1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2017 ARM Ltd. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/interrupt.h> 8 #include <linux/irq.h> 9 #include <linux/irqdomain.h> 10 #include <linux/kvm_host.h> 11 #include <linux/irqchip/arm-gic-v3.h> 12 13 #include "vgic.h" 14 15 /* 16 * How KVM uses GICv4 (insert rude comments here): 17 * 18 * The vgic-v4 layer acts as a bridge between several entities: 19 * - The GICv4 ITS representation offered by the ITS driver 20 * - VFIO, which is in charge of the PCI endpoint 21 * - The virtual ITS, which is the only thing the guest sees 22 * 23 * The configuration of VLPIs is triggered by a callback from VFIO, 24 * instructing KVM that a PCI device has been configured to deliver 25 * MSIs to a vITS. 26 * 27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry, 28 * and this is used to find the corresponding vITS data structures 29 * (ITS instance, device, event and irq) using a process that is 30 * extremely similar to the injection of an MSI. 31 * 32 * At this stage, we can link the guest's view of an LPI (uniquely 33 * identified by the routing entry) and the host irq, using the GICv4 34 * driver mapping operation. Should the mapping succeed, we've then 35 * successfully upgraded the guest's LPI to a VLPI. We can then start 36 * with updating GICv4's view of the property table and generating an 37 * INValidation in order to kickstart the delivery of this VLPI to the 38 * guest directly, without software intervention. Well, almost. 39 * 40 * When the PCI endpoint is deconfigured, this operation is reversed 41 * with VFIO calling kvm_vgic_v4_unset_forwarding(). 42 * 43 * Once the VLPI has been mapped, it needs to follow any change the 44 * guest performs on its LPI through the vITS. For that, a number of 45 * command handlers have hooks to communicate these changes to the HW: 46 * - Any invalidation triggers a call to its_prop_update_vlpi() 47 * - The INT command results in a irq_set_irqchip_state(), which 48 * generates an INT on the corresponding VLPI. 49 * - The CLEAR command results in a irq_set_irqchip_state(), which 50 * generates an CLEAR on the corresponding VLPI. 51 * - DISCARD translates into an unmap, similar to a call to 52 * kvm_vgic_v4_unset_forwarding(). 53 * - MOVI is translated by an update of the existing mapping, changing 54 * the target vcpu, resulting in a VMOVI being generated. 55 * - MOVALL is translated by a string of mapping updates (similar to 56 * the handling of MOVI). MOVALL is horrible. 57 * 58 * Note that a DISCARD/MAPTI sequence emitted from the guest without 59 * reprogramming the PCI endpoint after MAPTI does not result in a 60 * VLPI being mapped, as there is no callback from VFIO (the guest 61 * will get the interrupt via the normal SW injection). Fixing this is 62 * not trivial, and requires some horrible messing with the VFIO 63 * internals. Not fun. Don't do that. 64 * 65 * Then there is the scheduling. Each time a vcpu is about to run on a 66 * physical CPU, KVM must tell the corresponding redistributor about 67 * it. And if we've migrated our vcpu from one CPU to another, we must 68 * tell the ITS (so that the messages reach the right redistributor). 69 * This is done in two steps: first issue a irq_set_affinity() on the 70 * irq corresponding to the vcpu, then call its_make_vpe_resident(). 71 * You must be in a non-preemptible context. On exit, a call to 72 * its_make_vpe_non_resident() tells the redistributor that we're done 73 * with the vcpu. 74 * 75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt 76 * which will fire each time a VLPI is made pending whilst the vcpu is 77 * not running. Each time the vcpu gets blocked, the doorbell 78 * interrupt gets enabled. When the vcpu is unblocked (for whatever 79 * reason), the doorbell interrupt is disabled. 80 */ 81 82 #define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING) 83 84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info) 85 { 86 struct kvm_vcpu *vcpu = info; 87 88 /* We got the message, no need to fire again */ 89 if (!kvm_vgic_global_state.has_gicv4_1 && 90 !irqd_irq_disabled(&irq_to_desc(irq)->irq_data)) 91 disable_irq_nosync(irq); 92 93 /* 94 * The v4.1 doorbell can fire concurrently with the vPE being 95 * made non-resident. Ensure we only update pending_last 96 * *after* the non-residency sequence has completed. 97 */ 98 raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock); 99 vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true; 100 raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock); 101 102 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 103 kvm_vcpu_kick(vcpu); 104 105 return IRQ_HANDLED; 106 } 107 108 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq) 109 { 110 vpe->sgi_config[irq->intid].enabled = irq->enabled; 111 vpe->sgi_config[irq->intid].group = irq->group; 112 vpe->sgi_config[irq->intid].priority = irq->priority; 113 } 114 115 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu) 116 { 117 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 118 int i; 119 120 /* 121 * With GICv4.1, every virtual SGI can be directly injected. So 122 * let's pretend that they are HW interrupts, tied to a host 123 * IRQ. The SGI code will do its magic. 124 */ 125 for (i = 0; i < VGIC_NR_SGIS; i++) { 126 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i); 127 struct irq_desc *desc; 128 unsigned long flags; 129 int ret; 130 131 raw_spin_lock_irqsave(&irq->irq_lock, flags); 132 133 if (irq->hw) 134 goto unlock; 135 136 irq->hw = true; 137 irq->host_irq = irq_find_mapping(vpe->sgi_domain, i); 138 139 /* Transfer the full irq state to the vPE */ 140 vgic_v4_sync_sgi_config(vpe, irq); 141 desc = irq_to_desc(irq->host_irq); 142 ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc), 143 false); 144 if (!WARN_ON(ret)) { 145 /* Transfer pending state */ 146 ret = irq_set_irqchip_state(irq->host_irq, 147 IRQCHIP_STATE_PENDING, 148 irq->pending_latch); 149 WARN_ON(ret); 150 irq->pending_latch = false; 151 } 152 unlock: 153 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 154 vgic_put_irq(vcpu->kvm, irq); 155 } 156 } 157 158 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu) 159 { 160 int i; 161 162 for (i = 0; i < VGIC_NR_SGIS; i++) { 163 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i); 164 struct irq_desc *desc; 165 unsigned long flags; 166 int ret; 167 168 raw_spin_lock_irqsave(&irq->irq_lock, flags); 169 170 if (!irq->hw) 171 goto unlock; 172 173 irq->hw = false; 174 ret = irq_get_irqchip_state(irq->host_irq, 175 IRQCHIP_STATE_PENDING, 176 &irq->pending_latch); 177 WARN_ON(ret); 178 179 desc = irq_to_desc(irq->host_irq); 180 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc)); 181 unlock: 182 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 183 vgic_put_irq(vcpu->kvm, irq); 184 } 185 } 186 187 /* Must be called with the kvm lock held */ 188 void vgic_v4_configure_vsgis(struct kvm *kvm) 189 { 190 struct vgic_dist *dist = &kvm->arch.vgic; 191 struct kvm_vcpu *vcpu; 192 int i; 193 194 kvm_arm_halt_guest(kvm); 195 196 kvm_for_each_vcpu(i, vcpu, kvm) { 197 if (dist->nassgireq) 198 vgic_v4_enable_vsgis(vcpu); 199 else 200 vgic_v4_disable_vsgis(vcpu); 201 } 202 203 kvm_arm_resume_guest(kvm); 204 } 205 206 /* 207 * Must be called with GICv4.1 and the vPE unmapped, which 208 * indicates the invalidation of any VPT caches associated 209 * with the vPE, thus we can get the VLPI state by peeking 210 * at the VPT. 211 */ 212 void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val) 213 { 214 struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 215 int mask = BIT(irq->intid % BITS_PER_BYTE); 216 void *va; 217 u8 *ptr; 218 219 va = page_address(vpe->vpt_page); 220 ptr = va + irq->intid / BITS_PER_BYTE; 221 222 *val = !!(*ptr & mask); 223 } 224 225 /** 226 * vgic_v4_init - Initialize the GICv4 data structures 227 * @kvm: Pointer to the VM being initialized 228 * 229 * We may be called each time a vITS is created, or when the 230 * vgic is initialized. This relies on kvm->lock to be 231 * held. In both cases, the number of vcpus should now be 232 * fixed. 233 */ 234 int vgic_v4_init(struct kvm *kvm) 235 { 236 struct vgic_dist *dist = &kvm->arch.vgic; 237 struct kvm_vcpu *vcpu; 238 int i, nr_vcpus, ret; 239 240 if (!kvm_vgic_global_state.has_gicv4) 241 return 0; /* Nothing to see here... move along. */ 242 243 if (dist->its_vm.vpes) 244 return 0; 245 246 nr_vcpus = atomic_read(&kvm->online_vcpus); 247 248 dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes), 249 GFP_KERNEL); 250 if (!dist->its_vm.vpes) 251 return -ENOMEM; 252 253 dist->its_vm.nr_vpes = nr_vcpus; 254 255 kvm_for_each_vcpu(i, vcpu, kvm) 256 dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 257 258 ret = its_alloc_vcpu_irqs(&dist->its_vm); 259 if (ret < 0) { 260 kvm_err("VPE IRQ allocation failure\n"); 261 kfree(dist->its_vm.vpes); 262 dist->its_vm.nr_vpes = 0; 263 dist->its_vm.vpes = NULL; 264 return ret; 265 } 266 267 kvm_for_each_vcpu(i, vcpu, kvm) { 268 int irq = dist->its_vm.vpes[i]->irq; 269 unsigned long irq_flags = DB_IRQ_FLAGS; 270 271 /* 272 * Don't automatically enable the doorbell, as we're 273 * flipping it back and forth when the vcpu gets 274 * blocked. Also disable the lazy disabling, as the 275 * doorbell could kick us out of the guest too 276 * early... 277 * 278 * On GICv4.1, the doorbell is managed in HW and must 279 * be left enabled. 280 */ 281 if (kvm_vgic_global_state.has_gicv4_1) 282 irq_flags &= ~IRQ_NOAUTOEN; 283 irq_set_status_flags(irq, irq_flags); 284 285 ret = request_irq(irq, vgic_v4_doorbell_handler, 286 0, "vcpu", vcpu); 287 if (ret) { 288 kvm_err("failed to allocate vcpu IRQ%d\n", irq); 289 /* 290 * Trick: adjust the number of vpes so we know 291 * how many to nuke on teardown... 292 */ 293 dist->its_vm.nr_vpes = i; 294 break; 295 } 296 } 297 298 if (ret) 299 vgic_v4_teardown(kvm); 300 301 return ret; 302 } 303 304 /** 305 * vgic_v4_teardown - Free the GICv4 data structures 306 * @kvm: Pointer to the VM being destroyed 307 * 308 * Relies on kvm->lock to be held. 309 */ 310 void vgic_v4_teardown(struct kvm *kvm) 311 { 312 struct its_vm *its_vm = &kvm->arch.vgic.its_vm; 313 int i; 314 315 if (!its_vm->vpes) 316 return; 317 318 for (i = 0; i < its_vm->nr_vpes; i++) { 319 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i); 320 int irq = its_vm->vpes[i]->irq; 321 322 irq_clear_status_flags(irq, DB_IRQ_FLAGS); 323 free_irq(irq, vcpu); 324 } 325 326 its_free_vcpu_irqs(its_vm); 327 kfree(its_vm->vpes); 328 its_vm->nr_vpes = 0; 329 its_vm->vpes = NULL; 330 } 331 332 int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db) 333 { 334 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 335 336 if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident) 337 return 0; 338 339 return its_make_vpe_non_resident(vpe, need_db); 340 } 341 342 int vgic_v4_load(struct kvm_vcpu *vcpu) 343 { 344 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 345 int err; 346 347 if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident) 348 return 0; 349 350 /* 351 * Before making the VPE resident, make sure the redistributor 352 * corresponding to our current CPU expects us here. See the 353 * doc in drivers/irqchip/irq-gic-v4.c to understand how this 354 * turns into a VMOVP command at the ITS level. 355 */ 356 err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id())); 357 if (err) 358 return err; 359 360 err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled); 361 if (err) 362 return err; 363 364 /* 365 * Now that the VPE is resident, let's get rid of a potential 366 * doorbell interrupt that would still be pending. This is a 367 * GICv4.0 only "feature"... 368 */ 369 if (!kvm_vgic_global_state.has_gicv4_1) 370 err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false); 371 372 return err; 373 } 374 375 void vgic_v4_commit(struct kvm_vcpu *vcpu) 376 { 377 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 378 379 /* 380 * No need to wait for the vPE to be ready across a shallow guest 381 * exit, as only a vcpu_put will invalidate it. 382 */ 383 if (!vpe->ready) 384 its_commit_vpe(vpe); 385 } 386 387 static struct vgic_its *vgic_get_its(struct kvm *kvm, 388 struct kvm_kernel_irq_routing_entry *irq_entry) 389 { 390 struct kvm_msi msi = (struct kvm_msi) { 391 .address_lo = irq_entry->msi.address_lo, 392 .address_hi = irq_entry->msi.address_hi, 393 .data = irq_entry->msi.data, 394 .flags = irq_entry->msi.flags, 395 .devid = irq_entry->msi.devid, 396 }; 397 398 return vgic_msi_to_its(kvm, &msi); 399 } 400 401 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq, 402 struct kvm_kernel_irq_routing_entry *irq_entry) 403 { 404 struct vgic_its *its; 405 struct vgic_irq *irq; 406 struct its_vlpi_map map; 407 unsigned long flags; 408 int ret; 409 410 if (!vgic_supports_direct_msis(kvm)) 411 return 0; 412 413 /* 414 * Get the ITS, and escape early on error (not a valid 415 * doorbell for any of our vITSs). 416 */ 417 its = vgic_get_its(kvm, irq_entry); 418 if (IS_ERR(its)) 419 return 0; 420 421 mutex_lock(&its->its_lock); 422 423 /* Perform the actual DevID/EventID -> LPI translation. */ 424 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid, 425 irq_entry->msi.data, &irq); 426 if (ret) 427 goto out; 428 429 /* 430 * Emit the mapping request. If it fails, the ITS probably 431 * isn't v4 compatible, so let's silently bail out. Holding 432 * the ITS lock should ensure that nothing can modify the 433 * target vcpu. 434 */ 435 map = (struct its_vlpi_map) { 436 .vm = &kvm->arch.vgic.its_vm, 437 .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe, 438 .vintid = irq->intid, 439 .properties = ((irq->priority & 0xfc) | 440 (irq->enabled ? LPI_PROP_ENABLED : 0) | 441 LPI_PROP_GROUP1), 442 .db_enabled = true, 443 }; 444 445 ret = its_map_vlpi(virq, &map); 446 if (ret) 447 goto out; 448 449 irq->hw = true; 450 irq->host_irq = virq; 451 atomic_inc(&map.vpe->vlpi_count); 452 453 /* Transfer pending state */ 454 raw_spin_lock_irqsave(&irq->irq_lock, flags); 455 if (irq->pending_latch) { 456 ret = irq_set_irqchip_state(irq->host_irq, 457 IRQCHIP_STATE_PENDING, 458 irq->pending_latch); 459 WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq); 460 461 /* 462 * Clear pending_latch and communicate this state 463 * change via vgic_queue_irq_unlock. 464 */ 465 irq->pending_latch = false; 466 vgic_queue_irq_unlock(kvm, irq, flags); 467 } else { 468 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 469 } 470 471 out: 472 mutex_unlock(&its->its_lock); 473 return ret; 474 } 475 476 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq, 477 struct kvm_kernel_irq_routing_entry *irq_entry) 478 { 479 struct vgic_its *its; 480 struct vgic_irq *irq; 481 int ret; 482 483 if (!vgic_supports_direct_msis(kvm)) 484 return 0; 485 486 /* 487 * Get the ITS, and escape early on error (not a valid 488 * doorbell for any of our vITSs). 489 */ 490 its = vgic_get_its(kvm, irq_entry); 491 if (IS_ERR(its)) 492 return 0; 493 494 mutex_lock(&its->its_lock); 495 496 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid, 497 irq_entry->msi.data, &irq); 498 if (ret) 499 goto out; 500 501 WARN_ON(!(irq->hw && irq->host_irq == virq)); 502 if (irq->hw) { 503 atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count); 504 irq->hw = false; 505 ret = its_unmap_vlpi(virq); 506 } 507 508 out: 509 mutex_unlock(&its->its_lock); 510 return ret; 511 } 512