 	return line_level;
191 }
192 
193 /* Set/Clear the physical active state */
194 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
195 {
196 
197 	BUG_ON(!irq->hw);
198 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
199 				      IRQCHIP_STATE_ACTIVE,
200 				      active));
201 }
202 
203 /**
204  * kvm_vgic_target_oracle - compute the target vcpu for an irq
205  *
206  * @irq:	The irq to route. Must be already locked.
207  *
208  * Based on the current state of the interrupt (enabled, pending,
209  * active, vcpu and target_vcpu), compute the next vcpu this should be
210  * given to. Return NULL if this shouldn't be injected at all.
211  *
212  * Requires the IRQ lock to be held.
213  */
214 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
215 {
216 	lockdep_assert_held(&irq->irq_lock);
217 
218 	/* If the interrupt is active, it must stay on the current vcpu */
219 	if (irq->active)
220 		return irq->vcpu ? : irq->target_vcpu;
221 
222 	/*
223 	 * If the IRQ is not active but enabled and pending, we should direct
224 	 * it to its configured target VCPU.
225 	 * If the distributor is disabled, pending interrupts shouldn't be
226 	 * forwarded.
227 	 */
228 	if (irq->enabled && irq_is_pending(irq)) {
229 		if (unlikely(irq->target_vcpu &&
230 			     !irq->target_vcpu->kvm->arch.vgic.enabled))
231 			return NULL;
232 
233 		return irq->target_vcpu;
234 	}
235 
236 	/* If neither active nor pending and enabled, then this IRQ should not
237 	 * be queued to any VCPU.
238 	 */
239 	return NULL;
240 }
241 
242 /*
243  * The order of items in the ap_lists defines how we'll pack things in LRs as
244  * well, the first items in the list being the first things populated in the
245  * LRs.
246  *
247  * A hard rule is that active interrupts can never be pushed out of the LRs
248  * (and therefore take priority) since we cannot reliably trap on deactivation
249  * of IRQs and therefore they have to be present in the LRs.
250  *
251  * Otherwise things should be sorted by the priority field and the GIC
252  * hardware support will take care of preemption of priority groups etc.
253  *
254  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
255  * to sort "b" before "a".
256  */
257 static int vgic_irq_cmp(void *priv, const struct list_head *a,
258 			const struct list_head *b)
259 {
260 	struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
261 	struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
262 	bool penda, pendb;
263 	int ret;
264 
265 	/*
266 	 * list_sort may call this function with the same element when
267 	 * the list is fairly long.
268 	 */
269 	if (unlikely(irqa == irqb))
270 		return 0;
271 
272 	raw_spin_lock(&irqa->irq_lock);
273 	raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
274 
275 	if (irqa->active || irqb->active) {
276 		ret = (int)irqb->active - (int)irqa->active;
277 		goto out;
278 	}
279 
280 	penda = irqa->enabled && irq_is_pending(irqa);
281 	pendb = irqb->enabled && irq_is_pending(irqb);
282 
283 	if (!penda || !pendb) {
284 		ret = (int)pendb - (int)penda;
285 		goto out;
286 	}
287 
288 	/* Both pending and enabled, sort by priority */
289 	ret = irqa->priority - irqb->priority;
290 out:
291 	raw_spin_unlock(&irqb->irq_lock);
292 	raw_spin_unlock(&irqa->irq_lock);
293 	return ret;
294 }
295 
296 /* Must be called with the ap_list_lock held */
297 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
298 {
299 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
300 
301 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
302 
303 	list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
304 }
305 
306 /*
307  * Only valid injection if changing level for level-triggered IRQs or for a
308  * rising edge, and in-kernel connected IRQ lines can only be controlled by
309  * their owner.
310  */
311 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
312 {
313 	if (irq->owner != owner)
314 		return false;
315 
316 	switch (irq->config) {
317 	case VGIC_CONFIG_LEVEL:
318 		return irq->line_level != level;
319 	case VGIC_CONFIG_EDGE:
320 		return level;
321 	}
322 
323 	return false;
324 }
325 
326 /*
327  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
328  * Do the queuing if necessary, taking the right locks in the right order.
329  * Returns true when the IRQ was queued, false otherwise.
330  *
331  * Needs to be entered with the IRQ lock already held, but will return
332  * with all locks dropped.
333  */
334 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
335 			   unsigned long flags)
336 {
337 	struct kvm_vcpu *vcpu;
338 
339 	lockdep_assert_held(&irq->irq_lock);
340 
341 retry:
342 	vcpu = vgic_target_oracle(irq);
343 	if (irq->vcpu || !vcpu) {
344 		/*
345 		 * If this IRQ is already on a VCPU's ap_list, then it
346 		 * cannot be moved or modified and there is no more work for
347 		 * us to do.
348 		 *
349 		 * Otherwise, if the irq is not pending and enabled, it does
350 		 * not need to be inserted into an ap_list and there is also
351 		 * no more work for us to do.
352 		 */
353 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
354 
355 		/*
356 		 * We have to kick the VCPU here, because we could be
357 		 * queueing an edge-triggered interrupt for which we
358 		 * get no EOI maintenance interrupt. In that case,
359 		 * while the IRQ is already on the VCPU's AP list, the
360 		 * VCPU could have EOI'ed the original interrupt and
361 		 * won't see this one until it exits for some other
362 		 * reason.
363 		 */
364 		if (vcpu) {
365 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
366 			kvm_vcpu_kick(vcpu);
367 		}
368 		return false;
369 	}
370 
371 	/*
372 	 * We must unlock the irq lock to take the ap_list_lock where
373 	 * we are going to insert this new pending interrupt.
374 	 */
375 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
376 
377 	/* someone can do stuff here, which we re-check below */
378 
379 	raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
380 	raw_spin_lock(&irq->irq_lock);
381 
382 	/*
383 	 * Did something change behind our backs?
384 	 *
385 	 * There are two cases:
386 	 * 1) The irq lost its pending state or was disabled behind our
387 	 *    backs and/or it was queued to another VCPU's ap_list.
388 	 * 2) Someone changed the affinity on this irq behind our
389 	 *    backs and we are now holding the wrong ap_list_lock.
390 	 *
391 	 * In both cases, drop the locks and retry.
392 	 */
393 
394 	if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
395 		raw_spin_unlock(&irq->irq_lock);
396 		raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
397 					   flags);
398 
399 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
400 		goto retry;
401 	}
402 
403 	/*
404 	 * Grab a reference to the irq to reflect the fact that it is
405 	 * now in the ap_list.
406 	 */
407 	vgic_get_irq_kref(irq);
408 	list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
409 	irq->vcpu = vcpu;
410 
411 	raw_spin_unlock(&irq->irq_lock);
412 	raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
413 
414 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
415 	kvm_vcpu_kick(vcpu);
416 
417 	return true;
418 }
419 
420 /**
421  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
422  * @kvm:     The VM structure pointer
423  * @cpuid:   The CPU for PPIs
424  * @intid:   The INTID to inject a new state to.
425  * @level:   Edge-triggered:  true:  to trigger the interrupt
426  *			      false: to ignore the call
427  *	     Level-sensitive  true:  raise the input signal
428  *			      false: lower the input signal
429  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
430  *           that the caller is allowed to inject this IRQ.  Userspace
431  *           injections will have owner == NULL.
432  *
433  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
434  * level-sensitive interrupts.  You can think of the level parameter as 1
435  * being HIGH and 0 being LOW and all devices being active-HIGH.
436  */
437 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
438 			bool level, void *owner)
439 {
440 	struct kvm_vcpu *vcpu;
441 	struct vgic_irq *irq;
442 	unsigned long flags;
443 	int ret;
444 
445 	trace_vgic_update_irq_pending(cpuid, intid, level);
446 
447 	ret = vgic_lazy_init(kvm);
448 	if (ret)
449 		return ret;
450 
451 	vcpu = kvm_get_vcpu(kvm, cpuid);
452 	if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
453 		return -EINVAL;
454 
455 	irq = vgic_get_irq(kvm, vcpu, intid);
456 	if (!irq)
457 		return -EINVAL;
458 
459 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
460 
461 	if (!vgic_validate_injection(irq, level, owner)) {
462 		/* Nothing to see here, move along... */
463 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
464 		vgic_put_irq(kvm, irq);
465 		return 0;
466 	}
467 
468 	if (irq->config == VGIC_CONFIG_LEVEL)
469 		irq->line_level = level;
470 	else
471 		irq->pending_latch = true;
472 
473 	vgic_queue_irq_unlock(kvm, irq, flags);
474 	vgic_put_irq(kvm, irq);
475 
476 	return 0;
477 }
478 
479 /* @irq->irq_lock must be held */
480 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
481 			    unsigned int host_irq,
482 			    struct irq_ops *ops)
483 {
484 	struct irq_desc *desc;
485 	struct irq_data *data;
486 
487 	/*
488 	 * Find the physical IRQ number corresponding to @host_irq
489 	 */
490 	desc = irq_to_desc(host_irq);
491 	if (!desc) {
492 		kvm_err("%s: no interrupt descriptor\n", __func__);
493 		return -EINVAL;
494 	}
495 	data = irq_desc_get_irq_data(desc);
496 	while (data->parent_data)
497 		data = data->parent_data;
498 
499 	irq->hw = true;
500 	irq->host_irq = host_irq;
501 	irq->hwintid = data->hwirq;
502 	irq->ops = ops;
503 	return 0;
504 }
505 
506 /* @irq->irq_lock must be held */
507 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
508 {
509 	irq->hw = false;
510 	irq->hwintid = 0;
511 	irq->ops = NULL;
512 }
513 
514 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
515 			  u32 vintid, struct irq_ops *ops)
516 {
517 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
518 	unsigned long flags;
519 	int ret;
520 
521 	BUG_ON(!irq);
522 
523 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
524 	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
525 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
526 	vgic_put_irq(vcpu->kvm, irq);
527 
528 	return ret;
529 }
530 
531 /**
532  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
533  * @vcpu: The VCPU pointer
534  * @vintid: The INTID of the interrupt
535  *
536  * Reset the active and pending states of a mapped interrupt.  Kernel
537  * subsystems injecting mapped interrupts should reset their interrupt lines
538  * when we are doing a reset of the VM.
539  */
540 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
541 {
542 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
543 	unsigned long flags;
544 
545 	if (!irq->hw)
546 		goto out;
547 
548 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
549 	irq->active = false;
550 	irq->pending_latch = false;
551 	irq->line_level = false;
552 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
553 out:
554 	vgic_put_irq(vcpu->kvm, irq);
555 }
556 
557 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
558 {
559 	struct vgic_irq *irq;
560 	unsigned long flags;
561 
562 	if (!vgic_initialized(vcpu->kvm))
563 		return -EAGAIN;
564 
565 	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
566 	BUG_ON(!irq);
567 
568 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
569 	kvm_vgic_unmap_irq(irq);
570 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
571 	vgic_put_irq(vcpu->kvm, irq);
572 
573 	return 0;
574 }
575 
576 /**
577  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
578  *
579  * @vcpu:   Pointer to the VCPU (used for PPIs)
580  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
581  * @owner:  Opaque pointer to the owner
582  *
583  * Returns 0 if intid is not already used by another in-kernel device and the
584  * owner is set, otherwise returns an error code.
585  */
586 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
587 {
588 	struct vgic_irq *irq;
589 	unsigned long flags;
590 	int ret = 0;
591 
592 	if (!vgic_initialized(vcpu->kvm))
593 		return -EAGAIN;
594 
595 	/* SGIs and LPIs cannot be wired up to any device */
596 	if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
597 		return -EINVAL;
598 
599 	irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
600 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
601 	if (irq->owner && irq->owner != owner)
602 		ret = -EEXIST;
603 	else
604 		irq->owner = owner;
605 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
606 
607 	return ret;
608 }
609 
610 /**
611  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
612  *
613  * @vcpu: The VCPU pointer
614  *
615  * Go over the list of "interesting" interrupts, and prune those that we
616  * won't have to consider in the near future.
617  */
618 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
619 {
620 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
621 	struct vgic_irq *irq, *tmp;
622 
623 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
624 
625 retry:
626 	raw_spin_lock(&vgic_cpu->ap_list_lock);
627 
628 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
629 		struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
630 		bool target_vcpu_needs_kick = false;
631 
632 		raw_spin_lock(&irq->irq_lock);
633 
634 		BUG_ON(vcpu != irq->vcpu);
635 
636 		target_vcpu = vgic_target_oracle(irq);
637 
638 		if (!target_vcpu) {
639 			/*
640 			 * We don't need to process this interrupt any
641 			 * further, move it off the list.
642 			 */
643 			list_del(&irq->ap_list);
644 			irq->vcpu = NULL;
645 			raw_spin_unlock(&irq->irq_lock);
646 
647 			/*
648 			 * This vgic_put_irq call matches the
649 			 * vgic_get_irq_kref in vgic_queue_irq_unlock,
650 			 * where we added the LPI to the ap_list. As
651 			 * we remove the irq from the list, we drop
652 			 * also drop the refcount.
653 			 */
654 			vgic_put_irq(vcpu->kvm, irq);
655 			continue;
656 		}
657 
658 		if (target_vcpu == vcpu) {
659 			/* We're on the right CPU */
660 			raw_spin_unlock(&irq->irq_lock);
661 			continue;
662 		}
663 
664 		/* This interrupt looks like it has to be migrated. */
665 
666 		raw_spin_unlock(&irq->irq_lock);
667 		raw_spin_unlock(&vgic_cpu->ap_list_lock);
668 
669 		/*
670 		 * Ensure locking order by always locking the smallest
671 		 * ID first.
672 		 */
673 		if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
674 			vcpuA = vcpu;
675 			vcpuB = target_vcpu;
676 		} else {
677 			vcpuA = target_vcpu;
678 			vcpuB = vcpu;
679 		}
680 
681 		raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
682 		raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
683 				      SINGLE_DEPTH_NESTING);
684 		raw_spin_lock(&irq->irq_lock);
685 
686 		/*
687 		 * If the affinity has been preserved, move the
688 		 * interrupt around. Otherwise, it means things have
689 		 * changed while the interrupt was unlocked, and we
690 		 * need to replay this.
691 		 *
692 		 * In all cases, we cannot trust the list not to have
693 		 * changed, so we restart from the beginning.
694 		 */
695 		if (target_vcpu == vgic_target_oracle(irq)) {
696 			struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
697 
698 			list_del(&irq->ap_list);
699 			irq->vcpu = target_vcpu;
700 			list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
701 			target_vcpu_needs_kick = true;
702 		}
703 
704 		raw_spin_unlock(&irq->irq_lock);
705 		raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
706 		raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
707 
708 		if (target_vcpu_needs_kick) {
709 			kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
710 			kvm_vcpu_kick(target_vcpu);
711 		}
712 
713 		goto retry;
714 	}
715 
716 	raw_spin_unlock(&vgic_cpu->ap_list_lock);
717 }
718 
719 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
720 {
721 	if (kvm_vgic_global_state.type == VGIC_V2)
722 		vgic_v2_fold_lr_state(vcpu);
723 	else
724 		vgic_v3_fold_lr_state(vcpu);
725 }
726 
727 /* Requires the irq_lock to be held. */
728 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
729 				    struct vgic_irq *irq, int lr)
730 {
731 	lockdep_assert_held(&irq->irq_lock);
732 
733 	if (kvm_vgic_global_state.type == VGIC_V2)
734 		vgic_v2_populate_lr(vcpu, irq, lr);
735 	else
736 		vgic_v3_populate_lr(vcpu, irq, lr);
737 }
738 
739 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
740 {
741 	if (kvm_vgic_global_state.type == VGIC_V2)
742 		vgic_v2_clear_lr(vcpu, lr);
743 	else
744 		vgic_v3_clear_lr(vcpu, lr);
745 }
746 
747 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
748 {
749 	if (kvm_vgic_global_state.type == VGIC_V2)
750 		vgic_v2_set_underflow(vcpu);
751 	else
752 		vgic_v3_set_underflow(vcpu);
753 }
754 
755 /* Requires the ap_list_lock to be held. */
756 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
757 				 bool *multi_sgi)
758 {
759 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
760 	struct vgic_irq *irq;
761 	int count = 0;
762 
763 	*multi_sgi = false;
764 
765 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
766 
767 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
768 		int w;
769 
770 		raw_spin_lock(&irq->irq_lock);
771 		/* GICv2 SGIs can count for more than one... */
772 		w = vgic_irq_get_lr_count(irq);
773 		raw_spin_unlock(&irq->irq_lock);
774 
775 		count += w;
776 		*multi_sgi |= (w > 1);
777 	}
778 	return count;
779 }
780 
781 /* Requires the VCPU's ap_list_lock to be held. */
782 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
783 {
784 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
785 	struct vgic_irq *irq;
786 	int count;
787 	bool multi_sgi;
788 	u8 prio = 0xff;
789 	int i = 0;
790 
791 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
792 
793 	count = compute_ap_list_depth(vcpu, &multi_sgi);
794 	if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
795 		vgic_sort_ap_list(vcpu);
796 
797 	count = 0;
798 
799 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
800 		raw_spin_lock(&irq->irq_lock);
801 
802 		/*
803 		 * If we have multi-SGIs in the pipeline, we need to
804 		 * guarantee that they are all seen before any IRQ of
805 		 * lower priority. In that case, we need to filter out
806 		 * these interrupts by exiting early. This is easy as
807 		 * the AP list has been sorted already.
808 		 */
809 		if (multi_sgi && irq->priority > prio) {
810 			_raw_spin_unlock(&irq->irq_lock);
811 			break;
812 		}
813 
814 		if (likely(vgic_target_oracle(irq) == vcpu)) {
815 			vgic_populate_lr(vcpu, irq, count++);
816 
817 			if (irq->source)
818 				prio = irq->priority;
819 		}
820 
821 		raw_spin_unlock(&irq->irq_lock);
822 
823 		if (count == kvm_vgic_global_state.nr_lr) {
824 			if (!list_is_last(&irq->ap_list,
825 					  &vgic_cpu->ap_list_head))
826 				vgic_set_underflow(vcpu);
827 			break;
828 		}
829 	}
830 
831 	/* Nuke remaining LRs */
832 	for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
833 		vgic_clear_lr(vcpu, i);
834 
835 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
836 		vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
837 	else
838 		vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
839 }
840 
841 static inline bool can_access_vgic_from_kernel(void)
842 {
843 	/*
844 	 * GICv2 can always be accessed from the kernel because it is
845 	 * memory-mapped, and VHE systems can access GICv3 EL2 system
846 	 * registers.
847 	 */
848 	return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
849 }
850 
851 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
852 {
853 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
854 		vgic_v2_save_state(vcpu);
855 	else
856 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
857 }
858 
859 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
860 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
861 {
862 	int used_lrs;
863 
864 	/* An empty ap_list_head implies used_lrs == 0 */
865 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
866 		return;
867 
868 	if (can_access_vgic_from_kernel())
869 		vgic_save_state(vcpu);
870 
871 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
872 		used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
873 	else
874 		used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
875 
876 	if (used_lrs)
877 		vgic_fold_lr_state(vcpu);
878 	vgic_prune_ap_list(vcpu);
879 }
880 
881 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
882 {
883 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
884 		vgic_v2_restore_state(vcpu);
885 	else
886 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
887 }
888 
889 /* Flush our emulation state into the GIC hardware before entering the guest. */
890 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
891 {
892 	/*
893 	 * If there are no virtual interrupts active or pending for this
894 	 * VCPU, then there is no work to do and we can bail out without
895 	 * taking any lock.  There is a potential race with someone injecting
896 	 * interrupts to the VCPU, but it is a benign race as the VCPU will
897 	 * either observe the new interrupt before or after doing this check,
898 	 * and introducing additional synchronization mechanism doesn't change
899 	 * this.
900 	 *
901 	 * Note that we still need to go through the whole thing if anything
902 	 * can be directly injected (GICv4).
903 	 */
904 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
905 	    !vgic_supports_direct_msis(vcpu->kvm))
906 		return;
907 
908 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
909 
910 	if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
911 		raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
912 		vgic_flush_lr_state(vcpu);
913 		raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
914 	}
915 
916 	if (can_access_vgic_from_kernel())
917 		vgic_restore_state(vcpu);
918 
919 	if (vgic_supports_direct_msis(vcpu->kvm))
920 		vgic_v4_commit(vcpu);
921 }
922 
923 void kvm_vgic_load(struct kvm_vcpu *vcpu)
924 {
925 	if (unlikely(!vgic_initialized(vcpu->kvm)))
926 		return;
927 
928 	if (kvm_vgic_global_state.type == VGIC_V2)
929 		vgic_v2_load(vcpu);
930 	else
931 		vgic_v3_load(vcpu);
932 }
933 
934 void kvm_vgic_put(struct kvm_vcpu *vcpu)
935 {
936 	if (unlikely(!vgic_initialized(vcpu->kvm)))
937 		return;
938 
939 	if (kvm_vgic_global_state.type == VGIC_V2)
940 		vgic_v2_put(vcpu);
941 	else
942 		vgic_v3_put(vcpu);
943 }
944 
945 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
946 {
947 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
948 		return;
949 
950 	if (kvm_vgic_global_state.type == VGIC_V2)
951 		vgic_v2_vmcr_sync(vcpu);
952 	else
953 		vgic_v3_vmcr_sync(vcpu);
954 }
955 
956 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
957 {
958 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
959 	struct vgic_irq *irq;
960 	bool pending = false;
961 	unsigned long flags;
962 	struct vgic_vmcr vmcr;
963 
964 	if (!vcpu->kvm->arch.vgic.enabled)
965 		return false;
966 
967 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
968 		return true;
969 
970 	vgic_get_vmcr(vcpu, &vmcr);
971 
972 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
973 
974 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
975 		raw_spin_lock(&irq->irq_lock);
976 		pending = irq_is_pending(irq) && irq->enabled &&
977 			  !irq->active &&
978 			  irq->priority < vmcr.pmr;
979 		raw_spin_unlock(&irq->irq_lock);
980 
981 		if (pending)
982 			break;
983 	}
984 
985 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
986 
987 	return pending;
988 }
989 
990 void vgic_kick_vcpus(struct kvm *kvm)
991 {
992 	struct kvm_vcpu *vcpu;
993 	int c;
994 
995 	/*
996 	 * We've injected an interrupt, time to find out who deserves
997 	 * a good kick...
998 	 */
999 	kvm_for_each_vcpu(c, vcpu, kvm) {
1000 		if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1001 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1002 			kvm_vcpu_kick(vcpu);
1003 		}
1004 	}
1005 }
1006 
1007 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1008 {
1009 	struct vgic_irq *irq;
1010 	bool map_is_active;
1011 	unsigned long flags;
1012 
1013 	if (!vgic_initialized(vcpu->kvm))
1014 		return false;
1015 
1016 	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1017 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1018 	map_is_active = irq->hw && irq->active;
1019 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1020 	vgic_put_irq(vcpu->kvm, irq);
1021 
1022 	return map_is_active;
1023 }
1024 
1025 /*
1026  * Level-triggered mapped IRQs are special because we only observe rising
1027  * edges as input to the VGIC.
1028  *
1029  * If the guest never acked the interrupt we have to sample the physical
1030  * line and set the line level, because the device state could have changed
1031  * or we simply need to process the still pending interrupt later.
1032  *
1033  * We could also have entered the guest with the interrupt active+pending.
1034  * On the next exit, we need to re-evaluate the pending state, as it could
1035  * otherwise result in a spurious interrupt by injecting a now potentially
1036  * stale pending state.
1037  *
1038  * If this causes us to lower the level, we have to also clear the physical
1039  * active state, since we will otherwise never be told when the interrupt
1040  * becomes asserted again.
1041  *
1042  * Another case is when the interrupt requires a helping hand on
1043  * deactivation (no HW deactivation, for example).
1044  */
1045 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1046 				bool lr_deactivated, bool lr_pending)
1047 {
1048 	if (vgic_irq_is_mapped_level(irq)) {
1049 		bool resample = false;
1050 
1051 		if (unlikely(vgic_irq_needs_resampling(irq))) {
1052 			resample = !(irq->active || irq->pending_latch);
1053 		} else if (lr_pending || (lr_deactivated && irq->line_level)) {
1054 			irq->line_level = vgic_get_phys_line_level(irq);
1055 			resample = !irq->line_level;
1056 		}
1057 
1058 		if (resample)
1059 			vgic_irq_set_phys_active(irq, false);
1060 	}
1061 }
1062