1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/irqchip/arm-gic.h> 7 #include <linux/kvm.h> 8 #include <linux/kvm_host.h> 9 #include <kvm/arm_vgic.h> 10 #include <asm/kvm_mmu.h> 11 12 #include "vgic.h" 13 14 static inline void vgic_v2_write_lr(int lr, u32 val) 15 { 16 void __iomem *base = kvm_vgic_global_state.vctrl_base; 17 18 writel_relaxed(val, base + GICH_LR0 + (lr * 4)); 19 } 20 21 void vgic_v2_init_lrs(void) 22 { 23 int i; 24 25 for (i = 0; i < kvm_vgic_global_state.nr_lr; i++) 26 vgic_v2_write_lr(i, 0); 27 } 28 29 void vgic_v2_set_underflow(struct kvm_vcpu *vcpu) 30 { 31 struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2; 32 33 cpuif->vgic_hcr |= GICH_HCR_UIE; 34 } 35 36 static bool lr_signals_eoi_mi(u32 lr_val) 37 { 38 return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) && 39 !(lr_val & GICH_LR_HW); 40 } 41 42 /* 43 * transfer the content of the LRs back into the corresponding ap_list: 44 * - active bit is transferred as is 45 * - pending bit is 46 * - transferred as is in case of edge sensitive IRQs 47 * - set to the line-level (resample time) for level sensitive IRQs 48 */ 49 void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu) 50 { 51 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 52 struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2; 53 int lr; 54 55 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 56 57 cpuif->vgic_hcr &= ~GICH_HCR_UIE; 58 59 for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) { 60 u32 val = cpuif->vgic_lr[lr]; 61 u32 cpuid, intid = val & GICH_LR_VIRTUALID; 62 struct vgic_irq *irq; 63 bool deactivated; 64 65 /* Extract the source vCPU id from the LR */ 66 cpuid = val & GICH_LR_PHYSID_CPUID; 67 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 68 cpuid &= 7; 69 70 /* Notify fds when the guest EOI'ed a level-triggered SPI */ 71 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 72 kvm_notify_acked_irq(vcpu->kvm, 0, 73 intid - VGIC_NR_PRIVATE_IRQS); 74 75 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 76 77 raw_spin_lock(&irq->irq_lock); 78 79 /* Always preserve the active bit, note deactivation */ 80 deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT); 81 irq->active = !!(val & GICH_LR_ACTIVE_BIT); 82 83 if (irq->active && vgic_irq_is_sgi(intid)) 84 irq->active_source = cpuid; 85 86 /* Edge is the only case where we preserve the pending bit */ 87 if (irq->config == VGIC_CONFIG_EDGE && 88 (val & GICH_LR_PENDING_BIT)) { 89 irq->pending_latch = true; 90 91 if (vgic_irq_is_sgi(intid)) 92 irq->source |= (1 << cpuid); 93 } 94 95 /* 96 * Clear soft pending state when level irqs have been acked. 97 */ 98 if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE)) 99 irq->pending_latch = false; 100 101 /* Handle resampling for mapped interrupts if required */ 102 vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT); 103 104 raw_spin_unlock(&irq->irq_lock); 105 vgic_put_irq(vcpu->kvm, irq); 106 } 107 108 cpuif->used_lrs = 0; 109 } 110 111 /* 112 * Populates the particular LR with the state of a given IRQ: 113 * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq 114 * - for a level sensitive IRQ the pending state value is unchanged; 115 * it is dictated directly by the input level 116 * 117 * If @irq describes an SGI with multiple sources, we choose the 118 * lowest-numbered source VCPU and clear that bit in the source bitmap. 119 * 120 * The irq_lock must be held by the caller. 121 */ 122 void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 123 { 124 u32 val = irq->intid; 125 bool allow_pending = true; 126 127 if (irq->active) { 128 val |= GICH_LR_ACTIVE_BIT; 129 if (vgic_irq_is_sgi(irq->intid)) 130 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 131 if (vgic_irq_is_multi_sgi(irq)) { 132 allow_pending = false; 133 val |= GICH_LR_EOI; 134 } 135 } 136 137 if (irq->group) 138 val |= GICH_LR_GROUP1; 139 140 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 141 val |= GICH_LR_HW; 142 val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT; 143 /* 144 * Never set pending+active on a HW interrupt, as the 145 * pending state is kept at the physical distributor 146 * level. 147 */ 148 if (irq->active) 149 allow_pending = false; 150 } else { 151 if (irq->config == VGIC_CONFIG_LEVEL) { 152 val |= GICH_LR_EOI; 153 154 /* 155 * Software resampling doesn't work very well 156 * if we allow P+A, so let's not do that. 157 */ 158 if (irq->active) 159 allow_pending = false; 160 } 161 } 162 163 if (allow_pending && irq_is_pending(irq)) { 164 val |= GICH_LR_PENDING_BIT; 165 166 if (irq->config == VGIC_CONFIG_EDGE) 167 irq->pending_latch = false; 168 169 if (vgic_irq_is_sgi(irq->intid)) { 170 u32 src = ffs(irq->source); 171 172 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 173 irq->intid)) 174 return; 175 176 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 177 irq->source &= ~(1 << (src - 1)); 178 if (irq->source) { 179 irq->pending_latch = true; 180 val |= GICH_LR_EOI; 181 } 182 } 183 } 184 185 /* 186 * Level-triggered mapped IRQs are special because we only observe 187 * rising edges as input to the VGIC. We therefore lower the line 188 * level here, so that we can take new virtual IRQs. See 189 * vgic_v2_fold_lr_state for more info. 190 */ 191 if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) 192 irq->line_level = false; 193 194 /* The GICv2 LR only holds five bits of priority. */ 195 val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT; 196 197 vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val; 198 } 199 200 void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr) 201 { 202 vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0; 203 } 204 205 void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 206 { 207 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 208 u32 vmcr; 209 210 vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) & 211 GICH_VMCR_ENABLE_GRP0_MASK; 212 vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) & 213 GICH_VMCR_ENABLE_GRP1_MASK; 214 vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) & 215 GICH_VMCR_ACK_CTL_MASK; 216 vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) & 217 GICH_VMCR_FIQ_EN_MASK; 218 vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) & 219 GICH_VMCR_CBPR_MASK; 220 vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) & 221 GICH_VMCR_EOI_MODE_MASK; 222 vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) & 223 GICH_VMCR_ALIAS_BINPOINT_MASK; 224 vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) & 225 GICH_VMCR_BINPOINT_MASK; 226 vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) << 227 GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK; 228 229 cpu_if->vgic_vmcr = vmcr; 230 } 231 232 void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 233 { 234 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 235 u32 vmcr; 236 237 vmcr = cpu_if->vgic_vmcr; 238 239 vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >> 240 GICH_VMCR_ENABLE_GRP0_SHIFT; 241 vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >> 242 GICH_VMCR_ENABLE_GRP1_SHIFT; 243 vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >> 244 GICH_VMCR_ACK_CTL_SHIFT; 245 vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >> 246 GICH_VMCR_FIQ_EN_SHIFT; 247 vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >> 248 GICH_VMCR_CBPR_SHIFT; 249 vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >> 250 GICH_VMCR_EOI_MODE_SHIFT; 251 252 vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >> 253 GICH_VMCR_ALIAS_BINPOINT_SHIFT; 254 vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >> 255 GICH_VMCR_BINPOINT_SHIFT; 256 vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >> 257 GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT; 258 } 259 260 void vgic_v2_enable(struct kvm_vcpu *vcpu) 261 { 262 /* 263 * By forcing VMCR to zero, the GIC will restore the binary 264 * points to their reset values. Anything else resets to zero 265 * anyway. 266 */ 267 vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0; 268 269 /* Get the show on the road... */ 270 vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN; 271 } 272 273 /* check for overlapping regions and for regions crossing the end of memory */ 274 static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base) 275 { 276 if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base) 277 return false; 278 if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base) 279 return false; 280 281 if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base) 282 return true; 283 if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base) 284 return true; 285 286 return false; 287 } 288 289 int vgic_v2_map_resources(struct kvm *kvm) 290 { 291 struct vgic_dist *dist = &kvm->arch.vgic; 292 int ret = 0; 293 294 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || 295 IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) { 296 kvm_err("Need to set vgic cpu and dist addresses first\n"); 297 return -ENXIO; 298 } 299 300 if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) { 301 kvm_err("VGIC CPU and dist frames overlap\n"); 302 return -EINVAL; 303 } 304 305 /* 306 * Initialize the vgic if this hasn't already been done on demand by 307 * accessing the vgic state from userspace. 308 */ 309 ret = vgic_init(kvm); 310 if (ret) { 311 kvm_err("Unable to initialize VGIC dynamic data structures\n"); 312 return ret; 313 } 314 315 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2); 316 if (ret) { 317 kvm_err("Unable to register VGIC MMIO regions\n"); 318 return ret; 319 } 320 321 if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) { 322 ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base, 323 kvm_vgic_global_state.vcpu_base, 324 KVM_VGIC_V2_CPU_SIZE, true); 325 if (ret) { 326 kvm_err("Unable to remap VGIC CPU to VCPU\n"); 327 return ret; 328 } 329 } 330 331 return 0; 332 } 333 334 DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap); 335 336 /** 337 * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller 338 * @info: pointer to the GIC description 339 * 340 * Returns 0 if the VGICv2 has been probed successfully, returns an error code 341 * otherwise 342 */ 343 int vgic_v2_probe(const struct gic_kvm_info *info) 344 { 345 int ret; 346 u32 vtr; 347 348 if (!info->vctrl.start) { 349 kvm_err("GICH not present in the firmware table\n"); 350 return -ENXIO; 351 } 352 353 if (!PAGE_ALIGNED(info->vcpu.start) || 354 !PAGE_ALIGNED(resource_size(&info->vcpu))) { 355 kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n"); 356 357 ret = create_hyp_io_mappings(info->vcpu.start, 358 resource_size(&info->vcpu), 359 &kvm_vgic_global_state.vcpu_base_va, 360 &kvm_vgic_global_state.vcpu_hyp_va); 361 if (ret) { 362 kvm_err("Cannot map GICV into hyp\n"); 363 goto out; 364 } 365 366 static_branch_enable(&vgic_v2_cpuif_trap); 367 } 368 369 ret = create_hyp_io_mappings(info->vctrl.start, 370 resource_size(&info->vctrl), 371 &kvm_vgic_global_state.vctrl_base, 372 &kvm_vgic_global_state.vctrl_hyp); 373 if (ret) { 374 kvm_err("Cannot map VCTRL into hyp\n"); 375 goto out; 376 } 377 378 vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR); 379 kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1; 380 381 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 382 if (ret) { 383 kvm_err("Cannot register GICv2 KVM device\n"); 384 goto out; 385 } 386 387 kvm_vgic_global_state.can_emulate_gicv2 = true; 388 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 389 kvm_vgic_global_state.type = VGIC_V2; 390 kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS; 391 392 kvm_debug("vgic-v2@%llx\n", info->vctrl.start); 393 394 return 0; 395 out: 396 if (kvm_vgic_global_state.vctrl_base) 397 iounmap(kvm_vgic_global_state.vctrl_base); 398 if (kvm_vgic_global_state.vcpu_base_va) 399 iounmap(kvm_vgic_global_state.vcpu_base_va); 400 401 return ret; 402 } 403 404 static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base) 405 { 406 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 407 u64 used_lrs = cpu_if->used_lrs; 408 u64 elrsr; 409 int i; 410 411 elrsr = readl_relaxed(base + GICH_ELRSR0); 412 if (unlikely(used_lrs > 32)) 413 elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32; 414 415 for (i = 0; i < used_lrs; i++) { 416 if (elrsr & (1UL << i)) 417 cpu_if->vgic_lr[i] &= ~GICH_LR_STATE; 418 else 419 cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4)); 420 421 writel_relaxed(0, base + GICH_LR0 + (i * 4)); 422 } 423 } 424 425 void vgic_v2_save_state(struct kvm_vcpu *vcpu) 426 { 427 void __iomem *base = kvm_vgic_global_state.vctrl_base; 428 u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; 429 430 if (!base) 431 return; 432 433 if (used_lrs) { 434 save_lrs(vcpu, base); 435 writel_relaxed(0, base + GICH_HCR); 436 } 437 } 438 439 void vgic_v2_restore_state(struct kvm_vcpu *vcpu) 440 { 441 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 442 void __iomem *base = kvm_vgic_global_state.vctrl_base; 443 u64 used_lrs = cpu_if->used_lrs; 444 int i; 445 446 if (!base) 447 return; 448 449 if (used_lrs) { 450 writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR); 451 for (i = 0; i < used_lrs; i++) { 452 writel_relaxed(cpu_if->vgic_lr[i], 453 base + GICH_LR0 + (i * 4)); 454 } 455 } 456 } 457 458 void vgic_v2_load(struct kvm_vcpu *vcpu) 459 { 460 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 461 462 writel_relaxed(cpu_if->vgic_vmcr, 463 kvm_vgic_global_state.vctrl_base + GICH_VMCR); 464 writel_relaxed(cpu_if->vgic_apr, 465 kvm_vgic_global_state.vctrl_base + GICH_APR); 466 } 467 468 void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu) 469 { 470 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 471 472 cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR); 473 } 474 475 void vgic_v2_put(struct kvm_vcpu *vcpu) 476 { 477 struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; 478 479 vgic_v2_vmcr_sync(vcpu); 480 cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR); 481 } 482