xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-v4.c (revision add48ba4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/irqdomain.h>
10 #include <linux/kvm_host.h>
11 #include <linux/irqchip/arm-gic-v3.h>
12 
13 #include "vgic.h"
14 
15 /*
16  * How KVM uses GICv4 (insert rude comments here):
17  *
18  * The vgic-v4 layer acts as a bridge between several entities:
19  * - The GICv4 ITS representation offered by the ITS driver
20  * - VFIO, which is in charge of the PCI endpoint
21  * - The virtual ITS, which is the only thing the guest sees
22  *
23  * The configuration of VLPIs is triggered by a callback from VFIO,
24  * instructing KVM that a PCI device has been configured to deliver
25  * MSIs to a vITS.
26  *
27  * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28  * and this is used to find the corresponding vITS data structures
29  * (ITS instance, device, event and irq) using a process that is
30  * extremely similar to the injection of an MSI.
31  *
32  * At this stage, we can link the guest's view of an LPI (uniquely
33  * identified by the routing entry) and the host irq, using the GICv4
34  * driver mapping operation. Should the mapping succeed, we've then
35  * successfully upgraded the guest's LPI to a VLPI. We can then start
36  * with updating GICv4's view of the property table and generating an
37  * INValidation in order to kickstart the delivery of this VLPI to the
38  * guest directly, without software intervention. Well, almost.
39  *
40  * When the PCI endpoint is deconfigured, this operation is reversed
41  * with VFIO calling kvm_vgic_v4_unset_forwarding().
42  *
43  * Once the VLPI has been mapped, it needs to follow any change the
44  * guest performs on its LPI through the vITS. For that, a number of
45  * command handlers have hooks to communicate these changes to the HW:
46  * - Any invalidation triggers a call to its_prop_update_vlpi()
47  * - The INT command results in a irq_set_irqchip_state(), which
48  *   generates an INT on the corresponding VLPI.
49  * - The CLEAR command results in a irq_set_irqchip_state(), which
50  *   generates an CLEAR on the corresponding VLPI.
51  * - DISCARD translates into an unmap, similar to a call to
52  *   kvm_vgic_v4_unset_forwarding().
53  * - MOVI is translated by an update of the existing mapping, changing
54  *   the target vcpu, resulting in a VMOVI being generated.
55  * - MOVALL is translated by a string of mapping updates (similar to
56  *   the handling of MOVI). MOVALL is horrible.
57  *
58  * Note that a DISCARD/MAPTI sequence emitted from the guest without
59  * reprogramming the PCI endpoint after MAPTI does not result in a
60  * VLPI being mapped, as there is no callback from VFIO (the guest
61  * will get the interrupt via the normal SW injection). Fixing this is
62  * not trivial, and requires some horrible messing with the VFIO
63  * internals. Not fun. Don't do that.
64  *
65  * Then there is the scheduling. Each time a vcpu is about to run on a
66  * physical CPU, KVM must tell the corresponding redistributor about
67  * it. And if we've migrated our vcpu from one CPU to another, we must
68  * tell the ITS (so that the messages reach the right redistributor).
69  * This is done in two steps: first issue a irq_set_affinity() on the
70  * irq corresponding to the vcpu, then call its_make_vpe_resident().
71  * You must be in a non-preemptible context. On exit, a call to
72  * its_make_vpe_non_resident() tells the redistributor that we're done
73  * with the vcpu.
74  *
75  * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76  * which will fire each time a VLPI is made pending whilst the vcpu is
77  * not running. Each time the vcpu gets blocked, the doorbell
78  * interrupt gets enabled. When the vcpu is unblocked (for whatever
79  * reason), the doorbell interrupt is disabled.
80  */
81 
82 #define DB_IRQ_FLAGS	(IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83 
84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85 {
86 	struct kvm_vcpu *vcpu = info;
87 
88 	/* We got the message, no need to fire again */
89 	if (!kvm_vgic_global_state.has_gicv4_1 &&
90 	    !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91 		disable_irq_nosync(irq);
92 
93 	vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
94 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
95 	kvm_vcpu_kick(vcpu);
96 
97 	return IRQ_HANDLED;
98 }
99 
100 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
101 {
102 	vpe->sgi_config[irq->intid].enabled	= irq->enabled;
103 	vpe->sgi_config[irq->intid].group 	= irq->group;
104 	vpe->sgi_config[irq->intid].priority	= irq->priority;
105 }
106 
107 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
108 {
109 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
110 	int i;
111 
112 	/*
113 	 * With GICv4.1, every virtual SGI can be directly injected. So
114 	 * let's pretend that they are HW interrupts, tied to a host
115 	 * IRQ. The SGI code will do its magic.
116 	 */
117 	for (i = 0; i < VGIC_NR_SGIS; i++) {
118 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
119 		struct irq_desc *desc;
120 		unsigned long flags;
121 		int ret;
122 
123 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
124 
125 		if (irq->hw)
126 			goto unlock;
127 
128 		irq->hw = true;
129 		irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
130 
131 		/* Transfer the full irq state to the vPE */
132 		vgic_v4_sync_sgi_config(vpe, irq);
133 		desc = irq_to_desc(irq->host_irq);
134 		ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
135 					      false);
136 		if (!WARN_ON(ret)) {
137 			/* Transfer pending state */
138 			ret = irq_set_irqchip_state(irq->host_irq,
139 						    IRQCHIP_STATE_PENDING,
140 						    irq->pending_latch);
141 			WARN_ON(ret);
142 			irq->pending_latch = false;
143 		}
144 	unlock:
145 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
146 		vgic_put_irq(vcpu->kvm, irq);
147 	}
148 }
149 
150 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
151 {
152 	int i;
153 
154 	for (i = 0; i < VGIC_NR_SGIS; i++) {
155 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
156 		struct irq_desc *desc;
157 		unsigned long flags;
158 		int ret;
159 
160 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
161 
162 		if (!irq->hw)
163 			goto unlock;
164 
165 		irq->hw = false;
166 		ret = irq_get_irqchip_state(irq->host_irq,
167 					    IRQCHIP_STATE_PENDING,
168 					    &irq->pending_latch);
169 		WARN_ON(ret);
170 
171 		desc = irq_to_desc(irq->host_irq);
172 		irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
173 	unlock:
174 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
175 		vgic_put_irq(vcpu->kvm, irq);
176 	}
177 }
178 
179 /* Must be called with the kvm lock held */
180 void vgic_v4_configure_vsgis(struct kvm *kvm)
181 {
182 	struct vgic_dist *dist = &kvm->arch.vgic;
183 	struct kvm_vcpu *vcpu;
184 	int i;
185 
186 	kvm_arm_halt_guest(kvm);
187 
188 	kvm_for_each_vcpu(i, vcpu, kvm) {
189 		if (dist->nassgireq)
190 			vgic_v4_enable_vsgis(vcpu);
191 		else
192 			vgic_v4_disable_vsgis(vcpu);
193 	}
194 
195 	kvm_arm_resume_guest(kvm);
196 }
197 
198 /**
199  * vgic_v4_init - Initialize the GICv4 data structures
200  * @kvm:	Pointer to the VM being initialized
201  *
202  * We may be called each time a vITS is created, or when the
203  * vgic is initialized. This relies on kvm->lock to be
204  * held. In both cases, the number of vcpus should now be
205  * fixed.
206  */
207 int vgic_v4_init(struct kvm *kvm)
208 {
209 	struct vgic_dist *dist = &kvm->arch.vgic;
210 	struct kvm_vcpu *vcpu;
211 	int i, nr_vcpus, ret;
212 
213 	if (!kvm_vgic_global_state.has_gicv4)
214 		return 0; /* Nothing to see here... move along. */
215 
216 	if (dist->its_vm.vpes)
217 		return 0;
218 
219 	nr_vcpus = atomic_read(&kvm->online_vcpus);
220 
221 	dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
222 				    GFP_KERNEL);
223 	if (!dist->its_vm.vpes)
224 		return -ENOMEM;
225 
226 	dist->its_vm.nr_vpes = nr_vcpus;
227 
228 	kvm_for_each_vcpu(i, vcpu, kvm)
229 		dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
230 
231 	ret = its_alloc_vcpu_irqs(&dist->its_vm);
232 	if (ret < 0) {
233 		kvm_err("VPE IRQ allocation failure\n");
234 		kfree(dist->its_vm.vpes);
235 		dist->its_vm.nr_vpes = 0;
236 		dist->its_vm.vpes = NULL;
237 		return ret;
238 	}
239 
240 	kvm_for_each_vcpu(i, vcpu, kvm) {
241 		int irq = dist->its_vm.vpes[i]->irq;
242 		unsigned long irq_flags = DB_IRQ_FLAGS;
243 
244 		/*
245 		 * Don't automatically enable the doorbell, as we're
246 		 * flipping it back and forth when the vcpu gets
247 		 * blocked. Also disable the lazy disabling, as the
248 		 * doorbell could kick us out of the guest too
249 		 * early...
250 		 *
251 		 * On GICv4.1, the doorbell is managed in HW and must
252 		 * be left enabled.
253 		 */
254 		if (kvm_vgic_global_state.has_gicv4_1)
255 			irq_flags &= ~IRQ_NOAUTOEN;
256 		irq_set_status_flags(irq, irq_flags);
257 
258 		ret = request_irq(irq, vgic_v4_doorbell_handler,
259 				  0, "vcpu", vcpu);
260 		if (ret) {
261 			kvm_err("failed to allocate vcpu IRQ%d\n", irq);
262 			/*
263 			 * Trick: adjust the number of vpes so we know
264 			 * how many to nuke on teardown...
265 			 */
266 			dist->its_vm.nr_vpes = i;
267 			break;
268 		}
269 	}
270 
271 	if (ret)
272 		vgic_v4_teardown(kvm);
273 
274 	return ret;
275 }
276 
277 /**
278  * vgic_v4_teardown - Free the GICv4 data structures
279  * @kvm:	Pointer to the VM being destroyed
280  *
281  * Relies on kvm->lock to be held.
282  */
283 void vgic_v4_teardown(struct kvm *kvm)
284 {
285 	struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
286 	int i;
287 
288 	if (!its_vm->vpes)
289 		return;
290 
291 	for (i = 0; i < its_vm->nr_vpes; i++) {
292 		struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
293 		int irq = its_vm->vpes[i]->irq;
294 
295 		irq_clear_status_flags(irq, DB_IRQ_FLAGS);
296 		free_irq(irq, vcpu);
297 	}
298 
299 	its_free_vcpu_irqs(its_vm);
300 	kfree(its_vm->vpes);
301 	its_vm->nr_vpes = 0;
302 	its_vm->vpes = NULL;
303 }
304 
305 int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
306 {
307 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
308 
309 	if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
310 		return 0;
311 
312 	return its_make_vpe_non_resident(vpe, need_db);
313 }
314 
315 int vgic_v4_load(struct kvm_vcpu *vcpu)
316 {
317 	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
318 	int err;
319 
320 	if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
321 		return 0;
322 
323 	/*
324 	 * Before making the VPE resident, make sure the redistributor
325 	 * corresponding to our current CPU expects us here. See the
326 	 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
327 	 * turns into a VMOVP command at the ITS level.
328 	 */
329 	err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
330 	if (err)
331 		return err;
332 
333 	err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
334 	if (err)
335 		return err;
336 
337 	/*
338 	 * Now that the VPE is resident, let's get rid of a potential
339 	 * doorbell interrupt that would still be pending. This is a
340 	 * GICv4.0 only "feature"...
341 	 */
342 	if (!kvm_vgic_global_state.has_gicv4_1)
343 		err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
344 
345 	return err;
346 }
347 
348 static struct vgic_its *vgic_get_its(struct kvm *kvm,
349 				     struct kvm_kernel_irq_routing_entry *irq_entry)
350 {
351 	struct kvm_msi msi  = (struct kvm_msi) {
352 		.address_lo	= irq_entry->msi.address_lo,
353 		.address_hi	= irq_entry->msi.address_hi,
354 		.data		= irq_entry->msi.data,
355 		.flags		= irq_entry->msi.flags,
356 		.devid		= irq_entry->msi.devid,
357 	};
358 
359 	return vgic_msi_to_its(kvm, &msi);
360 }
361 
362 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
363 			       struct kvm_kernel_irq_routing_entry *irq_entry)
364 {
365 	struct vgic_its *its;
366 	struct vgic_irq *irq;
367 	struct its_vlpi_map map;
368 	int ret;
369 
370 	if (!vgic_supports_direct_msis(kvm))
371 		return 0;
372 
373 	/*
374 	 * Get the ITS, and escape early on error (not a valid
375 	 * doorbell for any of our vITSs).
376 	 */
377 	its = vgic_get_its(kvm, irq_entry);
378 	if (IS_ERR(its))
379 		return 0;
380 
381 	mutex_lock(&its->its_lock);
382 
383 	/* Perform the actual DevID/EventID -> LPI translation. */
384 	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
385 				   irq_entry->msi.data, &irq);
386 	if (ret)
387 		goto out;
388 
389 	/*
390 	 * Emit the mapping request. If it fails, the ITS probably
391 	 * isn't v4 compatible, so let's silently bail out. Holding
392 	 * the ITS lock should ensure that nothing can modify the
393 	 * target vcpu.
394 	 */
395 	map = (struct its_vlpi_map) {
396 		.vm		= &kvm->arch.vgic.its_vm,
397 		.vpe		= &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
398 		.vintid		= irq->intid,
399 		.properties	= ((irq->priority & 0xfc) |
400 				   (irq->enabled ? LPI_PROP_ENABLED : 0) |
401 				   LPI_PROP_GROUP1),
402 		.db_enabled	= true,
403 	};
404 
405 	ret = its_map_vlpi(virq, &map);
406 	if (ret)
407 		goto out;
408 
409 	irq->hw		= true;
410 	irq->host_irq	= virq;
411 	atomic_inc(&map.vpe->vlpi_count);
412 
413 out:
414 	mutex_unlock(&its->its_lock);
415 	return ret;
416 }
417 
418 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
419 				 struct kvm_kernel_irq_routing_entry *irq_entry)
420 {
421 	struct vgic_its *its;
422 	struct vgic_irq *irq;
423 	int ret;
424 
425 	if (!vgic_supports_direct_msis(kvm))
426 		return 0;
427 
428 	/*
429 	 * Get the ITS, and escape early on error (not a valid
430 	 * doorbell for any of our vITSs).
431 	 */
432 	its = vgic_get_its(kvm, irq_entry);
433 	if (IS_ERR(its))
434 		return 0;
435 
436 	mutex_lock(&its->its_lock);
437 
438 	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
439 				   irq_entry->msi.data, &irq);
440 	if (ret)
441 		goto out;
442 
443 	WARN_ON(!(irq->hw && irq->host_irq == virq));
444 	if (irq->hw) {
445 		atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
446 		irq->hw = false;
447 		ret = its_unmap_vlpi(virq);
448 	}
449 
450 out:
451 	mutex_unlock(&its->its_lock);
452 	return ret;
453 }
454