1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kvm.h> 7 #include <linux/kvm_host.h> 8 #include <kvm/arm_vgic.h> 9 #include <asm/kvm_hyp.h> 10 #include <asm/kvm_mmu.h> 11 #include <asm/kvm_asm.h> 12 13 #include "vgic.h" 14 15 static bool group0_trap; 16 static bool group1_trap; 17 static bool common_trap; 18 static bool gicv4_enable; 19 20 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 21 { 22 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 23 24 cpuif->vgic_hcr |= ICH_HCR_UIE; 25 } 26 27 static bool lr_signals_eoi_mi(u64 lr_val) 28 { 29 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 30 !(lr_val & ICH_LR_HW); 31 } 32 33 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 34 { 35 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 36 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 37 u32 model = vcpu->kvm->arch.vgic.vgic_model; 38 int lr; 39 40 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 41 42 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 43 44 for (lr = 0; lr < cpuif->used_lrs; lr++) { 45 u64 val = cpuif->vgic_lr[lr]; 46 u32 intid, cpuid; 47 struct vgic_irq *irq; 48 bool is_v2_sgi = false; 49 bool deactivated; 50 51 cpuid = val & GICH_LR_PHYSID_CPUID; 52 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 53 54 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 55 intid = val & ICH_LR_VIRTUAL_ID_MASK; 56 } else { 57 intid = val & GICH_LR_VIRTUALID; 58 is_v2_sgi = vgic_irq_is_sgi(intid); 59 } 60 61 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 62 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 63 kvm_notify_acked_irq(vcpu->kvm, 0, 64 intid - VGIC_NR_PRIVATE_IRQS); 65 66 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 67 if (!irq) /* An LPI could have been unmapped. */ 68 continue; 69 70 raw_spin_lock(&irq->irq_lock); 71 72 /* Always preserve the active bit, note deactivation */ 73 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); 74 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 75 76 if (irq->active && is_v2_sgi) 77 irq->active_source = cpuid; 78 79 /* Edge is the only case where we preserve the pending bit */ 80 if (irq->config == VGIC_CONFIG_EDGE && 81 (val & ICH_LR_PENDING_BIT)) { 82 irq->pending_latch = true; 83 84 if (is_v2_sgi) 85 irq->source |= (1 << cpuid); 86 } 87 88 /* 89 * Clear soft pending state when level irqs have been acked. 90 */ 91 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 92 irq->pending_latch = false; 93 94 /* Handle resampling for mapped interrupts if required */ 95 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); 96 97 raw_spin_unlock(&irq->irq_lock); 98 vgic_put_irq(vcpu->kvm, irq); 99 } 100 101 cpuif->used_lrs = 0; 102 } 103 104 /* Requires the irq to be locked already */ 105 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 106 { 107 u32 model = vcpu->kvm->arch.vgic.vgic_model; 108 u64 val = irq->intid; 109 bool allow_pending = true, is_v2_sgi; 110 111 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 112 model == KVM_DEV_TYPE_ARM_VGIC_V2); 113 114 if (irq->active) { 115 val |= ICH_LR_ACTIVE_BIT; 116 if (is_v2_sgi) 117 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 118 if (vgic_irq_is_multi_sgi(irq)) { 119 allow_pending = false; 120 val |= ICH_LR_EOI; 121 } 122 } 123 124 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 125 val |= ICH_LR_HW; 126 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 127 /* 128 * Never set pending+active on a HW interrupt, as the 129 * pending state is kept at the physical distributor 130 * level. 131 */ 132 if (irq->active) 133 allow_pending = false; 134 } else { 135 if (irq->config == VGIC_CONFIG_LEVEL) { 136 val |= ICH_LR_EOI; 137 138 /* 139 * Software resampling doesn't work very well 140 * if we allow P+A, so let's not do that. 141 */ 142 if (irq->active) 143 allow_pending = false; 144 } 145 } 146 147 if (allow_pending && irq_is_pending(irq)) { 148 val |= ICH_LR_PENDING_BIT; 149 150 if (irq->config == VGIC_CONFIG_EDGE) 151 irq->pending_latch = false; 152 153 if (vgic_irq_is_sgi(irq->intid) && 154 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 155 u32 src = ffs(irq->source); 156 157 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 158 irq->intid)) 159 return; 160 161 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 162 irq->source &= ~(1 << (src - 1)); 163 if (irq->source) { 164 irq->pending_latch = true; 165 val |= ICH_LR_EOI; 166 } 167 } 168 } 169 170 /* 171 * Level-triggered mapped IRQs are special because we only observe 172 * rising edges as input to the VGIC. We therefore lower the line 173 * level here, so that we can take new virtual IRQs. See 174 * vgic_v3_fold_lr_state for more info. 175 */ 176 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 177 irq->line_level = false; 178 179 if (irq->group) 180 val |= ICH_LR_GROUP; 181 182 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 183 184 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 185 } 186 187 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 188 { 189 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 190 } 191 192 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 193 { 194 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 195 u32 model = vcpu->kvm->arch.vgic.vgic_model; 196 u32 vmcr; 197 198 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 199 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 200 ICH_VMCR_ACK_CTL_MASK; 201 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 202 ICH_VMCR_FIQ_EN_MASK; 203 } else { 204 /* 205 * When emulating GICv3 on GICv3 with SRE=1 on the 206 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 207 */ 208 vmcr = ICH_VMCR_FIQ_EN_MASK; 209 } 210 211 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 212 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 213 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 214 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 215 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 216 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 217 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 218 219 cpu_if->vgic_vmcr = vmcr; 220 } 221 222 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 223 { 224 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 225 u32 model = vcpu->kvm->arch.vgic.vgic_model; 226 u32 vmcr; 227 228 vmcr = cpu_if->vgic_vmcr; 229 230 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 231 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 232 ICH_VMCR_ACK_CTL_SHIFT; 233 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 234 ICH_VMCR_FIQ_EN_SHIFT; 235 } else { 236 /* 237 * When emulating GICv3 on GICv3 with SRE=1 on the 238 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 239 */ 240 vmcrp->fiqen = 1; 241 vmcrp->ackctl = 0; 242 } 243 244 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 245 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 246 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 247 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 248 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 249 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 250 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 251 } 252 253 #define INITIAL_PENDBASER_VALUE \ 254 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 255 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 256 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 257 258 void vgic_v3_enable(struct kvm_vcpu *vcpu) 259 { 260 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 261 262 /* 263 * By forcing VMCR to zero, the GIC will restore the binary 264 * points to their reset values. Anything else resets to zero 265 * anyway. 266 */ 267 vgic_v3->vgic_vmcr = 0; 268 269 /* 270 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 271 * way, so we force SRE to 1 to demonstrate this to the guest. 272 * Also, we don't support any form of IRQ/FIQ bypass. 273 * This goes with the spec allowing the value to be RAO/WI. 274 */ 275 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 276 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 277 ICC_SRE_EL1_DFB | 278 ICC_SRE_EL1_SRE); 279 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 280 } else { 281 vgic_v3->vgic_sre = 0; 282 } 283 284 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 285 ICH_VTR_ID_BITS_MASK) >> 286 ICH_VTR_ID_BITS_SHIFT; 287 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 288 ICH_VTR_PRI_BITS_MASK) >> 289 ICH_VTR_PRI_BITS_SHIFT) + 1; 290 291 /* Get the show on the road... */ 292 vgic_v3->vgic_hcr = ICH_HCR_EN; 293 if (group0_trap) 294 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 295 if (group1_trap) 296 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 297 if (common_trap) 298 vgic_v3->vgic_hcr |= ICH_HCR_TC; 299 } 300 301 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 302 { 303 struct kvm_vcpu *vcpu; 304 int byte_offset, bit_nr; 305 gpa_t pendbase, ptr; 306 bool status; 307 u8 val; 308 int ret; 309 unsigned long flags; 310 311 retry: 312 vcpu = irq->target_vcpu; 313 if (!vcpu) 314 return 0; 315 316 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 317 318 byte_offset = irq->intid / BITS_PER_BYTE; 319 bit_nr = irq->intid % BITS_PER_BYTE; 320 ptr = pendbase + byte_offset; 321 322 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 323 if (ret) 324 return ret; 325 326 status = val & (1 << bit_nr); 327 328 raw_spin_lock_irqsave(&irq->irq_lock, flags); 329 if (irq->target_vcpu != vcpu) { 330 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 331 goto retry; 332 } 333 irq->pending_latch = status; 334 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 335 336 if (status) { 337 /* clear consumed data */ 338 val &= ~(1 << bit_nr); 339 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 340 if (ret) 341 return ret; 342 } 343 return 0; 344 } 345 346 /* 347 * The deactivation of the doorbell interrupt will trigger the 348 * unmapping of the associated vPE. 349 */ 350 static void unmap_all_vpes(struct vgic_dist *dist) 351 { 352 struct irq_desc *desc; 353 int i; 354 355 for (i = 0; i < dist->its_vm.nr_vpes; i++) { 356 desc = irq_to_desc(dist->its_vm.vpes[i]->irq); 357 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc)); 358 } 359 } 360 361 static void map_all_vpes(struct vgic_dist *dist) 362 { 363 struct irq_desc *desc; 364 int i; 365 366 for (i = 0; i < dist->its_vm.nr_vpes; i++) { 367 desc = irq_to_desc(dist->its_vm.vpes[i]->irq); 368 irq_domain_activate_irq(irq_desc_get_irq_data(desc), false); 369 } 370 } 371 372 /** 373 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 374 * kvm lock and all vcpu lock must be held 375 */ 376 int vgic_v3_save_pending_tables(struct kvm *kvm) 377 { 378 struct vgic_dist *dist = &kvm->arch.vgic; 379 struct vgic_irq *irq; 380 gpa_t last_ptr = ~(gpa_t)0; 381 bool vlpi_avail = false; 382 int ret = 0; 383 u8 val; 384 385 if (unlikely(!vgic_initialized(kvm))) 386 return -ENXIO; 387 388 /* 389 * A preparation for getting any VLPI states. 390 * The above vgic initialized check also ensures that the allocation 391 * and enabling of the doorbells have already been done. 392 */ 393 if (kvm_vgic_global_state.has_gicv4_1) { 394 unmap_all_vpes(dist); 395 vlpi_avail = true; 396 } 397 398 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 399 int byte_offset, bit_nr; 400 struct kvm_vcpu *vcpu; 401 gpa_t pendbase, ptr; 402 bool is_pending; 403 bool stored; 404 405 vcpu = irq->target_vcpu; 406 if (!vcpu) 407 continue; 408 409 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 410 411 byte_offset = irq->intid / BITS_PER_BYTE; 412 bit_nr = irq->intid % BITS_PER_BYTE; 413 ptr = pendbase + byte_offset; 414 415 if (ptr != last_ptr) { 416 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 417 if (ret) 418 goto out; 419 last_ptr = ptr; 420 } 421 422 stored = val & (1U << bit_nr); 423 424 is_pending = irq->pending_latch; 425 426 if (irq->hw && vlpi_avail) 427 vgic_v4_get_vlpi_state(irq, &is_pending); 428 429 if (stored == is_pending) 430 continue; 431 432 if (is_pending) 433 val |= 1 << bit_nr; 434 else 435 val &= ~(1 << bit_nr); 436 437 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 438 if (ret) 439 goto out; 440 } 441 442 out: 443 if (vlpi_avail) 444 map_all_vpes(dist); 445 446 return ret; 447 } 448 449 /** 450 * vgic_v3_rdist_overlap - check if a region overlaps with any 451 * existing redistributor region 452 * 453 * @kvm: kvm handle 454 * @base: base of the region 455 * @size: size of region 456 * 457 * Return: true if there is an overlap 458 */ 459 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 460 { 461 struct vgic_dist *d = &kvm->arch.vgic; 462 struct vgic_redist_region *rdreg; 463 464 list_for_each_entry(rdreg, &d->rd_regions, list) { 465 if ((base + size > rdreg->base) && 466 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 467 return true; 468 } 469 return false; 470 } 471 472 /* 473 * Check for overlapping regions and for regions crossing the end of memory 474 * for base addresses which have already been set. 475 */ 476 bool vgic_v3_check_base(struct kvm *kvm) 477 { 478 struct vgic_dist *d = &kvm->arch.vgic; 479 struct vgic_redist_region *rdreg; 480 481 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 482 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 483 return false; 484 485 list_for_each_entry(rdreg, &d->rd_regions, list) { 486 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) < 487 rdreg->base) 488 return false; 489 } 490 491 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 492 return true; 493 494 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 495 KVM_VGIC_V3_DIST_SIZE); 496 } 497 498 /** 499 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 500 * which has free space to put a new rdist region. 501 * 502 * @rd_regions: redistributor region list head 503 * 504 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 505 * Stride between redistributors is 0 and regions are filled in the index order. 506 * 507 * Return: the redist region handle, if any, that has space to map a new rdist 508 * region. 509 */ 510 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 511 { 512 struct vgic_redist_region *rdreg; 513 514 list_for_each_entry(rdreg, rd_regions, list) { 515 if (!vgic_v3_redist_region_full(rdreg)) 516 return rdreg; 517 } 518 return NULL; 519 } 520 521 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 522 u32 index) 523 { 524 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 525 struct vgic_redist_region *rdreg; 526 527 list_for_each_entry(rdreg, rd_regions, list) { 528 if (rdreg->index == index) 529 return rdreg; 530 } 531 return NULL; 532 } 533 534 535 int vgic_v3_map_resources(struct kvm *kvm) 536 { 537 struct vgic_dist *dist = &kvm->arch.vgic; 538 struct kvm_vcpu *vcpu; 539 int ret = 0; 540 int c; 541 542 kvm_for_each_vcpu(c, vcpu, kvm) { 543 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 544 545 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 546 kvm_debug("vcpu %d redistributor base not set\n", c); 547 return -ENXIO; 548 } 549 } 550 551 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 552 kvm_err("Need to set vgic distributor addresses first\n"); 553 return -ENXIO; 554 } 555 556 if (!vgic_v3_check_base(kvm)) { 557 kvm_err("VGIC redist and dist frames overlap\n"); 558 return -EINVAL; 559 } 560 561 /* 562 * For a VGICv3 we require the userland to explicitly initialize 563 * the VGIC before we need to use it. 564 */ 565 if (!vgic_initialized(kvm)) { 566 return -EBUSY; 567 } 568 569 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); 570 if (ret) { 571 kvm_err("Unable to register VGICv3 dist MMIO regions\n"); 572 return ret; 573 } 574 575 if (kvm_vgic_global_state.has_gicv4_1) 576 vgic_v4_configure_vsgis(kvm); 577 578 return 0; 579 } 580 581 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 582 583 static int __init early_group0_trap_cfg(char *buf) 584 { 585 return strtobool(buf, &group0_trap); 586 } 587 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 588 589 static int __init early_group1_trap_cfg(char *buf) 590 { 591 return strtobool(buf, &group1_trap); 592 } 593 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 594 595 static int __init early_common_trap_cfg(char *buf) 596 { 597 return strtobool(buf, &common_trap); 598 } 599 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 600 601 static int __init early_gicv4_enable(char *buf) 602 { 603 return strtobool(buf, &gicv4_enable); 604 } 605 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 606 607 /** 608 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 609 * @info: pointer to the GIC description 610 * 611 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 612 * otherwise 613 */ 614 int vgic_v3_probe(const struct gic_kvm_info *info) 615 { 616 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 617 bool has_v2; 618 int ret; 619 620 has_v2 = ich_vtr_el2 >> 63; 621 ich_vtr_el2 = (u32)ich_vtr_el2; 622 623 /* 624 * The ListRegs field is 5 bits, but there is an architectural 625 * maximum of 16 list registers. Just ignore bit 4... 626 */ 627 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 628 kvm_vgic_global_state.can_emulate_gicv2 = false; 629 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 630 631 /* GICv4 support? */ 632 if (info->has_v4) { 633 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 634 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 635 kvm_info("GICv4%s support %sabled\n", 636 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 637 gicv4_enable ? "en" : "dis"); 638 } 639 640 kvm_vgic_global_state.vcpu_base = 0; 641 642 if (!info->vcpu.start) { 643 kvm_info("GICv3: no GICV resource entry\n"); 644 } else if (!has_v2) { 645 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 646 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 647 pr_warn("GICV physical address 0x%llx not page aligned\n", 648 (unsigned long long)info->vcpu.start); 649 } else { 650 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 651 kvm_vgic_global_state.can_emulate_gicv2 = true; 652 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 653 if (ret) { 654 kvm_err("Cannot register GICv2 KVM device.\n"); 655 return ret; 656 } 657 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 658 } 659 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 660 if (ret) { 661 kvm_err("Cannot register GICv3 KVM device.\n"); 662 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 663 return ret; 664 } 665 666 if (kvm_vgic_global_state.vcpu_base == 0) 667 kvm_info("disabling GICv2 emulation\n"); 668 669 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 670 group0_trap = true; 671 group1_trap = true; 672 } 673 674 if (group0_trap || group1_trap || common_trap) { 675 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n", 676 group0_trap ? "G0" : "", 677 group1_trap ? "G1" : "", 678 common_trap ? "C" : ""); 679 static_branch_enable(&vgic_v3_cpuif_trap); 680 } 681 682 kvm_vgic_global_state.vctrl_base = NULL; 683 kvm_vgic_global_state.type = VGIC_V3; 684 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 685 686 return 0; 687 } 688 689 void vgic_v3_load(struct kvm_vcpu *vcpu) 690 { 691 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 692 693 /* 694 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen 695 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the 696 * VMCR_EL2 save/restore in the world switch. 697 */ 698 if (likely(cpu_if->vgic_sre)) 699 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); 700 701 kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if); 702 703 if (has_vhe()) 704 __vgic_v3_activate_traps(cpu_if); 705 706 WARN_ON(vgic_v4_load(vcpu)); 707 } 708 709 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) 710 { 711 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 712 713 if (likely(cpu_if->vgic_sre)) 714 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); 715 } 716 717 void vgic_v3_put(struct kvm_vcpu *vcpu) 718 { 719 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 720 721 WARN_ON(vgic_v4_put(vcpu, false)); 722 723 vgic_v3_vmcr_sync(vcpu); 724 725 kvm_call_hyp(__vgic_v3_save_aprs, cpu_if); 726 727 if (has_vhe()) 728 __vgic_v3_deactivate_traps(cpu_if); 729 } 730