1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/kvm.h> 5 #include <linux/kvm_host.h> 6 #include <kvm/arm_vgic.h> 7 #include <asm/kvm_hyp.h> 8 #include <asm/kvm_mmu.h> 9 #include <asm/kvm_asm.h> 10 11 #include "vgic.h" 12 13 static bool group0_trap; 14 static bool group1_trap; 15 static bool common_trap; 16 static bool gicv4_enable; 17 18 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 19 { 20 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 21 22 cpuif->vgic_hcr |= ICH_HCR_UIE; 23 } 24 25 static bool lr_signals_eoi_mi(u64 lr_val) 26 { 27 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 28 !(lr_val & ICH_LR_HW); 29 } 30 31 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 32 { 33 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 34 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 35 u32 model = vcpu->kvm->arch.vgic.vgic_model; 36 int lr; 37 38 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 39 40 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 41 42 for (lr = 0; lr < cpuif->used_lrs; lr++) { 43 u64 val = cpuif->vgic_lr[lr]; 44 u32 intid, cpuid; 45 struct vgic_irq *irq; 46 bool is_v2_sgi = false; 47 48 cpuid = val & GICH_LR_PHYSID_CPUID; 49 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 50 51 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 52 intid = val & ICH_LR_VIRTUAL_ID_MASK; 53 } else { 54 intid = val & GICH_LR_VIRTUALID; 55 is_v2_sgi = vgic_irq_is_sgi(intid); 56 } 57 58 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 59 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 60 kvm_notify_acked_irq(vcpu->kvm, 0, 61 intid - VGIC_NR_PRIVATE_IRQS); 62 63 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 64 if (!irq) /* An LPI could have been unmapped. */ 65 continue; 66 67 raw_spin_lock(&irq->irq_lock); 68 69 /* Always preserve the active bit */ 70 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 71 72 if (irq->active && is_v2_sgi) 73 irq->active_source = cpuid; 74 75 /* Edge is the only case where we preserve the pending bit */ 76 if (irq->config == VGIC_CONFIG_EDGE && 77 (val & ICH_LR_PENDING_BIT)) { 78 irq->pending_latch = true; 79 80 if (is_v2_sgi) 81 irq->source |= (1 << cpuid); 82 } 83 84 /* 85 * Clear soft pending state when level irqs have been acked. 86 */ 87 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 88 irq->pending_latch = false; 89 90 /* 91 * Level-triggered mapped IRQs are special because we only 92 * observe rising edges as input to the VGIC. 93 * 94 * If the guest never acked the interrupt we have to sample 95 * the physical line and set the line level, because the 96 * device state could have changed or we simply need to 97 * process the still pending interrupt later. 98 * 99 * If this causes us to lower the level, we have to also clear 100 * the physical active state, since we will otherwise never be 101 * told when the interrupt becomes asserted again. 102 */ 103 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) { 104 irq->line_level = vgic_get_phys_line_level(irq); 105 106 if (!irq->line_level) 107 vgic_irq_set_phys_active(irq, false); 108 } 109 110 raw_spin_unlock(&irq->irq_lock); 111 vgic_put_irq(vcpu->kvm, irq); 112 } 113 114 cpuif->used_lrs = 0; 115 } 116 117 /* Requires the irq to be locked already */ 118 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 119 { 120 u32 model = vcpu->kvm->arch.vgic.vgic_model; 121 u64 val = irq->intid; 122 bool allow_pending = true, is_v2_sgi; 123 124 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 125 model == KVM_DEV_TYPE_ARM_VGIC_V2); 126 127 if (irq->active) { 128 val |= ICH_LR_ACTIVE_BIT; 129 if (is_v2_sgi) 130 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 131 if (vgic_irq_is_multi_sgi(irq)) { 132 allow_pending = false; 133 val |= ICH_LR_EOI; 134 } 135 } 136 137 if (irq->hw) { 138 val |= ICH_LR_HW; 139 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 140 /* 141 * Never set pending+active on a HW interrupt, as the 142 * pending state is kept at the physical distributor 143 * level. 144 */ 145 if (irq->active) 146 allow_pending = false; 147 } else { 148 if (irq->config == VGIC_CONFIG_LEVEL) { 149 val |= ICH_LR_EOI; 150 151 /* 152 * Software resampling doesn't work very well 153 * if we allow P+A, so let's not do that. 154 */ 155 if (irq->active) 156 allow_pending = false; 157 } 158 } 159 160 if (allow_pending && irq_is_pending(irq)) { 161 val |= ICH_LR_PENDING_BIT; 162 163 if (irq->config == VGIC_CONFIG_EDGE) 164 irq->pending_latch = false; 165 166 if (vgic_irq_is_sgi(irq->intid) && 167 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 168 u32 src = ffs(irq->source); 169 170 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 171 irq->intid)) 172 return; 173 174 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 175 irq->source &= ~(1 << (src - 1)); 176 if (irq->source) { 177 irq->pending_latch = true; 178 val |= ICH_LR_EOI; 179 } 180 } 181 } 182 183 /* 184 * Level-triggered mapped IRQs are special because we only observe 185 * rising edges as input to the VGIC. We therefore lower the line 186 * level here, so that we can take new virtual IRQs. See 187 * vgic_v3_fold_lr_state for more info. 188 */ 189 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 190 irq->line_level = false; 191 192 if (irq->group) 193 val |= ICH_LR_GROUP; 194 195 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 196 197 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 198 } 199 200 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 201 { 202 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 203 } 204 205 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 206 { 207 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 208 u32 model = vcpu->kvm->arch.vgic.vgic_model; 209 u32 vmcr; 210 211 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 212 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 213 ICH_VMCR_ACK_CTL_MASK; 214 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 215 ICH_VMCR_FIQ_EN_MASK; 216 } else { 217 /* 218 * When emulating GICv3 on GICv3 with SRE=1 on the 219 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 220 */ 221 vmcr = ICH_VMCR_FIQ_EN_MASK; 222 } 223 224 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 225 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 226 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 227 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 228 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 229 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 230 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 231 232 cpu_if->vgic_vmcr = vmcr; 233 } 234 235 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 236 { 237 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 238 u32 model = vcpu->kvm->arch.vgic.vgic_model; 239 u32 vmcr; 240 241 vmcr = cpu_if->vgic_vmcr; 242 243 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 244 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 245 ICH_VMCR_ACK_CTL_SHIFT; 246 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 247 ICH_VMCR_FIQ_EN_SHIFT; 248 } else { 249 /* 250 * When emulating GICv3 on GICv3 with SRE=1 on the 251 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 252 */ 253 vmcrp->fiqen = 1; 254 vmcrp->ackctl = 0; 255 } 256 257 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 258 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 259 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 260 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 261 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 262 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 263 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 264 } 265 266 #define INITIAL_PENDBASER_VALUE \ 267 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 268 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 269 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 270 271 void vgic_v3_enable(struct kvm_vcpu *vcpu) 272 { 273 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 274 275 /* 276 * By forcing VMCR to zero, the GIC will restore the binary 277 * points to their reset values. Anything else resets to zero 278 * anyway. 279 */ 280 vgic_v3->vgic_vmcr = 0; 281 282 /* 283 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 284 * way, so we force SRE to 1 to demonstrate this to the guest. 285 * Also, we don't support any form of IRQ/FIQ bypass. 286 * This goes with the spec allowing the value to be RAO/WI. 287 */ 288 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 289 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 290 ICC_SRE_EL1_DFB | 291 ICC_SRE_EL1_SRE); 292 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 293 } else { 294 vgic_v3->vgic_sre = 0; 295 } 296 297 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 298 ICH_VTR_ID_BITS_MASK) >> 299 ICH_VTR_ID_BITS_SHIFT; 300 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 301 ICH_VTR_PRI_BITS_MASK) >> 302 ICH_VTR_PRI_BITS_SHIFT) + 1; 303 304 /* Get the show on the road... */ 305 vgic_v3->vgic_hcr = ICH_HCR_EN; 306 if (group0_trap) 307 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 308 if (group1_trap) 309 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 310 if (common_trap) 311 vgic_v3->vgic_hcr |= ICH_HCR_TC; 312 } 313 314 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 315 { 316 struct kvm_vcpu *vcpu; 317 int byte_offset, bit_nr; 318 gpa_t pendbase, ptr; 319 bool status; 320 u8 val; 321 int ret; 322 unsigned long flags; 323 324 retry: 325 vcpu = irq->target_vcpu; 326 if (!vcpu) 327 return 0; 328 329 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 330 331 byte_offset = irq->intid / BITS_PER_BYTE; 332 bit_nr = irq->intid % BITS_PER_BYTE; 333 ptr = pendbase + byte_offset; 334 335 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 336 if (ret) 337 return ret; 338 339 status = val & (1 << bit_nr); 340 341 raw_spin_lock_irqsave(&irq->irq_lock, flags); 342 if (irq->target_vcpu != vcpu) { 343 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 344 goto retry; 345 } 346 irq->pending_latch = status; 347 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 348 349 if (status) { 350 /* clear consumed data */ 351 val &= ~(1 << bit_nr); 352 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 353 if (ret) 354 return ret; 355 } 356 return 0; 357 } 358 359 /** 360 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 361 * kvm lock and all vcpu lock must be held 362 */ 363 int vgic_v3_save_pending_tables(struct kvm *kvm) 364 { 365 struct vgic_dist *dist = &kvm->arch.vgic; 366 struct vgic_irq *irq; 367 gpa_t last_ptr = ~(gpa_t)0; 368 int ret; 369 u8 val; 370 371 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 372 int byte_offset, bit_nr; 373 struct kvm_vcpu *vcpu; 374 gpa_t pendbase, ptr; 375 bool stored; 376 377 vcpu = irq->target_vcpu; 378 if (!vcpu) 379 continue; 380 381 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 382 383 byte_offset = irq->intid / BITS_PER_BYTE; 384 bit_nr = irq->intid % BITS_PER_BYTE; 385 ptr = pendbase + byte_offset; 386 387 if (ptr != last_ptr) { 388 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 389 if (ret) 390 return ret; 391 last_ptr = ptr; 392 } 393 394 stored = val & (1U << bit_nr); 395 if (stored == irq->pending_latch) 396 continue; 397 398 if (irq->pending_latch) 399 val |= 1 << bit_nr; 400 else 401 val &= ~(1 << bit_nr); 402 403 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 404 if (ret) 405 return ret; 406 } 407 return 0; 408 } 409 410 /** 411 * vgic_v3_rdist_overlap - check if a region overlaps with any 412 * existing redistributor region 413 * 414 * @kvm: kvm handle 415 * @base: base of the region 416 * @size: size of region 417 * 418 * Return: true if there is an overlap 419 */ 420 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 421 { 422 struct vgic_dist *d = &kvm->arch.vgic; 423 struct vgic_redist_region *rdreg; 424 425 list_for_each_entry(rdreg, &d->rd_regions, list) { 426 if ((base + size > rdreg->base) && 427 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 428 return true; 429 } 430 return false; 431 } 432 433 /* 434 * Check for overlapping regions and for regions crossing the end of memory 435 * for base addresses which have already been set. 436 */ 437 bool vgic_v3_check_base(struct kvm *kvm) 438 { 439 struct vgic_dist *d = &kvm->arch.vgic; 440 struct vgic_redist_region *rdreg; 441 442 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 443 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 444 return false; 445 446 list_for_each_entry(rdreg, &d->rd_regions, list) { 447 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) < 448 rdreg->base) 449 return false; 450 } 451 452 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 453 return true; 454 455 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 456 KVM_VGIC_V3_DIST_SIZE); 457 } 458 459 /** 460 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 461 * which has free space to put a new rdist region. 462 * 463 * @rd_regions: redistributor region list head 464 * 465 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 466 * Stride between redistributors is 0 and regions are filled in the index order. 467 * 468 * Return: the redist region handle, if any, that has space to map a new rdist 469 * region. 470 */ 471 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 472 { 473 struct vgic_redist_region *rdreg; 474 475 list_for_each_entry(rdreg, rd_regions, list) { 476 if (!vgic_v3_redist_region_full(rdreg)) 477 return rdreg; 478 } 479 return NULL; 480 } 481 482 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 483 u32 index) 484 { 485 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 486 struct vgic_redist_region *rdreg; 487 488 list_for_each_entry(rdreg, rd_regions, list) { 489 if (rdreg->index == index) 490 return rdreg; 491 } 492 return NULL; 493 } 494 495 496 int vgic_v3_map_resources(struct kvm *kvm) 497 { 498 struct vgic_dist *dist = &kvm->arch.vgic; 499 struct kvm_vcpu *vcpu; 500 int ret = 0; 501 int c; 502 503 if (vgic_ready(kvm)) 504 goto out; 505 506 kvm_for_each_vcpu(c, vcpu, kvm) { 507 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 508 509 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 510 kvm_debug("vcpu %d redistributor base not set\n", c); 511 ret = -ENXIO; 512 goto out; 513 } 514 } 515 516 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 517 kvm_err("Need to set vgic distributor addresses first\n"); 518 ret = -ENXIO; 519 goto out; 520 } 521 522 if (!vgic_v3_check_base(kvm)) { 523 kvm_err("VGIC redist and dist frames overlap\n"); 524 ret = -EINVAL; 525 goto out; 526 } 527 528 /* 529 * For a VGICv3 we require the userland to explicitly initialize 530 * the VGIC before we need to use it. 531 */ 532 if (!vgic_initialized(kvm)) { 533 ret = -EBUSY; 534 goto out; 535 } 536 537 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); 538 if (ret) { 539 kvm_err("Unable to register VGICv3 dist MMIO regions\n"); 540 goto out; 541 } 542 543 if (kvm_vgic_global_state.has_gicv4_1) 544 vgic_v4_configure_vsgis(kvm); 545 dist->ready = true; 546 547 out: 548 return ret; 549 } 550 551 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 552 553 static int __init early_group0_trap_cfg(char *buf) 554 { 555 return strtobool(buf, &group0_trap); 556 } 557 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 558 559 static int __init early_group1_trap_cfg(char *buf) 560 { 561 return strtobool(buf, &group1_trap); 562 } 563 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 564 565 static int __init early_common_trap_cfg(char *buf) 566 { 567 return strtobool(buf, &common_trap); 568 } 569 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 570 571 static int __init early_gicv4_enable(char *buf) 572 { 573 return strtobool(buf, &gicv4_enable); 574 } 575 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 576 577 /** 578 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 579 * @info: pointer to the GIC description 580 * 581 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 582 * otherwise 583 */ 584 int vgic_v3_probe(const struct gic_kvm_info *info) 585 { 586 u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2); 587 int ret; 588 589 /* 590 * The ListRegs field is 5 bits, but there is an architectural 591 * maximum of 16 list registers. Just ignore bit 4... 592 */ 593 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 594 kvm_vgic_global_state.can_emulate_gicv2 = false; 595 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 596 597 /* GICv4 support? */ 598 if (info->has_v4) { 599 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 600 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 601 kvm_info("GICv4%s support %sabled\n", 602 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 603 gicv4_enable ? "en" : "dis"); 604 } 605 606 if (!info->vcpu.start) { 607 kvm_info("GICv3: no GICV resource entry\n"); 608 kvm_vgic_global_state.vcpu_base = 0; 609 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 610 pr_warn("GICV physical address 0x%llx not page aligned\n", 611 (unsigned long long)info->vcpu.start); 612 kvm_vgic_global_state.vcpu_base = 0; 613 } else { 614 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 615 kvm_vgic_global_state.can_emulate_gicv2 = true; 616 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 617 if (ret) { 618 kvm_err("Cannot register GICv2 KVM device.\n"); 619 return ret; 620 } 621 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 622 } 623 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 624 if (ret) { 625 kvm_err("Cannot register GICv3 KVM device.\n"); 626 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 627 return ret; 628 } 629 630 if (kvm_vgic_global_state.vcpu_base == 0) 631 kvm_info("disabling GICv2 emulation\n"); 632 633 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 634 group0_trap = true; 635 group1_trap = true; 636 } 637 638 if (group0_trap || group1_trap || common_trap) { 639 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n", 640 group0_trap ? "G0" : "", 641 group1_trap ? "G1" : "", 642 common_trap ? "C" : ""); 643 static_branch_enable(&vgic_v3_cpuif_trap); 644 } 645 646 kvm_vgic_global_state.vctrl_base = NULL; 647 kvm_vgic_global_state.type = VGIC_V3; 648 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 649 650 return 0; 651 } 652 653 void vgic_v3_load(struct kvm_vcpu *vcpu) 654 { 655 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 656 657 /* 658 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen 659 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the 660 * VMCR_EL2 save/restore in the world switch. 661 */ 662 if (likely(cpu_if->vgic_sre)) 663 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); 664 665 kvm_call_hyp(__vgic_v3_restore_aprs, kern_hyp_va(cpu_if)); 666 667 if (has_vhe()) 668 __vgic_v3_activate_traps(cpu_if); 669 670 WARN_ON(vgic_v4_load(vcpu)); 671 } 672 673 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) 674 { 675 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 676 677 if (likely(cpu_if->vgic_sre)) 678 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); 679 } 680 681 void vgic_v3_put(struct kvm_vcpu *vcpu) 682 { 683 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 684 685 WARN_ON(vgic_v4_put(vcpu, false)); 686 687 vgic_v3_vmcr_sync(vcpu); 688 689 kvm_call_hyp(__vgic_v3_save_aprs, kern_hyp_va(cpu_if)); 690 691 if (has_vhe()) 692 __vgic_v3_deactivate_traps(cpu_if); 693 } 694