1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kvm.h> 7 #include <linux/kvm_host.h> 8 #include <kvm/arm_vgic.h> 9 #include <asm/kvm_hyp.h> 10 #include <asm/kvm_mmu.h> 11 #include <asm/kvm_asm.h> 12 13 #include "vgic.h" 14 15 static bool group0_trap; 16 static bool group1_trap; 17 static bool common_trap; 18 static bool gicv4_enable; 19 20 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 21 { 22 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 23 24 cpuif->vgic_hcr |= ICH_HCR_UIE; 25 } 26 27 static bool lr_signals_eoi_mi(u64 lr_val) 28 { 29 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 30 !(lr_val & ICH_LR_HW); 31 } 32 33 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 34 { 35 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 36 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 37 u32 model = vcpu->kvm->arch.vgic.vgic_model; 38 int lr; 39 40 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 41 42 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 43 44 for (lr = 0; lr < cpuif->used_lrs; lr++) { 45 u64 val = cpuif->vgic_lr[lr]; 46 u32 intid, cpuid; 47 struct vgic_irq *irq; 48 bool is_v2_sgi = false; 49 50 cpuid = val & GICH_LR_PHYSID_CPUID; 51 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 52 53 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 54 intid = val & ICH_LR_VIRTUAL_ID_MASK; 55 } else { 56 intid = val & GICH_LR_VIRTUALID; 57 is_v2_sgi = vgic_irq_is_sgi(intid); 58 } 59 60 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 61 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 62 kvm_notify_acked_irq(vcpu->kvm, 0, 63 intid - VGIC_NR_PRIVATE_IRQS); 64 65 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 66 if (!irq) /* An LPI could have been unmapped. */ 67 continue; 68 69 raw_spin_lock(&irq->irq_lock); 70 71 /* Always preserve the active bit */ 72 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 73 74 if (irq->active && is_v2_sgi) 75 irq->active_source = cpuid; 76 77 /* Edge is the only case where we preserve the pending bit */ 78 if (irq->config == VGIC_CONFIG_EDGE && 79 (val & ICH_LR_PENDING_BIT)) { 80 irq->pending_latch = true; 81 82 if (is_v2_sgi) 83 irq->source |= (1 << cpuid); 84 } 85 86 /* 87 * Clear soft pending state when level irqs have been acked. 88 */ 89 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 90 irq->pending_latch = false; 91 92 /* 93 * Level-triggered mapped IRQs are special because we only 94 * observe rising edges as input to the VGIC. 95 * 96 * If the guest never acked the interrupt we have to sample 97 * the physical line and set the line level, because the 98 * device state could have changed or we simply need to 99 * process the still pending interrupt later. 100 * 101 * If this causes us to lower the level, we have to also clear 102 * the physical active state, since we will otherwise never be 103 * told when the interrupt becomes asserted again. 104 */ 105 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) { 106 irq->line_level = vgic_get_phys_line_level(irq); 107 108 if (!irq->line_level) 109 vgic_irq_set_phys_active(irq, false); 110 } 111 112 raw_spin_unlock(&irq->irq_lock); 113 vgic_put_irq(vcpu->kvm, irq); 114 } 115 116 cpuif->used_lrs = 0; 117 } 118 119 /* Requires the irq to be locked already */ 120 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 121 { 122 u32 model = vcpu->kvm->arch.vgic.vgic_model; 123 u64 val = irq->intid; 124 bool allow_pending = true, is_v2_sgi; 125 126 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 127 model == KVM_DEV_TYPE_ARM_VGIC_V2); 128 129 if (irq->active) { 130 val |= ICH_LR_ACTIVE_BIT; 131 if (is_v2_sgi) 132 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 133 if (vgic_irq_is_multi_sgi(irq)) { 134 allow_pending = false; 135 val |= ICH_LR_EOI; 136 } 137 } 138 139 if (irq->hw) { 140 val |= ICH_LR_HW; 141 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 142 /* 143 * Never set pending+active on a HW interrupt, as the 144 * pending state is kept at the physical distributor 145 * level. 146 */ 147 if (irq->active) 148 allow_pending = false; 149 } else { 150 if (irq->config == VGIC_CONFIG_LEVEL) { 151 val |= ICH_LR_EOI; 152 153 /* 154 * Software resampling doesn't work very well 155 * if we allow P+A, so let's not do that. 156 */ 157 if (irq->active) 158 allow_pending = false; 159 } 160 } 161 162 if (allow_pending && irq_is_pending(irq)) { 163 val |= ICH_LR_PENDING_BIT; 164 165 if (irq->config == VGIC_CONFIG_EDGE) 166 irq->pending_latch = false; 167 168 if (vgic_irq_is_sgi(irq->intid) && 169 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 170 u32 src = ffs(irq->source); 171 172 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 173 irq->intid)) 174 return; 175 176 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 177 irq->source &= ~(1 << (src - 1)); 178 if (irq->source) { 179 irq->pending_latch = true; 180 val |= ICH_LR_EOI; 181 } 182 } 183 } 184 185 /* 186 * Level-triggered mapped IRQs are special because we only observe 187 * rising edges as input to the VGIC. We therefore lower the line 188 * level here, so that we can take new virtual IRQs. See 189 * vgic_v3_fold_lr_state for more info. 190 */ 191 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 192 irq->line_level = false; 193 194 if (irq->group) 195 val |= ICH_LR_GROUP; 196 197 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 198 199 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 200 } 201 202 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 203 { 204 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 205 } 206 207 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 208 { 209 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 210 u32 model = vcpu->kvm->arch.vgic.vgic_model; 211 u32 vmcr; 212 213 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 214 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 215 ICH_VMCR_ACK_CTL_MASK; 216 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 217 ICH_VMCR_FIQ_EN_MASK; 218 } else { 219 /* 220 * When emulating GICv3 on GICv3 with SRE=1 on the 221 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 222 */ 223 vmcr = ICH_VMCR_FIQ_EN_MASK; 224 } 225 226 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 227 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 228 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 229 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 230 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 231 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 232 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 233 234 cpu_if->vgic_vmcr = vmcr; 235 } 236 237 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 238 { 239 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 240 u32 model = vcpu->kvm->arch.vgic.vgic_model; 241 u32 vmcr; 242 243 vmcr = cpu_if->vgic_vmcr; 244 245 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 246 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 247 ICH_VMCR_ACK_CTL_SHIFT; 248 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 249 ICH_VMCR_FIQ_EN_SHIFT; 250 } else { 251 /* 252 * When emulating GICv3 on GICv3 with SRE=1 on the 253 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 254 */ 255 vmcrp->fiqen = 1; 256 vmcrp->ackctl = 0; 257 } 258 259 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 260 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 261 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 262 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 263 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 264 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 265 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 266 } 267 268 #define INITIAL_PENDBASER_VALUE \ 269 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 270 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 271 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 272 273 void vgic_v3_enable(struct kvm_vcpu *vcpu) 274 { 275 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 276 277 /* 278 * By forcing VMCR to zero, the GIC will restore the binary 279 * points to their reset values. Anything else resets to zero 280 * anyway. 281 */ 282 vgic_v3->vgic_vmcr = 0; 283 284 /* 285 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 286 * way, so we force SRE to 1 to demonstrate this to the guest. 287 * Also, we don't support any form of IRQ/FIQ bypass. 288 * This goes with the spec allowing the value to be RAO/WI. 289 */ 290 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 291 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 292 ICC_SRE_EL1_DFB | 293 ICC_SRE_EL1_SRE); 294 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 295 } else { 296 vgic_v3->vgic_sre = 0; 297 } 298 299 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 300 ICH_VTR_ID_BITS_MASK) >> 301 ICH_VTR_ID_BITS_SHIFT; 302 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 303 ICH_VTR_PRI_BITS_MASK) >> 304 ICH_VTR_PRI_BITS_SHIFT) + 1; 305 306 /* Get the show on the road... */ 307 vgic_v3->vgic_hcr = ICH_HCR_EN; 308 if (group0_trap) 309 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 310 if (group1_trap) 311 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 312 if (common_trap) 313 vgic_v3->vgic_hcr |= ICH_HCR_TC; 314 } 315 316 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 317 { 318 struct kvm_vcpu *vcpu; 319 int byte_offset, bit_nr; 320 gpa_t pendbase, ptr; 321 bool status; 322 u8 val; 323 int ret; 324 unsigned long flags; 325 326 retry: 327 vcpu = irq->target_vcpu; 328 if (!vcpu) 329 return 0; 330 331 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 332 333 byte_offset = irq->intid / BITS_PER_BYTE; 334 bit_nr = irq->intid % BITS_PER_BYTE; 335 ptr = pendbase + byte_offset; 336 337 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 338 if (ret) 339 return ret; 340 341 status = val & (1 << bit_nr); 342 343 raw_spin_lock_irqsave(&irq->irq_lock, flags); 344 if (irq->target_vcpu != vcpu) { 345 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 346 goto retry; 347 } 348 irq->pending_latch = status; 349 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 350 351 if (status) { 352 /* clear consumed data */ 353 val &= ~(1 << bit_nr); 354 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 355 if (ret) 356 return ret; 357 } 358 return 0; 359 } 360 361 /* 362 * The deactivation of the doorbell interrupt will trigger the 363 * unmapping of the associated vPE. 364 */ 365 static void unmap_all_vpes(struct vgic_dist *dist) 366 { 367 struct irq_desc *desc; 368 int i; 369 370 for (i = 0; i < dist->its_vm.nr_vpes; i++) { 371 desc = irq_to_desc(dist->its_vm.vpes[i]->irq); 372 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc)); 373 } 374 } 375 376 static void map_all_vpes(struct vgic_dist *dist) 377 { 378 struct irq_desc *desc; 379 int i; 380 381 for (i = 0; i < dist->its_vm.nr_vpes; i++) { 382 desc = irq_to_desc(dist->its_vm.vpes[i]->irq); 383 irq_domain_activate_irq(irq_desc_get_irq_data(desc), false); 384 } 385 } 386 387 /** 388 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 389 * kvm lock and all vcpu lock must be held 390 */ 391 int vgic_v3_save_pending_tables(struct kvm *kvm) 392 { 393 struct vgic_dist *dist = &kvm->arch.vgic; 394 struct vgic_irq *irq; 395 gpa_t last_ptr = ~(gpa_t)0; 396 bool vlpi_avail = false; 397 int ret = 0; 398 u8 val; 399 400 if (unlikely(!vgic_initialized(kvm))) 401 return -ENXIO; 402 403 /* 404 * A preparation for getting any VLPI states. 405 * The above vgic initialized check also ensures that the allocation 406 * and enabling of the doorbells have already been done. 407 */ 408 if (kvm_vgic_global_state.has_gicv4_1) { 409 unmap_all_vpes(dist); 410 vlpi_avail = true; 411 } 412 413 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 414 int byte_offset, bit_nr; 415 struct kvm_vcpu *vcpu; 416 gpa_t pendbase, ptr; 417 bool is_pending; 418 bool stored; 419 420 vcpu = irq->target_vcpu; 421 if (!vcpu) 422 continue; 423 424 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 425 426 byte_offset = irq->intid / BITS_PER_BYTE; 427 bit_nr = irq->intid % BITS_PER_BYTE; 428 ptr = pendbase + byte_offset; 429 430 if (ptr != last_ptr) { 431 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 432 if (ret) 433 goto out; 434 last_ptr = ptr; 435 } 436 437 stored = val & (1U << bit_nr); 438 439 is_pending = irq->pending_latch; 440 441 if (irq->hw && vlpi_avail) 442 vgic_v4_get_vlpi_state(irq, &is_pending); 443 444 if (stored == is_pending) 445 continue; 446 447 if (is_pending) 448 val |= 1 << bit_nr; 449 else 450 val &= ~(1 << bit_nr); 451 452 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 453 if (ret) 454 goto out; 455 } 456 457 out: 458 if (vlpi_avail) 459 map_all_vpes(dist); 460 461 return ret; 462 } 463 464 /** 465 * vgic_v3_rdist_overlap - check if a region overlaps with any 466 * existing redistributor region 467 * 468 * @kvm: kvm handle 469 * @base: base of the region 470 * @size: size of region 471 * 472 * Return: true if there is an overlap 473 */ 474 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 475 { 476 struct vgic_dist *d = &kvm->arch.vgic; 477 struct vgic_redist_region *rdreg; 478 479 list_for_each_entry(rdreg, &d->rd_regions, list) { 480 if ((base + size > rdreg->base) && 481 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 482 return true; 483 } 484 return false; 485 } 486 487 /* 488 * Check for overlapping regions and for regions crossing the end of memory 489 * for base addresses which have already been set. 490 */ 491 bool vgic_v3_check_base(struct kvm *kvm) 492 { 493 struct vgic_dist *d = &kvm->arch.vgic; 494 struct vgic_redist_region *rdreg; 495 496 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 497 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 498 return false; 499 500 list_for_each_entry(rdreg, &d->rd_regions, list) { 501 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) < 502 rdreg->base) 503 return false; 504 } 505 506 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 507 return true; 508 509 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 510 KVM_VGIC_V3_DIST_SIZE); 511 } 512 513 /** 514 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 515 * which has free space to put a new rdist region. 516 * 517 * @rd_regions: redistributor region list head 518 * 519 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 520 * Stride between redistributors is 0 and regions are filled in the index order. 521 * 522 * Return: the redist region handle, if any, that has space to map a new rdist 523 * region. 524 */ 525 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 526 { 527 struct vgic_redist_region *rdreg; 528 529 list_for_each_entry(rdreg, rd_regions, list) { 530 if (!vgic_v3_redist_region_full(rdreg)) 531 return rdreg; 532 } 533 return NULL; 534 } 535 536 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 537 u32 index) 538 { 539 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 540 struct vgic_redist_region *rdreg; 541 542 list_for_each_entry(rdreg, rd_regions, list) { 543 if (rdreg->index == index) 544 return rdreg; 545 } 546 return NULL; 547 } 548 549 550 int vgic_v3_map_resources(struct kvm *kvm) 551 { 552 struct vgic_dist *dist = &kvm->arch.vgic; 553 struct kvm_vcpu *vcpu; 554 int ret = 0; 555 int c; 556 557 kvm_for_each_vcpu(c, vcpu, kvm) { 558 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 559 560 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 561 kvm_debug("vcpu %d redistributor base not set\n", c); 562 return -ENXIO; 563 } 564 } 565 566 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 567 kvm_err("Need to set vgic distributor addresses first\n"); 568 return -ENXIO; 569 } 570 571 if (!vgic_v3_check_base(kvm)) { 572 kvm_err("VGIC redist and dist frames overlap\n"); 573 return -EINVAL; 574 } 575 576 /* 577 * For a VGICv3 we require the userland to explicitly initialize 578 * the VGIC before we need to use it. 579 */ 580 if (!vgic_initialized(kvm)) { 581 return -EBUSY; 582 } 583 584 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); 585 if (ret) { 586 kvm_err("Unable to register VGICv3 dist MMIO regions\n"); 587 return ret; 588 } 589 590 if (kvm_vgic_global_state.has_gicv4_1) 591 vgic_v4_configure_vsgis(kvm); 592 593 return 0; 594 } 595 596 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 597 598 static int __init early_group0_trap_cfg(char *buf) 599 { 600 return strtobool(buf, &group0_trap); 601 } 602 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 603 604 static int __init early_group1_trap_cfg(char *buf) 605 { 606 return strtobool(buf, &group1_trap); 607 } 608 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 609 610 static int __init early_common_trap_cfg(char *buf) 611 { 612 return strtobool(buf, &common_trap); 613 } 614 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 615 616 static int __init early_gicv4_enable(char *buf) 617 { 618 return strtobool(buf, &gicv4_enable); 619 } 620 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 621 622 /** 623 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 624 * @info: pointer to the GIC description 625 * 626 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 627 * otherwise 628 */ 629 int vgic_v3_probe(const struct gic_kvm_info *info) 630 { 631 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 632 bool has_v2; 633 int ret; 634 635 has_v2 = ich_vtr_el2 >> 63; 636 ich_vtr_el2 = (u32)ich_vtr_el2; 637 638 /* 639 * The ListRegs field is 5 bits, but there is an architectural 640 * maximum of 16 list registers. Just ignore bit 4... 641 */ 642 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 643 kvm_vgic_global_state.can_emulate_gicv2 = false; 644 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 645 646 /* GICv4 support? */ 647 if (info->has_v4) { 648 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 649 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 650 kvm_info("GICv4%s support %sabled\n", 651 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 652 gicv4_enable ? "en" : "dis"); 653 } 654 655 kvm_vgic_global_state.vcpu_base = 0; 656 657 if (!info->vcpu.start) { 658 kvm_info("GICv3: no GICV resource entry\n"); 659 } else if (!has_v2) { 660 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 661 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 662 pr_warn("GICV physical address 0x%llx not page aligned\n", 663 (unsigned long long)info->vcpu.start); 664 } else { 665 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 666 kvm_vgic_global_state.can_emulate_gicv2 = true; 667 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 668 if (ret) { 669 kvm_err("Cannot register GICv2 KVM device.\n"); 670 return ret; 671 } 672 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 673 } 674 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 675 if (ret) { 676 kvm_err("Cannot register GICv3 KVM device.\n"); 677 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 678 return ret; 679 } 680 681 if (kvm_vgic_global_state.vcpu_base == 0) 682 kvm_info("disabling GICv2 emulation\n"); 683 684 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 685 group0_trap = true; 686 group1_trap = true; 687 } 688 689 if (group0_trap || group1_trap || common_trap) { 690 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n", 691 group0_trap ? "G0" : "", 692 group1_trap ? "G1" : "", 693 common_trap ? "C" : ""); 694 static_branch_enable(&vgic_v3_cpuif_trap); 695 } 696 697 kvm_vgic_global_state.vctrl_base = NULL; 698 kvm_vgic_global_state.type = VGIC_V3; 699 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 700 701 return 0; 702 } 703 704 void vgic_v3_load(struct kvm_vcpu *vcpu) 705 { 706 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 707 708 /* 709 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen 710 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the 711 * VMCR_EL2 save/restore in the world switch. 712 */ 713 if (likely(cpu_if->vgic_sre)) 714 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); 715 716 kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if); 717 718 if (has_vhe()) 719 __vgic_v3_activate_traps(cpu_if); 720 721 WARN_ON(vgic_v4_load(vcpu)); 722 } 723 724 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) 725 { 726 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 727 728 if (likely(cpu_if->vgic_sre)) 729 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); 730 } 731 732 void vgic_v3_put(struct kvm_vcpu *vcpu) 733 { 734 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 735 736 WARN_ON(vgic_v4_put(vcpu, false)); 737 738 vgic_v3_vmcr_sync(vcpu); 739 740 kvm_call_hyp(__vgic_v3_save_aprs, cpu_if); 741 742 if (has_vhe()) 743 __vgic_v3_deactivate_traps(cpu_if); 744 } 745