xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-v3.c (revision 3c8c1539)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/irq.h>
5 #include <linux/irqdomain.h>
6 #include <linux/kvm.h>
7 #include <linux/kvm_host.h>
8 #include <kvm/arm_vgic.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_asm.h>
12 
13 #include "vgic.h"
14 
15 static bool group0_trap;
16 static bool group1_trap;
17 static bool common_trap;
18 static bool gicv4_enable;
19 
20 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
21 {
22 	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
23 
24 	cpuif->vgic_hcr |= ICH_HCR_UIE;
25 }
26 
27 static bool lr_signals_eoi_mi(u64 lr_val)
28 {
29 	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
30 	       !(lr_val & ICH_LR_HW);
31 }
32 
33 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
34 {
35 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
36 	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
37 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
38 	int lr;
39 
40 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
41 
42 	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
43 
44 	for (lr = 0; lr < cpuif->used_lrs; lr++) {
45 		u64 val = cpuif->vgic_lr[lr];
46 		u32 intid, cpuid;
47 		struct vgic_irq *irq;
48 		bool is_v2_sgi = false;
49 		bool deactivated;
50 
51 		cpuid = val & GICH_LR_PHYSID_CPUID;
52 		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
53 
54 		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
55 			intid = val & ICH_LR_VIRTUAL_ID_MASK;
56 		} else {
57 			intid = val & GICH_LR_VIRTUALID;
58 			is_v2_sgi = vgic_irq_is_sgi(intid);
59 		}
60 
61 		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
62 		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
63 			kvm_notify_acked_irq(vcpu->kvm, 0,
64 					     intid - VGIC_NR_PRIVATE_IRQS);
65 
66 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
67 		if (!irq)	/* An LPI could have been unmapped. */
68 			continue;
69 
70 		raw_spin_lock(&irq->irq_lock);
71 
72 		/* Always preserve the active bit, note deactivation */
73 		deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
74 		irq->active = !!(val & ICH_LR_ACTIVE_BIT);
75 
76 		if (irq->active && is_v2_sgi)
77 			irq->active_source = cpuid;
78 
79 		/* Edge is the only case where we preserve the pending bit */
80 		if (irq->config == VGIC_CONFIG_EDGE &&
81 		    (val & ICH_LR_PENDING_BIT)) {
82 			irq->pending_latch = true;
83 
84 			if (is_v2_sgi)
85 				irq->source |= (1 << cpuid);
86 		}
87 
88 		/*
89 		 * Clear soft pending state when level irqs have been acked.
90 		 */
91 		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
92 			irq->pending_latch = false;
93 
94 		/* Handle resampling for mapped interrupts if required */
95 		vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
96 
97 		raw_spin_unlock(&irq->irq_lock);
98 		vgic_put_irq(vcpu->kvm, irq);
99 	}
100 
101 	cpuif->used_lrs = 0;
102 }
103 
104 /* Requires the irq to be locked already */
105 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
106 {
107 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
108 	u64 val = irq->intid;
109 	bool allow_pending = true, is_v2_sgi;
110 
111 	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
112 		     model == KVM_DEV_TYPE_ARM_VGIC_V2);
113 
114 	if (irq->active) {
115 		val |= ICH_LR_ACTIVE_BIT;
116 		if (is_v2_sgi)
117 			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
118 		if (vgic_irq_is_multi_sgi(irq)) {
119 			allow_pending = false;
120 			val |= ICH_LR_EOI;
121 		}
122 	}
123 
124 	if (irq->hw && !vgic_irq_needs_resampling(irq)) {
125 		val |= ICH_LR_HW;
126 		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
127 		/*
128 		 * Never set pending+active on a HW interrupt, as the
129 		 * pending state is kept at the physical distributor
130 		 * level.
131 		 */
132 		if (irq->active)
133 			allow_pending = false;
134 	} else {
135 		if (irq->config == VGIC_CONFIG_LEVEL) {
136 			val |= ICH_LR_EOI;
137 
138 			/*
139 			 * Software resampling doesn't work very well
140 			 * if we allow P+A, so let's not do that.
141 			 */
142 			if (irq->active)
143 				allow_pending = false;
144 		}
145 	}
146 
147 	if (allow_pending && irq_is_pending(irq)) {
148 		val |= ICH_LR_PENDING_BIT;
149 
150 		if (irq->config == VGIC_CONFIG_EDGE)
151 			irq->pending_latch = false;
152 
153 		if (vgic_irq_is_sgi(irq->intid) &&
154 		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
155 			u32 src = ffs(irq->source);
156 
157 			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
158 					   irq->intid))
159 				return;
160 
161 			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
162 			irq->source &= ~(1 << (src - 1));
163 			if (irq->source) {
164 				irq->pending_latch = true;
165 				val |= ICH_LR_EOI;
166 			}
167 		}
168 	}
169 
170 	/*
171 	 * Level-triggered mapped IRQs are special because we only observe
172 	 * rising edges as input to the VGIC.  We therefore lower the line
173 	 * level here, so that we can take new virtual IRQs.  See
174 	 * vgic_v3_fold_lr_state for more info.
175 	 */
176 	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
177 		irq->line_level = false;
178 
179 	if (irq->group)
180 		val |= ICH_LR_GROUP;
181 
182 	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
183 
184 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
185 }
186 
187 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
188 {
189 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
190 }
191 
192 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
193 {
194 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
195 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
196 	u32 vmcr;
197 
198 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
199 		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
200 			ICH_VMCR_ACK_CTL_MASK;
201 		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
202 			ICH_VMCR_FIQ_EN_MASK;
203 	} else {
204 		/*
205 		 * When emulating GICv3 on GICv3 with SRE=1 on the
206 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
207 		 */
208 		vmcr = ICH_VMCR_FIQ_EN_MASK;
209 	}
210 
211 	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
212 	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
213 	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
214 	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
215 	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
216 	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
217 	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
218 
219 	cpu_if->vgic_vmcr = vmcr;
220 }
221 
222 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
223 {
224 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
225 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
226 	u32 vmcr;
227 
228 	vmcr = cpu_if->vgic_vmcr;
229 
230 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
231 		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
232 			ICH_VMCR_ACK_CTL_SHIFT;
233 		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
234 			ICH_VMCR_FIQ_EN_SHIFT;
235 	} else {
236 		/*
237 		 * When emulating GICv3 on GICv3 with SRE=1 on the
238 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
239 		 */
240 		vmcrp->fiqen = 1;
241 		vmcrp->ackctl = 0;
242 	}
243 
244 	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
245 	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
246 	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
247 	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
248 	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
249 	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
250 	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
251 }
252 
253 #define INITIAL_PENDBASER_VALUE						  \
254 	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
255 	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
256 	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
257 
258 void vgic_v3_enable(struct kvm_vcpu *vcpu)
259 {
260 	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
261 
262 	/*
263 	 * By forcing VMCR to zero, the GIC will restore the binary
264 	 * points to their reset values. Anything else resets to zero
265 	 * anyway.
266 	 */
267 	vgic_v3->vgic_vmcr = 0;
268 
269 	/*
270 	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
271 	 * way, so we force SRE to 1 to demonstrate this to the guest.
272 	 * Also, we don't support any form of IRQ/FIQ bypass.
273 	 * This goes with the spec allowing the value to be RAO/WI.
274 	 */
275 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
276 		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
277 				     ICC_SRE_EL1_DFB |
278 				     ICC_SRE_EL1_SRE);
279 		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
280 	} else {
281 		vgic_v3->vgic_sre = 0;
282 	}
283 
284 	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
285 					   ICH_VTR_ID_BITS_MASK) >>
286 					   ICH_VTR_ID_BITS_SHIFT;
287 	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
288 					    ICH_VTR_PRI_BITS_MASK) >>
289 					    ICH_VTR_PRI_BITS_SHIFT) + 1;
290 
291 	/* Get the show on the road... */
292 	vgic_v3->vgic_hcr = ICH_HCR_EN;
293 	if (group0_trap)
294 		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
295 	if (group1_trap)
296 		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
297 	if (common_trap)
298 		vgic_v3->vgic_hcr |= ICH_HCR_TC;
299 }
300 
301 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
302 {
303 	struct kvm_vcpu *vcpu;
304 	int byte_offset, bit_nr;
305 	gpa_t pendbase, ptr;
306 	bool status;
307 	u8 val;
308 	int ret;
309 	unsigned long flags;
310 
311 retry:
312 	vcpu = irq->target_vcpu;
313 	if (!vcpu)
314 		return 0;
315 
316 	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
317 
318 	byte_offset = irq->intid / BITS_PER_BYTE;
319 	bit_nr = irq->intid % BITS_PER_BYTE;
320 	ptr = pendbase + byte_offset;
321 
322 	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
323 	if (ret)
324 		return ret;
325 
326 	status = val & (1 << bit_nr);
327 
328 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
329 	if (irq->target_vcpu != vcpu) {
330 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
331 		goto retry;
332 	}
333 	irq->pending_latch = status;
334 	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
335 
336 	if (status) {
337 		/* clear consumed data */
338 		val &= ~(1 << bit_nr);
339 		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
340 		if (ret)
341 			return ret;
342 	}
343 	return 0;
344 }
345 
346 /*
347  * The deactivation of the doorbell interrupt will trigger the
348  * unmapping of the associated vPE.
349  */
350 static void unmap_all_vpes(struct vgic_dist *dist)
351 {
352 	struct irq_desc *desc;
353 	int i;
354 
355 	for (i = 0; i < dist->its_vm.nr_vpes; i++) {
356 		desc = irq_to_desc(dist->its_vm.vpes[i]->irq);
357 		irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
358 	}
359 }
360 
361 static void map_all_vpes(struct vgic_dist *dist)
362 {
363 	struct irq_desc *desc;
364 	int i;
365 
366 	for (i = 0; i < dist->its_vm.nr_vpes; i++) {
367 		desc = irq_to_desc(dist->its_vm.vpes[i]->irq);
368 		irq_domain_activate_irq(irq_desc_get_irq_data(desc), false);
369 	}
370 }
371 
372 /**
373  * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
374  * kvm lock and all vcpu lock must be held
375  */
376 int vgic_v3_save_pending_tables(struct kvm *kvm)
377 {
378 	struct vgic_dist *dist = &kvm->arch.vgic;
379 	struct vgic_irq *irq;
380 	gpa_t last_ptr = ~(gpa_t)0;
381 	bool vlpi_avail = false;
382 	int ret = 0;
383 	u8 val;
384 
385 	if (unlikely(!vgic_initialized(kvm)))
386 		return -ENXIO;
387 
388 	/*
389 	 * A preparation for getting any VLPI states.
390 	 * The above vgic initialized check also ensures that the allocation
391 	 * and enabling of the doorbells have already been done.
392 	 */
393 	if (kvm_vgic_global_state.has_gicv4_1) {
394 		unmap_all_vpes(dist);
395 		vlpi_avail = true;
396 	}
397 
398 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
399 		int byte_offset, bit_nr;
400 		struct kvm_vcpu *vcpu;
401 		gpa_t pendbase, ptr;
402 		bool is_pending;
403 		bool stored;
404 
405 		vcpu = irq->target_vcpu;
406 		if (!vcpu)
407 			continue;
408 
409 		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
410 
411 		byte_offset = irq->intid / BITS_PER_BYTE;
412 		bit_nr = irq->intid % BITS_PER_BYTE;
413 		ptr = pendbase + byte_offset;
414 
415 		if (ptr != last_ptr) {
416 			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
417 			if (ret)
418 				goto out;
419 			last_ptr = ptr;
420 		}
421 
422 		stored = val & (1U << bit_nr);
423 
424 		is_pending = irq->pending_latch;
425 
426 		if (irq->hw && vlpi_avail)
427 			vgic_v4_get_vlpi_state(irq, &is_pending);
428 
429 		if (stored == is_pending)
430 			continue;
431 
432 		if (is_pending)
433 			val |= 1 << bit_nr;
434 		else
435 			val &= ~(1 << bit_nr);
436 
437 		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
438 		if (ret)
439 			goto out;
440 	}
441 
442 out:
443 	if (vlpi_avail)
444 		map_all_vpes(dist);
445 
446 	return ret;
447 }
448 
449 /**
450  * vgic_v3_rdist_overlap - check if a region overlaps with any
451  * existing redistributor region
452  *
453  * @kvm: kvm handle
454  * @base: base of the region
455  * @size: size of region
456  *
457  * Return: true if there is an overlap
458  */
459 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
460 {
461 	struct vgic_dist *d = &kvm->arch.vgic;
462 	struct vgic_redist_region *rdreg;
463 
464 	list_for_each_entry(rdreg, &d->rd_regions, list) {
465 		if ((base + size > rdreg->base) &&
466 			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
467 			return true;
468 	}
469 	return false;
470 }
471 
472 /*
473  * Check for overlapping regions and for regions crossing the end of memory
474  * for base addresses which have already been set.
475  */
476 bool vgic_v3_check_base(struct kvm *kvm)
477 {
478 	struct vgic_dist *d = &kvm->arch.vgic;
479 	struct vgic_redist_region *rdreg;
480 
481 	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
482 	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
483 		return false;
484 
485 	list_for_each_entry(rdreg, &d->rd_regions, list) {
486 		if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
487 			rdreg->base)
488 			return false;
489 	}
490 
491 	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
492 		return true;
493 
494 	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
495 				      KVM_VGIC_V3_DIST_SIZE);
496 }
497 
498 /**
499  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
500  * which has free space to put a new rdist region.
501  *
502  * @rd_regions: redistributor region list head
503  *
504  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
505  * Stride between redistributors is 0 and regions are filled in the index order.
506  *
507  * Return: the redist region handle, if any, that has space to map a new rdist
508  * region.
509  */
510 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
511 {
512 	struct vgic_redist_region *rdreg;
513 
514 	list_for_each_entry(rdreg, rd_regions, list) {
515 		if (!vgic_v3_redist_region_full(rdreg))
516 			return rdreg;
517 	}
518 	return NULL;
519 }
520 
521 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
522 							   u32 index)
523 {
524 	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
525 	struct vgic_redist_region *rdreg;
526 
527 	list_for_each_entry(rdreg, rd_regions, list) {
528 		if (rdreg->index == index)
529 			return rdreg;
530 	}
531 	return NULL;
532 }
533 
534 
535 int vgic_v3_map_resources(struct kvm *kvm)
536 {
537 	struct vgic_dist *dist = &kvm->arch.vgic;
538 	struct kvm_vcpu *vcpu;
539 	int ret = 0;
540 	int c;
541 
542 	kvm_for_each_vcpu(c, vcpu, kvm) {
543 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
544 
545 		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
546 			kvm_debug("vcpu %d redistributor base not set\n", c);
547 			return -ENXIO;
548 		}
549 	}
550 
551 	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
552 		kvm_err("Need to set vgic distributor addresses first\n");
553 		return -ENXIO;
554 	}
555 
556 	if (!vgic_v3_check_base(kvm)) {
557 		kvm_err("VGIC redist and dist frames overlap\n");
558 		return -EINVAL;
559 	}
560 
561 	/*
562 	 * For a VGICv3 we require the userland to explicitly initialize
563 	 * the VGIC before we need to use it.
564 	 */
565 	if (!vgic_initialized(kvm)) {
566 		return -EBUSY;
567 	}
568 
569 	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
570 	if (ret) {
571 		kvm_err("Unable to register VGICv3 dist MMIO regions\n");
572 		return ret;
573 	}
574 
575 	if (kvm_vgic_global_state.has_gicv4_1)
576 		vgic_v4_configure_vsgis(kvm);
577 
578 	return 0;
579 }
580 
581 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
582 
583 static int __init early_group0_trap_cfg(char *buf)
584 {
585 	return strtobool(buf, &group0_trap);
586 }
587 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
588 
589 static int __init early_group1_trap_cfg(char *buf)
590 {
591 	return strtobool(buf, &group1_trap);
592 }
593 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
594 
595 static int __init early_common_trap_cfg(char *buf)
596 {
597 	return strtobool(buf, &common_trap);
598 }
599 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
600 
601 static int __init early_gicv4_enable(char *buf)
602 {
603 	return strtobool(buf, &gicv4_enable);
604 }
605 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
606 
607 /**
608  * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
609  * @info:	pointer to the GIC description
610  *
611  * Returns 0 if the VGICv3 has been probed successfully, returns an error code
612  * otherwise
613  */
614 int vgic_v3_probe(const struct gic_kvm_info *info)
615 {
616 	u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
617 	bool has_v2;
618 	int ret;
619 
620 	has_v2 = ich_vtr_el2 >> 63;
621 	ich_vtr_el2 = (u32)ich_vtr_el2;
622 
623 	/*
624 	 * The ListRegs field is 5 bits, but there is an architectural
625 	 * maximum of 16 list registers. Just ignore bit 4...
626 	 */
627 	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
628 	kvm_vgic_global_state.can_emulate_gicv2 = false;
629 	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
630 
631 	/* GICv4 support? */
632 	if (info->has_v4) {
633 		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
634 		kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
635 		kvm_info("GICv4%s support %sabled\n",
636 			 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
637 			 gicv4_enable ? "en" : "dis");
638 	}
639 
640 	kvm_vgic_global_state.vcpu_base = 0;
641 
642 	if (!info->vcpu.start) {
643 		kvm_info("GICv3: no GICV resource entry\n");
644 	} else if (!has_v2) {
645 		pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
646 	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
647 		pr_warn("GICV physical address 0x%llx not page aligned\n",
648 			(unsigned long long)info->vcpu.start);
649 	} else {
650 		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
651 		kvm_vgic_global_state.can_emulate_gicv2 = true;
652 		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
653 		if (ret) {
654 			kvm_err("Cannot register GICv2 KVM device.\n");
655 			return ret;
656 		}
657 		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
658 	}
659 	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
660 	if (ret) {
661 		kvm_err("Cannot register GICv3 KVM device.\n");
662 		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
663 		return ret;
664 	}
665 
666 	if (kvm_vgic_global_state.vcpu_base == 0)
667 		kvm_info("disabling GICv2 emulation\n");
668 
669 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
670 		group0_trap = true;
671 		group1_trap = true;
672 	}
673 
674 	if (group0_trap || group1_trap || common_trap) {
675 		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
676 			 group0_trap ? "G0" : "",
677 			 group1_trap ? "G1" : "",
678 			 common_trap ? "C"  : "");
679 		static_branch_enable(&vgic_v3_cpuif_trap);
680 	}
681 
682 	kvm_vgic_global_state.vctrl_base = NULL;
683 	kvm_vgic_global_state.type = VGIC_V3;
684 	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
685 
686 	return 0;
687 }
688 
689 void vgic_v3_load(struct kvm_vcpu *vcpu)
690 {
691 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
692 
693 	/*
694 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
695 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
696 	 * VMCR_EL2 save/restore in the world switch.
697 	 */
698 	if (likely(cpu_if->vgic_sre))
699 		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
700 
701 	kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
702 
703 	if (has_vhe())
704 		__vgic_v3_activate_traps(cpu_if);
705 
706 	WARN_ON(vgic_v4_load(vcpu));
707 }
708 
709 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
710 {
711 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
712 
713 	if (likely(cpu_if->vgic_sre))
714 		cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
715 }
716 
717 void vgic_v3_put(struct kvm_vcpu *vcpu)
718 {
719 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
720 
721 	WARN_ON(vgic_v4_put(vcpu, false));
722 
723 	vgic_v3_vmcr_sync(vcpu);
724 
725 	kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
726 
727 	if (has_vhe())
728 		__vgic_v3_deactivate_traps(cpu_if);
729 }
730