1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2017 ARM Ltd. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/interrupt.h> 8 #include <linux/irq.h> 9 #include <linux/irqdomain.h> 10 #include <linux/kvm_host.h> 11 #include <linux/irqchip/arm-gic-v3.h> 12 13 #include "vgic.h" 14 15 /* 16 * How KVM uses GICv4 (insert rude comments here): 17 * 18 * The vgic-v4 layer acts as a bridge between several entities: 19 * - The GICv4 ITS representation offered by the ITS driver 20 * - VFIO, which is in charge of the PCI endpoint 21 * - The virtual ITS, which is the only thing the guest sees 22 * 23 * The configuration of VLPIs is triggered by a callback from VFIO, 24 * instructing KVM that a PCI device has been configured to deliver 25 * MSIs to a vITS. 26 * 27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry, 28 * and this is used to find the corresponding vITS data structures 29 * (ITS instance, device, event and irq) using a process that is 30 * extremely similar to the injection of an MSI. 31 * 32 * At this stage, we can link the guest's view of an LPI (uniquely 33 * identified by the routing entry) and the host irq, using the GICv4 34 * driver mapping operation. Should the mapping succeed, we've then 35 * successfully upgraded the guest's LPI to a VLPI. We can then start 36 * with updating GICv4's view of the property table and generating an 37 * INValidation in order to kickstart the delivery of this VLPI to the 38 * guest directly, without software intervention. Well, almost. 39 * 40 * When the PCI endpoint is deconfigured, this operation is reversed 41 * with VFIO calling kvm_vgic_v4_unset_forwarding(). 42 * 43 * Once the VLPI has been mapped, it needs to follow any change the 44 * guest performs on its LPI through the vITS. For that, a number of 45 * command handlers have hooks to communicate these changes to the HW: 46 * - Any invalidation triggers a call to its_prop_update_vlpi() 47 * - The INT command results in a irq_set_irqchip_state(), which 48 * generates an INT on the corresponding VLPI. 49 * - The CLEAR command results in a irq_set_irqchip_state(), which 50 * generates an CLEAR on the corresponding VLPI. 51 * - DISCARD translates into an unmap, similar to a call to 52 * kvm_vgic_v4_unset_forwarding(). 53 * - MOVI is translated by an update of the existing mapping, changing 54 * the target vcpu, resulting in a VMOVI being generated. 55 * - MOVALL is translated by a string of mapping updates (similar to 56 * the handling of MOVI). MOVALL is horrible. 57 * 58 * Note that a DISCARD/MAPTI sequence emitted from the guest without 59 * reprogramming the PCI endpoint after MAPTI does not result in a 60 * VLPI being mapped, as there is no callback from VFIO (the guest 61 * will get the interrupt via the normal SW injection). Fixing this is 62 * not trivial, and requires some horrible messing with the VFIO 63 * internals. Not fun. Don't do that. 64 * 65 * Then there is the scheduling. Each time a vcpu is about to run on a 66 * physical CPU, KVM must tell the corresponding redistributor about 67 * it. And if we've migrated our vcpu from one CPU to another, we must 68 * tell the ITS (so that the messages reach the right redistributor). 69 * This is done in two steps: first issue a irq_set_affinity() on the 70 * irq corresponding to the vcpu, then call its_make_vpe_resident(). 71 * You must be in a non-preemptible context. On exit, a call to 72 * its_make_vpe_non_resident() tells the redistributor that we're done 73 * with the vcpu. 74 * 75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt 76 * which will fire each time a VLPI is made pending whilst the vcpu is 77 * not running. Each time the vcpu gets blocked, the doorbell 78 * interrupt gets enabled. When the vcpu is unblocked (for whatever 79 * reason), the doorbell interrupt is disabled. 80 */ 81 82 #define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING) 83 84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info) 85 { 86 struct kvm_vcpu *vcpu = info; 87 88 /* We got the message, no need to fire again */ 89 if (!kvm_vgic_global_state.has_gicv4_1 && 90 !irqd_irq_disabled(&irq_to_desc(irq)->irq_data)) 91 disable_irq_nosync(irq); 92 93 vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true; 94 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 95 kvm_vcpu_kick(vcpu); 96 97 return IRQ_HANDLED; 98 } 99 100 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq) 101 { 102 vpe->sgi_config[irq->intid].enabled = irq->enabled; 103 vpe->sgi_config[irq->intid].group = irq->group; 104 vpe->sgi_config[irq->intid].priority = irq->priority; 105 } 106 107 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu) 108 { 109 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 110 int i; 111 112 /* 113 * With GICv4.1, every virtual SGI can be directly injected. So 114 * let's pretend that they are HW interrupts, tied to a host 115 * IRQ. The SGI code will do its magic. 116 */ 117 for (i = 0; i < VGIC_NR_SGIS; i++) { 118 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i); 119 struct irq_desc *desc; 120 unsigned long flags; 121 int ret; 122 123 raw_spin_lock_irqsave(&irq->irq_lock, flags); 124 125 if (irq->hw) 126 goto unlock; 127 128 irq->hw = true; 129 irq->host_irq = irq_find_mapping(vpe->sgi_domain, i); 130 131 /* Transfer the full irq state to the vPE */ 132 vgic_v4_sync_sgi_config(vpe, irq); 133 desc = irq_to_desc(irq->host_irq); 134 ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc), 135 false); 136 if (!WARN_ON(ret)) { 137 /* Transfer pending state */ 138 ret = irq_set_irqchip_state(irq->host_irq, 139 IRQCHIP_STATE_PENDING, 140 irq->pending_latch); 141 WARN_ON(ret); 142 irq->pending_latch = false; 143 } 144 unlock: 145 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 146 vgic_put_irq(vcpu->kvm, irq); 147 } 148 } 149 150 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu) 151 { 152 int i; 153 154 for (i = 0; i < VGIC_NR_SGIS; i++) { 155 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i); 156 struct irq_desc *desc; 157 unsigned long flags; 158 int ret; 159 160 raw_spin_lock_irqsave(&irq->irq_lock, flags); 161 162 if (!irq->hw) 163 goto unlock; 164 165 irq->hw = false; 166 ret = irq_get_irqchip_state(irq->host_irq, 167 IRQCHIP_STATE_PENDING, 168 &irq->pending_latch); 169 WARN_ON(ret); 170 171 desc = irq_to_desc(irq->host_irq); 172 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc)); 173 unlock: 174 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 175 vgic_put_irq(vcpu->kvm, irq); 176 } 177 } 178 179 /* Must be called with the kvm lock held */ 180 void vgic_v4_configure_vsgis(struct kvm *kvm) 181 { 182 struct vgic_dist *dist = &kvm->arch.vgic; 183 struct kvm_vcpu *vcpu; 184 int i; 185 186 kvm_arm_halt_guest(kvm); 187 188 kvm_for_each_vcpu(i, vcpu, kvm) { 189 if (dist->nassgireq) 190 vgic_v4_enable_vsgis(vcpu); 191 else 192 vgic_v4_disable_vsgis(vcpu); 193 } 194 195 kvm_arm_resume_guest(kvm); 196 } 197 198 /** 199 * vgic_v4_init - Initialize the GICv4 data structures 200 * @kvm: Pointer to the VM being initialized 201 * 202 * We may be called each time a vITS is created, or when the 203 * vgic is initialized. This relies on kvm->lock to be 204 * held. In both cases, the number of vcpus should now be 205 * fixed. 206 */ 207 int vgic_v4_init(struct kvm *kvm) 208 { 209 struct vgic_dist *dist = &kvm->arch.vgic; 210 struct kvm_vcpu *vcpu; 211 int i, nr_vcpus, ret; 212 213 if (!kvm_vgic_global_state.has_gicv4) 214 return 0; /* Nothing to see here... move along. */ 215 216 if (dist->its_vm.vpes) 217 return 0; 218 219 nr_vcpus = atomic_read(&kvm->online_vcpus); 220 221 dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes), 222 GFP_KERNEL); 223 if (!dist->its_vm.vpes) 224 return -ENOMEM; 225 226 dist->its_vm.nr_vpes = nr_vcpus; 227 228 kvm_for_each_vcpu(i, vcpu, kvm) 229 dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 230 231 ret = its_alloc_vcpu_irqs(&dist->its_vm); 232 if (ret < 0) { 233 kvm_err("VPE IRQ allocation failure\n"); 234 kfree(dist->its_vm.vpes); 235 dist->its_vm.nr_vpes = 0; 236 dist->its_vm.vpes = NULL; 237 return ret; 238 } 239 240 kvm_for_each_vcpu(i, vcpu, kvm) { 241 int irq = dist->its_vm.vpes[i]->irq; 242 unsigned long irq_flags = DB_IRQ_FLAGS; 243 244 /* 245 * Don't automatically enable the doorbell, as we're 246 * flipping it back and forth when the vcpu gets 247 * blocked. Also disable the lazy disabling, as the 248 * doorbell could kick us out of the guest too 249 * early... 250 * 251 * On GICv4.1, the doorbell is managed in HW and must 252 * be left enabled. 253 */ 254 if (kvm_vgic_global_state.has_gicv4_1) 255 irq_flags &= ~IRQ_NOAUTOEN; 256 irq_set_status_flags(irq, irq_flags); 257 258 ret = request_irq(irq, vgic_v4_doorbell_handler, 259 0, "vcpu", vcpu); 260 if (ret) { 261 kvm_err("failed to allocate vcpu IRQ%d\n", irq); 262 /* 263 * Trick: adjust the number of vpes so we know 264 * how many to nuke on teardown... 265 */ 266 dist->its_vm.nr_vpes = i; 267 break; 268 } 269 } 270 271 if (ret) 272 vgic_v4_teardown(kvm); 273 274 return ret; 275 } 276 277 /** 278 * vgic_v4_teardown - Free the GICv4 data structures 279 * @kvm: Pointer to the VM being destroyed 280 * 281 * Relies on kvm->lock to be held. 282 */ 283 void vgic_v4_teardown(struct kvm *kvm) 284 { 285 struct its_vm *its_vm = &kvm->arch.vgic.its_vm; 286 int i; 287 288 if (!its_vm->vpes) 289 return; 290 291 for (i = 0; i < its_vm->nr_vpes; i++) { 292 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i); 293 int irq = its_vm->vpes[i]->irq; 294 295 irq_clear_status_flags(irq, DB_IRQ_FLAGS); 296 free_irq(irq, vcpu); 297 } 298 299 its_free_vcpu_irqs(its_vm); 300 kfree(its_vm->vpes); 301 its_vm->nr_vpes = 0; 302 its_vm->vpes = NULL; 303 } 304 305 int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db) 306 { 307 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 308 309 if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident) 310 return 0; 311 312 return its_make_vpe_non_resident(vpe, need_db); 313 } 314 315 int vgic_v4_load(struct kvm_vcpu *vcpu) 316 { 317 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 318 int err; 319 320 if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident) 321 return 0; 322 323 /* 324 * Before making the VPE resident, make sure the redistributor 325 * corresponding to our current CPU expects us here. See the 326 * doc in drivers/irqchip/irq-gic-v4.c to understand how this 327 * turns into a VMOVP command at the ITS level. 328 */ 329 err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id())); 330 if (err) 331 return err; 332 333 err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled); 334 if (err) 335 return err; 336 337 /* 338 * Now that the VPE is resident, let's get rid of a potential 339 * doorbell interrupt that would still be pending. This is a 340 * GICv4.0 only "feature"... 341 */ 342 if (!kvm_vgic_global_state.has_gicv4_1) 343 err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false); 344 345 return err; 346 } 347 348 static struct vgic_its *vgic_get_its(struct kvm *kvm, 349 struct kvm_kernel_irq_routing_entry *irq_entry) 350 { 351 struct kvm_msi msi = (struct kvm_msi) { 352 .address_lo = irq_entry->msi.address_lo, 353 .address_hi = irq_entry->msi.address_hi, 354 .data = irq_entry->msi.data, 355 .flags = irq_entry->msi.flags, 356 .devid = irq_entry->msi.devid, 357 }; 358 359 return vgic_msi_to_its(kvm, &msi); 360 } 361 362 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq, 363 struct kvm_kernel_irq_routing_entry *irq_entry) 364 { 365 struct vgic_its *its; 366 struct vgic_irq *irq; 367 struct its_vlpi_map map; 368 int ret; 369 370 if (!vgic_supports_direct_msis(kvm)) 371 return 0; 372 373 /* 374 * Get the ITS, and escape early on error (not a valid 375 * doorbell for any of our vITSs). 376 */ 377 its = vgic_get_its(kvm, irq_entry); 378 if (IS_ERR(its)) 379 return 0; 380 381 mutex_lock(&its->its_lock); 382 383 /* Perform the actual DevID/EventID -> LPI translation. */ 384 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid, 385 irq_entry->msi.data, &irq); 386 if (ret) 387 goto out; 388 389 /* 390 * Emit the mapping request. If it fails, the ITS probably 391 * isn't v4 compatible, so let's silently bail out. Holding 392 * the ITS lock should ensure that nothing can modify the 393 * target vcpu. 394 */ 395 map = (struct its_vlpi_map) { 396 .vm = &kvm->arch.vgic.its_vm, 397 .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe, 398 .vintid = irq->intid, 399 .properties = ((irq->priority & 0xfc) | 400 (irq->enabled ? LPI_PROP_ENABLED : 0) | 401 LPI_PROP_GROUP1), 402 .db_enabled = true, 403 }; 404 405 ret = its_map_vlpi(virq, &map); 406 if (ret) 407 goto out; 408 409 irq->hw = true; 410 irq->host_irq = virq; 411 atomic_inc(&map.vpe->vlpi_count); 412 413 out: 414 mutex_unlock(&its->its_lock); 415 return ret; 416 } 417 418 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq, 419 struct kvm_kernel_irq_routing_entry *irq_entry) 420 { 421 struct vgic_its *its; 422 struct vgic_irq *irq; 423 int ret; 424 425 if (!vgic_supports_direct_msis(kvm)) 426 return 0; 427 428 /* 429 * Get the ITS, and escape early on error (not a valid 430 * doorbell for any of our vITSs). 431 */ 432 its = vgic_get_its(kvm, irq_entry); 433 if (IS_ERR(its)) 434 return 0; 435 436 mutex_lock(&its->its_lock); 437 438 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid, 439 irq_entry->msi.data, &irq); 440 if (ret) 441 goto out; 442 443 WARN_ON(!(irq->hw && irq->host_irq == virq)); 444 if (irq->hw) { 445 atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count); 446 irq->hw = false; 447 ret = its_unmap_vlpi(virq); 448 } 449 450 out: 451 mutex_unlock(&its->its_lock); 452 return ret; 453 } 454