xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-v4.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/irqdomain.h>
10 #include <linux/kvm_host.h>
11 #include <linux/irqchip/arm-gic-v3.h>
12 
13 #include "vgic.h"
14 
15 /*
16  * How KVM uses GICv4 (insert rude comments here):
17  *
18  * The vgic-v4 layer acts as a bridge between several entities:
19  * - The GICv4 ITS representation offered by the ITS driver
20  * - VFIO, which is in charge of the PCI endpoint
21  * - The virtual ITS, which is the only thing the guest sees
22  *
23  * The configuration of VLPIs is triggered by a callback from VFIO,
24  * instructing KVM that a PCI device has been configured to deliver
25  * MSIs to a vITS.
26  *
27  * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28  * and this is used to find the corresponding vITS data structures
29  * (ITS instance, device, event and irq) using a process that is
30  * extremely similar to the injection of an MSI.
31  *
32  * At this stage, we can link the guest's view of an LPI (uniquely
33  * identified by the routing entry) and the host irq, using the GICv4
34  * driver mapping operation. Should the mapping succeed, we've then
35  * successfully upgraded the guest's LPI to a VLPI. We can then start
36  * with updating GICv4's view of the property table and generating an
37  * INValidation in order to kickstart the delivery of this VLPI to the
38  * guest directly, without software intervention. Well, almost.
39  *
40  * When the PCI endpoint is deconfigured, this operation is reversed
41  * with VFIO calling kvm_vgic_v4_unset_forwarding().
42  *
43  * Once the VLPI has been mapped, it needs to follow any change the
44  * guest performs on its LPI through the vITS. For that, a number of
45  * command handlers have hooks to communicate these changes to the HW:
46  * - Any invalidation triggers a call to its_prop_update_vlpi()
47  * - The INT command results in a irq_set_irqchip_state(), which
48  *   generates an INT on the corresponding VLPI.
49  * - The CLEAR command results in a irq_set_irqchip_state(), which
50  *   generates an CLEAR on the corresponding VLPI.
51  * - DISCARD translates into an unmap, similar to a call to
52  *   kvm_vgic_v4_unset_forwarding().
53  * - MOVI is translated by an update of the existing mapping, changing
54  *   the target vcpu, resulting in a VMOVI being generated.
55  * - MOVALL is translated by a string of mapping updates (similar to
56  *   the handling of MOVI). MOVALL is horrible.
57  *
58  * Note that a DISCARD/MAPTI sequence emitted from the guest without
59  * reprogramming the PCI endpoint after MAPTI does not result in a
60  * VLPI being mapped, as there is no callback from VFIO (the guest
61  * will get the interrupt via the normal SW injection). Fixing this is
62  * not trivial, and requires some horrible messing with the VFIO
63  * internals. Not fun. Don't do that.
64  *
65  * Then there is the scheduling. Each time a vcpu is about to run on a
66  * physical CPU, KVM must tell the corresponding redistributor about
67  * it. And if we've migrated our vcpu from one CPU to another, we must
68  * tell the ITS (so that the messages reach the right redistributor).
69  * This is done in two steps: first issue a irq_set_affinity() on the
70  * irq corresponding to the vcpu, then call its_make_vpe_resident().
71  * You must be in a non-preemptible context. On exit, a call to
72  * its_make_vpe_non_resident() tells the redistributor that we're done
73  * with the vcpu.
74  *
75  * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76  * which will fire each time a VLPI is made pending whilst the vcpu is
77  * not running. Each time the vcpu gets blocked, the doorbell
78  * interrupt gets enabled. When the vcpu is unblocked (for whatever
79  * reason), the doorbell interrupt is disabled.
80  */
81 
82 #define DB_IRQ_FLAGS	(IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83 
84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85 {
86 	struct kvm_vcpu *vcpu = info;
87 
88 	/* We got the message, no need to fire again */
89 	if (!kvm_vgic_global_state.has_gicv4_1 &&
90 	    !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91 		disable_irq_nosync(irq);
92 
93 	/*
94 	 * The v4.1 doorbell can fire concurrently with the vPE being
95 	 * made non-resident. Ensure we only update pending_last
96 	 * *after* the non-residency sequence has completed.
97 	 */
98 	raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99 	vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100 	raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101 
102 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103 	kvm_vcpu_kick(vcpu);
104 
105 	return IRQ_HANDLED;
106 }
107 
108 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109 {
110 	vpe->sgi_config[irq->intid].enabled	= irq->enabled;
111 	vpe->sgi_config[irq->intid].group 	= irq->group;
112 	vpe->sgi_config[irq->intid].priority	= irq->priority;
113 }
114 
115 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116 {
117 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118 	int i;
119 
120 	/*
121 	 * With GICv4.1, every virtual SGI can be directly injected. So
122 	 * let's pretend that they are HW interrupts, tied to a host
123 	 * IRQ. The SGI code will do its magic.
124 	 */
125 	for (i = 0; i < VGIC_NR_SGIS; i++) {
126 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127 		struct irq_desc *desc;
128 		unsigned long flags;
129 		int ret;
130 
131 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
132 
133 		if (irq->hw)
134 			goto unlock;
135 
136 		irq->hw = true;
137 		irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138 
139 		/* Transfer the full irq state to the vPE */
140 		vgic_v4_sync_sgi_config(vpe, irq);
141 		desc = irq_to_desc(irq->host_irq);
142 		ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143 					      false);
144 		if (!WARN_ON(ret)) {
145 			/* Transfer pending state */
146 			ret = irq_set_irqchip_state(irq->host_irq,
147 						    IRQCHIP_STATE_PENDING,
148 						    irq->pending_latch);
149 			WARN_ON(ret);
150 			irq->pending_latch = false;
151 		}
152 	unlock:
153 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154 		vgic_put_irq(vcpu->kvm, irq);
155 	}
156 }
157 
158 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159 {
160 	int i;
161 
162 	for (i = 0; i < VGIC_NR_SGIS; i++) {
163 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164 		struct irq_desc *desc;
165 		unsigned long flags;
166 		int ret;
167 
168 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
169 
170 		if (!irq->hw)
171 			goto unlock;
172 
173 		irq->hw = false;
174 		ret = irq_get_irqchip_state(irq->host_irq,
175 					    IRQCHIP_STATE_PENDING,
176 					    &irq->pending_latch);
177 		WARN_ON(ret);
178 
179 		desc = irq_to_desc(irq->host_irq);
180 		irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181 	unlock:
182 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 		vgic_put_irq(vcpu->kvm, irq);
184 	}
185 }
186 
187 /* Must be called with the kvm lock held */
188 void vgic_v4_configure_vsgis(struct kvm *kvm)
189 {
190 	struct vgic_dist *dist = &kvm->arch.vgic;
191 	struct kvm_vcpu *vcpu;
192 	unsigned long i;
193 
194 	kvm_arm_halt_guest(kvm);
195 
196 	kvm_for_each_vcpu(i, vcpu, kvm) {
197 		if (dist->nassgireq)
198 			vgic_v4_enable_vsgis(vcpu);
199 		else
200 			vgic_v4_disable_vsgis(vcpu);
201 	}
202 
203 	kvm_arm_resume_guest(kvm);
204 }
205 
206 /*
207  * Must be called with GICv4.1 and the vPE unmapped, which
208  * indicates the invalidation of any VPT caches associated
209  * with the vPE, thus we can get the VLPI state by peeking
210  * at the VPT.
211  */
212 void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
213 {
214 	struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
215 	int mask = BIT(irq->intid % BITS_PER_BYTE);
216 	void *va;
217 	u8 *ptr;
218 
219 	va = page_address(vpe->vpt_page);
220 	ptr = va + irq->intid / BITS_PER_BYTE;
221 
222 	*val = !!(*ptr & mask);
223 }
224 
225 /**
226  * vgic_v4_init - Initialize the GICv4 data structures
227  * @kvm:	Pointer to the VM being initialized
228  *
229  * We may be called each time a vITS is created, or when the
230  * vgic is initialized. This relies on kvm->lock to be
231  * held. In both cases, the number of vcpus should now be
232  * fixed.
233  */
234 int vgic_v4_init(struct kvm *kvm)
235 {
236 	struct vgic_dist *dist = &kvm->arch.vgic;
237 	struct kvm_vcpu *vcpu;
238 	int nr_vcpus, ret;
239 	unsigned long i;
240 
241 	if (!kvm_vgic_global_state.has_gicv4)
242 		return 0; /* Nothing to see here... move along. */
243 
244 	if (dist->its_vm.vpes)
245 		return 0;
246 
247 	nr_vcpus = atomic_read(&kvm->online_vcpus);
248 
249 	dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
250 				    GFP_KERNEL_ACCOUNT);
251 	if (!dist->its_vm.vpes)
252 		return -ENOMEM;
253 
254 	dist->its_vm.nr_vpes = nr_vcpus;
255 
256 	kvm_for_each_vcpu(i, vcpu, kvm)
257 		dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
258 
259 	ret = its_alloc_vcpu_irqs(&dist->its_vm);
260 	if (ret < 0) {
261 		kvm_err("VPE IRQ allocation failure\n");
262 		kfree(dist->its_vm.vpes);
263 		dist->its_vm.nr_vpes = 0;
264 		dist->its_vm.vpes = NULL;
265 		return ret;
266 	}
267 
268 	kvm_for_each_vcpu(i, vcpu, kvm) {
269 		int irq = dist->its_vm.vpes[i]->irq;
270 		unsigned long irq_flags = DB_IRQ_FLAGS;
271 
272 		/*
273 		 * Don't automatically enable the doorbell, as we're
274 		 * flipping it back and forth when the vcpu gets
275 		 * blocked. Also disable the lazy disabling, as the
276 		 * doorbell could kick us out of the guest too
277 		 * early...
278 		 *
279 		 * On GICv4.1, the doorbell is managed in HW and must
280 		 * be left enabled.
281 		 */
282 		if (kvm_vgic_global_state.has_gicv4_1)
283 			irq_flags &= ~IRQ_NOAUTOEN;
284 		irq_set_status_flags(irq, irq_flags);
285 
286 		ret = request_irq(irq, vgic_v4_doorbell_handler,
287 				  0, "vcpu", vcpu);
288 		if (ret) {
289 			kvm_err("failed to allocate vcpu IRQ%d\n", irq);
290 			/*
291 			 * Trick: adjust the number of vpes so we know
292 			 * how many to nuke on teardown...
293 			 */
294 			dist->its_vm.nr_vpes = i;
295 			break;
296 		}
297 	}
298 
299 	if (ret)
300 		vgic_v4_teardown(kvm);
301 
302 	return ret;
303 }
304 
305 /**
306  * vgic_v4_teardown - Free the GICv4 data structures
307  * @kvm:	Pointer to the VM being destroyed
308  *
309  * Relies on kvm->lock to be held.
310  */
311 void vgic_v4_teardown(struct kvm *kvm)
312 {
313 	struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
314 	int i;
315 
316 	if (!its_vm->vpes)
317 		return;
318 
319 	for (i = 0; i < its_vm->nr_vpes; i++) {
320 		struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
321 		int irq = its_vm->vpes[i]->irq;
322 
323 		irq_clear_status_flags(irq, DB_IRQ_FLAGS);
324 		free_irq(irq, vcpu);
325 	}
326 
327 	its_free_vcpu_irqs(its_vm);
328 	kfree(its_vm->vpes);
329 	its_vm->nr_vpes = 0;
330 	its_vm->vpes = NULL;
331 }
332 
333 int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
334 {
335 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
336 
337 	if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
338 		return 0;
339 
340 	return its_make_vpe_non_resident(vpe, need_db);
341 }
342 
343 int vgic_v4_load(struct kvm_vcpu *vcpu)
344 {
345 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
346 	int err;
347 
348 	if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
349 		return 0;
350 
351 	/*
352 	 * Before making the VPE resident, make sure the redistributor
353 	 * corresponding to our current CPU expects us here. See the
354 	 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
355 	 * turns into a VMOVP command at the ITS level.
356 	 */
357 	err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
358 	if (err)
359 		return err;
360 
361 	err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
362 	if (err)
363 		return err;
364 
365 	/*
366 	 * Now that the VPE is resident, let's get rid of a potential
367 	 * doorbell interrupt that would still be pending. This is a
368 	 * GICv4.0 only "feature"...
369 	 */
370 	if (!kvm_vgic_global_state.has_gicv4_1)
371 		err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
372 
373 	return err;
374 }
375 
376 void vgic_v4_commit(struct kvm_vcpu *vcpu)
377 {
378 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
379 
380 	/*
381 	 * No need to wait for the vPE to be ready across a shallow guest
382 	 * exit, as only a vcpu_put will invalidate it.
383 	 */
384 	if (!vpe->ready)
385 		its_commit_vpe(vpe);
386 }
387 
388 static struct vgic_its *vgic_get_its(struct kvm *kvm,
389 				     struct kvm_kernel_irq_routing_entry *irq_entry)
390 {
391 	struct kvm_msi msi  = (struct kvm_msi) {
392 		.address_lo	= irq_entry->msi.address_lo,
393 		.address_hi	= irq_entry->msi.address_hi,
394 		.data		= irq_entry->msi.data,
395 		.flags		= irq_entry->msi.flags,
396 		.devid		= irq_entry->msi.devid,
397 	};
398 
399 	return vgic_msi_to_its(kvm, &msi);
400 }
401 
402 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
403 			       struct kvm_kernel_irq_routing_entry *irq_entry)
404 {
405 	struct vgic_its *its;
406 	struct vgic_irq *irq;
407 	struct its_vlpi_map map;
408 	unsigned long flags;
409 	int ret;
410 
411 	if (!vgic_supports_direct_msis(kvm))
412 		return 0;
413 
414 	/*
415 	 * Get the ITS, and escape early on error (not a valid
416 	 * doorbell for any of our vITSs).
417 	 */
418 	its = vgic_get_its(kvm, irq_entry);
419 	if (IS_ERR(its))
420 		return 0;
421 
422 	mutex_lock(&its->its_lock);
423 
424 	/* Perform the actual DevID/EventID -> LPI translation. */
425 	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
426 				   irq_entry->msi.data, &irq);
427 	if (ret)
428 		goto out;
429 
430 	/*
431 	 * Emit the mapping request. If it fails, the ITS probably
432 	 * isn't v4 compatible, so let's silently bail out. Holding
433 	 * the ITS lock should ensure that nothing can modify the
434 	 * target vcpu.
435 	 */
436 	map = (struct its_vlpi_map) {
437 		.vm		= &kvm->arch.vgic.its_vm,
438 		.vpe		= &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
439 		.vintid		= irq->intid,
440 		.properties	= ((irq->priority & 0xfc) |
441 				   (irq->enabled ? LPI_PROP_ENABLED : 0) |
442 				   LPI_PROP_GROUP1),
443 		.db_enabled	= true,
444 	};
445 
446 	ret = its_map_vlpi(virq, &map);
447 	if (ret)
448 		goto out;
449 
450 	irq->hw		= true;
451 	irq->host_irq	= virq;
452 	atomic_inc(&map.vpe->vlpi_count);
453 
454 	/* Transfer pending state */
455 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
456 	if (irq->pending_latch) {
457 		ret = irq_set_irqchip_state(irq->host_irq,
458 					    IRQCHIP_STATE_PENDING,
459 					    irq->pending_latch);
460 		WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
461 
462 		/*
463 		 * Clear pending_latch and communicate this state
464 		 * change via vgic_queue_irq_unlock.
465 		 */
466 		irq->pending_latch = false;
467 		vgic_queue_irq_unlock(kvm, irq, flags);
468 	} else {
469 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
470 	}
471 
472 out:
473 	mutex_unlock(&its->its_lock);
474 	return ret;
475 }
476 
477 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
478 				 struct kvm_kernel_irq_routing_entry *irq_entry)
479 {
480 	struct vgic_its *its;
481 	struct vgic_irq *irq;
482 	int ret;
483 
484 	if (!vgic_supports_direct_msis(kvm))
485 		return 0;
486 
487 	/*
488 	 * Get the ITS, and escape early on error (not a valid
489 	 * doorbell for any of our vITSs).
490 	 */
491 	its = vgic_get_its(kvm, irq_entry);
492 	if (IS_ERR(its))
493 		return 0;
494 
495 	mutex_lock(&its->its_lock);
496 
497 	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
498 				   irq_entry->msi.data, &irq);
499 	if (ret)
500 		goto out;
501 
502 	WARN_ON(!(irq->hw && irq->host_irq == virq));
503 	if (irq->hw) {
504 		atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
505 		irq->hw = false;
506 		ret = its_unmap_vlpi(virq);
507 	}
508 
509 out:
510 	mutex_unlock(&its->its_lock);
511 	return ret;
512 }
513