xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-mmio.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15 
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18 
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 				 gpa_t addr, unsigned int len)
21 {
22 	return 0;
23 }
24 
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 				 gpa_t addr, unsigned int len)
27 {
28 	return -1UL;
29 }
30 
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 			unsigned int len, unsigned long val)
33 {
34 	/* Ignore */
35 }
36 
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 			       unsigned int len, unsigned long val)
39 {
40 	/* Ignore */
41 	return 0;
42 }
43 
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 				   gpa_t addr, unsigned int len)
46 {
47 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 	u32 value = 0;
49 	int i;
50 
51 	/* Loop over all IRQs affected by this read */
52 	for (i = 0; i < len * 8; i++) {
53 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54 
55 		if (irq->group)
56 			value |= BIT(i);
57 
58 		vgic_put_irq(vcpu->kvm, irq);
59 	}
60 
61 	return value;
62 }
63 
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 	WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68 
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 			   unsigned int len, unsigned long val)
71 {
72 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 	int i;
74 	unsigned long flags;
75 
76 	for (i = 0; i < len * 8; i++) {
77 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78 
79 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 		irq->group = !!(val & BIT(i));
81 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 			vgic_update_vsgi(irq);
83 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 		} else {
85 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 		}
87 
88 		vgic_put_irq(vcpu->kvm, irq);
89 	}
90 }
91 
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 				    gpa_t addr, unsigned int len)
98 {
99 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 	u32 value = 0;
101 	int i;
102 
103 	/* Loop over all IRQs affected by this read */
104 	for (i = 0; i < len * 8; i++) {
105 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106 
107 		if (irq->enabled)
108 			value |= (1U << i);
109 
110 		vgic_put_irq(vcpu->kvm, irq);
111 	}
112 
113 	return value;
114 }
115 
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 			     gpa_t addr, unsigned int len,
118 			     unsigned long val)
119 {
120 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 	int i;
122 	unsigned long flags;
123 
124 	for_each_set_bit(i, &val, len * 8) {
125 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126 
127 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 			if (!irq->enabled) {
130 				struct irq_data *data;
131 
132 				irq->enabled = true;
133 				data = &irq_to_desc(irq->host_irq)->irq_data;
134 				while (irqd_irq_disabled(data))
135 					enable_irq(irq->host_irq);
136 			}
137 
138 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 			vgic_put_irq(vcpu->kvm, irq);
140 
141 			continue;
142 		} else if (vgic_irq_is_mapped_level(irq)) {
143 			bool was_high = irq->line_level;
144 
145 			/*
146 			 * We need to update the state of the interrupt because
147 			 * the guest might have changed the state of the device
148 			 * while the interrupt was disabled at the VGIC level.
149 			 */
150 			irq->line_level = vgic_get_phys_line_level(irq);
151 			/*
152 			 * Deactivate the physical interrupt so the GIC will let
153 			 * us know when it is asserted again.
154 			 */
155 			if (!irq->active && was_high && !irq->line_level)
156 				vgic_irq_set_phys_active(irq, false);
157 		}
158 		irq->enabled = true;
159 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160 
161 		vgic_put_irq(vcpu->kvm, irq);
162 	}
163 }
164 
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 			     gpa_t addr, unsigned int len,
167 			     unsigned long val)
168 {
169 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 	int i;
171 	unsigned long flags;
172 
173 	for_each_set_bit(i, &val, len * 8) {
174 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175 
176 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 		if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 			disable_irq_nosync(irq->host_irq);
179 
180 		irq->enabled = false;
181 
182 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 		vgic_put_irq(vcpu->kvm, irq);
184 	}
185 }
186 
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 			       gpa_t addr, unsigned int len,
189 			       unsigned long val)
190 {
191 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 	int i;
193 	unsigned long flags;
194 
195 	for_each_set_bit(i, &val, len * 8) {
196 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197 
198 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 		irq->enabled = true;
200 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201 
202 		vgic_put_irq(vcpu->kvm, irq);
203 	}
204 
205 	return 0;
206 }
207 
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 			       gpa_t addr, unsigned int len,
210 			       unsigned long val)
211 {
212 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 	int i;
214 	unsigned long flags;
215 
216 	for_each_set_bit(i, &val, len * 8) {
217 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218 
219 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 		irq->enabled = false;
221 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222 
223 		vgic_put_irq(vcpu->kvm, irq);
224 	}
225 
226 	return 0;
227 }
228 
229 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
230 				     gpa_t addr, unsigned int len)
231 {
232 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
233 	u32 value = 0;
234 	int i;
235 
236 	/* Loop over all IRQs affected by this read */
237 	for (i = 0; i < len * 8; i++) {
238 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
239 		unsigned long flags;
240 		bool val;
241 
242 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
243 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
244 			int err;
245 
246 			val = false;
247 			err = irq_get_irqchip_state(irq->host_irq,
248 						    IRQCHIP_STATE_PENDING,
249 						    &val);
250 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
251 		} else {
252 			val = irq_is_pending(irq);
253 		}
254 
255 		value |= ((u32)val << i);
256 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
257 
258 		vgic_put_irq(vcpu->kvm, irq);
259 	}
260 
261 	return value;
262 }
263 
264 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
265 {
266 	return (vgic_irq_is_sgi(irq->intid) &&
267 		vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
268 }
269 
270 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
271 			      gpa_t addr, unsigned int len,
272 			      unsigned long val)
273 {
274 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
275 	int i;
276 	unsigned long flags;
277 
278 	for_each_set_bit(i, &val, len * 8) {
279 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
280 
281 		/* GICD_ISPENDR0 SGI bits are WI */
282 		if (is_vgic_v2_sgi(vcpu, irq)) {
283 			vgic_put_irq(vcpu->kvm, irq);
284 			continue;
285 		}
286 
287 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
288 
289 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
290 			/* HW SGI? Ask the GIC to inject it */
291 			int err;
292 			err = irq_set_irqchip_state(irq->host_irq,
293 						    IRQCHIP_STATE_PENDING,
294 						    true);
295 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
296 
297 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
298 			vgic_put_irq(vcpu->kvm, irq);
299 
300 			continue;
301 		}
302 
303 		irq->pending_latch = true;
304 		if (irq->hw)
305 			vgic_irq_set_phys_active(irq, true);
306 
307 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
308 		vgic_put_irq(vcpu->kvm, irq);
309 	}
310 }
311 
312 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
313 				gpa_t addr, unsigned int len,
314 				unsigned long val)
315 {
316 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
317 	int i;
318 	unsigned long flags;
319 
320 	for_each_set_bit(i, &val, len * 8) {
321 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
322 
323 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
324 		irq->pending_latch = true;
325 
326 		/*
327 		 * GICv2 SGIs are terribly broken. We can't restore
328 		 * the source of the interrupt, so just pick the vcpu
329 		 * itself as the source...
330 		 */
331 		if (is_vgic_v2_sgi(vcpu, irq))
332 			irq->source |= BIT(vcpu->vcpu_id);
333 
334 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
335 
336 		vgic_put_irq(vcpu->kvm, irq);
337 	}
338 
339 	return 0;
340 }
341 
342 /* Must be called with irq->irq_lock held */
343 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
344 {
345 	irq->pending_latch = false;
346 
347 	/*
348 	 * We don't want the guest to effectively mask the physical
349 	 * interrupt by doing a write to SPENDR followed by a write to
350 	 * CPENDR for HW interrupts, so we clear the active state on
351 	 * the physical side if the virtual interrupt is not active.
352 	 * This may lead to taking an additional interrupt on the
353 	 * host, but that should not be a problem as the worst that
354 	 * can happen is an additional vgic injection.  We also clear
355 	 * the pending state to maintain proper semantics for edge HW
356 	 * interrupts.
357 	 */
358 	vgic_irq_set_phys_pending(irq, false);
359 	if (!irq->active)
360 		vgic_irq_set_phys_active(irq, false);
361 }
362 
363 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
364 			      gpa_t addr, unsigned int len,
365 			      unsigned long val)
366 {
367 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
368 	int i;
369 	unsigned long flags;
370 
371 	for_each_set_bit(i, &val, len * 8) {
372 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
373 
374 		/* GICD_ICPENDR0 SGI bits are WI */
375 		if (is_vgic_v2_sgi(vcpu, irq)) {
376 			vgic_put_irq(vcpu->kvm, irq);
377 			continue;
378 		}
379 
380 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
381 
382 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
383 			/* HW SGI? Ask the GIC to clear its pending bit */
384 			int err;
385 			err = irq_set_irqchip_state(irq->host_irq,
386 						    IRQCHIP_STATE_PENDING,
387 						    false);
388 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
389 
390 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
391 			vgic_put_irq(vcpu->kvm, irq);
392 
393 			continue;
394 		}
395 
396 		if (irq->hw)
397 			vgic_hw_irq_cpending(vcpu, irq);
398 		else
399 			irq->pending_latch = false;
400 
401 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
402 		vgic_put_irq(vcpu->kvm, irq);
403 	}
404 }
405 
406 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
407 				gpa_t addr, unsigned int len,
408 				unsigned long val)
409 {
410 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
411 	int i;
412 	unsigned long flags;
413 
414 	for_each_set_bit(i, &val, len * 8) {
415 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
416 
417 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
418 		/*
419 		 * More fun with GICv2 SGIs! If we're clearing one of them
420 		 * from userspace, which source vcpu to clear? Let's not
421 		 * even think of it, and blow the whole set.
422 		 */
423 		if (is_vgic_v2_sgi(vcpu, irq))
424 			irq->source = 0;
425 
426 		irq->pending_latch = false;
427 
428 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
429 
430 		vgic_put_irq(vcpu->kvm, irq);
431 	}
432 
433 	return 0;
434 }
435 
436 /*
437  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
438  * is not queued on some running VCPU's LRs, because then the change to the
439  * active state can be overwritten when the VCPU's state is synced coming back
440  * from the guest.
441  *
442  * For shared interrupts as well as GICv3 private interrupts, we have to
443  * stop all the VCPUs because interrupts can be migrated while we don't hold
444  * the IRQ locks and we don't want to be chasing moving targets.
445  *
446  * For GICv2 private interrupts we don't have to do anything because
447  * userspace accesses to the VGIC state already require all VCPUs to be
448  * stopped, and only the VCPU itself can modify its private interrupts
449  * active state, which guarantees that the VCPU is not running.
450  */
451 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
452 {
453 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
454 	    intid >= VGIC_NR_PRIVATE_IRQS)
455 		kvm_arm_halt_guest(vcpu->kvm);
456 }
457 
458 /* See vgic_access_active_prepare */
459 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
460 {
461 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
462 	    intid >= VGIC_NR_PRIVATE_IRQS)
463 		kvm_arm_resume_guest(vcpu->kvm);
464 }
465 
466 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
467 					     gpa_t addr, unsigned int len)
468 {
469 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
470 	u32 value = 0;
471 	int i;
472 
473 	/* Loop over all IRQs affected by this read */
474 	for (i = 0; i < len * 8; i++) {
475 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
476 
477 		/*
478 		 * Even for HW interrupts, don't evaluate the HW state as
479 		 * all the guest is interested in is the virtual state.
480 		 */
481 		if (irq->active)
482 			value |= (1U << i);
483 
484 		vgic_put_irq(vcpu->kvm, irq);
485 	}
486 
487 	return value;
488 }
489 
490 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
491 				    gpa_t addr, unsigned int len)
492 {
493 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
494 	u32 val;
495 
496 	mutex_lock(&vcpu->kvm->lock);
497 	vgic_access_active_prepare(vcpu, intid);
498 
499 	val = __vgic_mmio_read_active(vcpu, addr, len);
500 
501 	vgic_access_active_finish(vcpu, intid);
502 	mutex_unlock(&vcpu->kvm->lock);
503 
504 	return val;
505 }
506 
507 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
508 				    gpa_t addr, unsigned int len)
509 {
510 	return __vgic_mmio_read_active(vcpu, addr, len);
511 }
512 
513 /* Must be called with irq->irq_lock held */
514 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
515 				      bool active, bool is_uaccess)
516 {
517 	if (is_uaccess)
518 		return;
519 
520 	irq->active = active;
521 	vgic_irq_set_phys_active(irq, active);
522 }
523 
524 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
525 				    bool active)
526 {
527 	unsigned long flags;
528 	struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
529 
530 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
531 
532 	if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
533 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
534 	} else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
535 		/*
536 		 * GICv4.1 VSGI feature doesn't track an active state,
537 		 * so let's not kid ourselves, there is nothing we can
538 		 * do here.
539 		 */
540 		irq->active = false;
541 	} else {
542 		u32 model = vcpu->kvm->arch.vgic.vgic_model;
543 		u8 active_source;
544 
545 		irq->active = active;
546 
547 		/*
548 		 * The GICv2 architecture indicates that the source CPUID for
549 		 * an SGI should be provided during an EOI which implies that
550 		 * the active state is stored somewhere, but at the same time
551 		 * this state is not architecturally exposed anywhere and we
552 		 * have no way of knowing the right source.
553 		 *
554 		 * This may lead to a VCPU not being able to receive
555 		 * additional instances of a particular SGI after migration
556 		 * for a GICv2 VM on some GIC implementations.  Oh well.
557 		 */
558 		active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
559 
560 		if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
561 		    active && vgic_irq_is_sgi(irq->intid))
562 			irq->active_source = active_source;
563 	}
564 
565 	if (irq->active)
566 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
567 	else
568 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
569 }
570 
571 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
572 				      gpa_t addr, unsigned int len,
573 				      unsigned long val)
574 {
575 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
576 	int i;
577 
578 	for_each_set_bit(i, &val, len * 8) {
579 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
580 		vgic_mmio_change_active(vcpu, irq, false);
581 		vgic_put_irq(vcpu->kvm, irq);
582 	}
583 }
584 
585 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
586 			     gpa_t addr, unsigned int len,
587 			     unsigned long val)
588 {
589 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
590 
591 	mutex_lock(&vcpu->kvm->lock);
592 	vgic_access_active_prepare(vcpu, intid);
593 
594 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
595 
596 	vgic_access_active_finish(vcpu, intid);
597 	mutex_unlock(&vcpu->kvm->lock);
598 }
599 
600 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
601 				     gpa_t addr, unsigned int len,
602 				     unsigned long val)
603 {
604 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
605 	return 0;
606 }
607 
608 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
609 				      gpa_t addr, unsigned int len,
610 				      unsigned long val)
611 {
612 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
613 	int i;
614 
615 	for_each_set_bit(i, &val, len * 8) {
616 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
617 		vgic_mmio_change_active(vcpu, irq, true);
618 		vgic_put_irq(vcpu->kvm, irq);
619 	}
620 }
621 
622 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
623 			     gpa_t addr, unsigned int len,
624 			     unsigned long val)
625 {
626 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
627 
628 	mutex_lock(&vcpu->kvm->lock);
629 	vgic_access_active_prepare(vcpu, intid);
630 
631 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
632 
633 	vgic_access_active_finish(vcpu, intid);
634 	mutex_unlock(&vcpu->kvm->lock);
635 }
636 
637 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
638 				     gpa_t addr, unsigned int len,
639 				     unsigned long val)
640 {
641 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
642 	return 0;
643 }
644 
645 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
646 				      gpa_t addr, unsigned int len)
647 {
648 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
649 	int i;
650 	u64 val = 0;
651 
652 	for (i = 0; i < len; i++) {
653 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
654 
655 		val |= (u64)irq->priority << (i * 8);
656 
657 		vgic_put_irq(vcpu->kvm, irq);
658 	}
659 
660 	return val;
661 }
662 
663 /*
664  * We currently don't handle changing the priority of an interrupt that
665  * is already pending on a VCPU. If there is a need for this, we would
666  * need to make this VCPU exit and re-evaluate the priorities, potentially
667  * leading to this interrupt getting presented now to the guest (if it has
668  * been masked by the priority mask before).
669  */
670 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
671 			      gpa_t addr, unsigned int len,
672 			      unsigned long val)
673 {
674 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
675 	int i;
676 	unsigned long flags;
677 
678 	for (i = 0; i < len; i++) {
679 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
680 
681 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
682 		/* Narrow the priority range to what we actually support */
683 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
684 		if (irq->hw && vgic_irq_is_sgi(irq->intid))
685 			vgic_update_vsgi(irq);
686 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
687 
688 		vgic_put_irq(vcpu->kvm, irq);
689 	}
690 }
691 
692 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
693 				    gpa_t addr, unsigned int len)
694 {
695 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
696 	u32 value = 0;
697 	int i;
698 
699 	for (i = 0; i < len * 4; i++) {
700 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
701 
702 		if (irq->config == VGIC_CONFIG_EDGE)
703 			value |= (2U << (i * 2));
704 
705 		vgic_put_irq(vcpu->kvm, irq);
706 	}
707 
708 	return value;
709 }
710 
711 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
712 			    gpa_t addr, unsigned int len,
713 			    unsigned long val)
714 {
715 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
716 	int i;
717 	unsigned long flags;
718 
719 	for (i = 0; i < len * 4; i++) {
720 		struct vgic_irq *irq;
721 
722 		/*
723 		 * The configuration cannot be changed for SGIs in general,
724 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
725 		 * code relies on PPIs being level triggered, so we also
726 		 * make them read-only here.
727 		 */
728 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
729 			continue;
730 
731 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
732 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
733 
734 		if (test_bit(i * 2 + 1, &val))
735 			irq->config = VGIC_CONFIG_EDGE;
736 		else
737 			irq->config = VGIC_CONFIG_LEVEL;
738 
739 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
740 		vgic_put_irq(vcpu->kvm, irq);
741 	}
742 }
743 
744 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
745 {
746 	int i;
747 	u64 val = 0;
748 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
749 
750 	for (i = 0; i < 32; i++) {
751 		struct vgic_irq *irq;
752 
753 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
754 			continue;
755 
756 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
757 		if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
758 			val |= (1U << i);
759 
760 		vgic_put_irq(vcpu->kvm, irq);
761 	}
762 
763 	return val;
764 }
765 
766 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
767 				    const u64 val)
768 {
769 	int i;
770 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
771 	unsigned long flags;
772 
773 	for (i = 0; i < 32; i++) {
774 		struct vgic_irq *irq;
775 		bool new_level;
776 
777 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
778 			continue;
779 
780 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
781 
782 		/*
783 		 * Line level is set irrespective of irq type
784 		 * (level or edge) to avoid dependency that VM should
785 		 * restore irq config before line level.
786 		 */
787 		new_level = !!(val & (1U << i));
788 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
789 		irq->line_level = new_level;
790 		if (new_level)
791 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
792 		else
793 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
794 
795 		vgic_put_irq(vcpu->kvm, irq);
796 	}
797 }
798 
799 static int match_region(const void *key, const void *elt)
800 {
801 	const unsigned int offset = (unsigned long)key;
802 	const struct vgic_register_region *region = elt;
803 
804 	if (offset < region->reg_offset)
805 		return -1;
806 
807 	if (offset >= region->reg_offset + region->len)
808 		return 1;
809 
810 	return 0;
811 }
812 
813 const struct vgic_register_region *
814 vgic_find_mmio_region(const struct vgic_register_region *regions,
815 		      int nr_regions, unsigned int offset)
816 {
817 	return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
818 		       sizeof(regions[0]), match_region);
819 }
820 
821 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
822 {
823 	if (kvm_vgic_global_state.type == VGIC_V2)
824 		vgic_v2_set_vmcr(vcpu, vmcr);
825 	else
826 		vgic_v3_set_vmcr(vcpu, vmcr);
827 }
828 
829 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
830 {
831 	if (kvm_vgic_global_state.type == VGIC_V2)
832 		vgic_v2_get_vmcr(vcpu, vmcr);
833 	else
834 		vgic_v3_get_vmcr(vcpu, vmcr);
835 }
836 
837 /*
838  * kvm_mmio_read_buf() returns a value in a format where it can be converted
839  * to a byte array and be directly observed as the guest wanted it to appear
840  * in memory if it had done the store itself, which is LE for the GIC, as the
841  * guest knows the GIC is always LE.
842  *
843  * We convert this value to the CPUs native format to deal with it as a data
844  * value.
845  */
846 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
847 {
848 	unsigned long data = kvm_mmio_read_buf(val, len);
849 
850 	switch (len) {
851 	case 1:
852 		return data;
853 	case 2:
854 		return le16_to_cpu(data);
855 	case 4:
856 		return le32_to_cpu(data);
857 	default:
858 		return le64_to_cpu(data);
859 	}
860 }
861 
862 /*
863  * kvm_mmio_write_buf() expects a value in a format such that if converted to
864  * a byte array it is observed as the guest would see it if it could perform
865  * the load directly.  Since the GIC is LE, and the guest knows this, the
866  * guest expects a value in little endian format.
867  *
868  * We convert the data value from the CPUs native format to LE so that the
869  * value is returned in the proper format.
870  */
871 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
872 				unsigned long data)
873 {
874 	switch (len) {
875 	case 1:
876 		break;
877 	case 2:
878 		data = cpu_to_le16(data);
879 		break;
880 	case 4:
881 		data = cpu_to_le32(data);
882 		break;
883 	default:
884 		data = cpu_to_le64(data);
885 	}
886 
887 	kvm_mmio_write_buf(buf, len, data);
888 }
889 
890 static
891 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
892 {
893 	return container_of(dev, struct vgic_io_device, dev);
894 }
895 
896 static bool check_region(const struct kvm *kvm,
897 			 const struct vgic_register_region *region,
898 			 gpa_t addr, int len)
899 {
900 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
901 
902 	switch (len) {
903 	case sizeof(u8):
904 		flags = VGIC_ACCESS_8bit;
905 		break;
906 	case sizeof(u32):
907 		flags = VGIC_ACCESS_32bit;
908 		break;
909 	case sizeof(u64):
910 		flags = VGIC_ACCESS_64bit;
911 		break;
912 	default:
913 		return false;
914 	}
915 
916 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
917 		if (!region->bits_per_irq)
918 			return true;
919 
920 		/* Do we access a non-allocated IRQ? */
921 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
922 	}
923 
924 	return false;
925 }
926 
927 const struct vgic_register_region *
928 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
929 		     gpa_t addr, int len)
930 {
931 	const struct vgic_register_region *region;
932 
933 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
934 				       addr - iodev->base_addr);
935 	if (!region || !check_region(vcpu->kvm, region, addr, len))
936 		return NULL;
937 
938 	return region;
939 }
940 
941 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
942 			     gpa_t addr, u32 *val)
943 {
944 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
945 	const struct vgic_register_region *region;
946 	struct kvm_vcpu *r_vcpu;
947 
948 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
949 	if (!region) {
950 		*val = 0;
951 		return 0;
952 	}
953 
954 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
955 	if (region->uaccess_read)
956 		*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
957 	else
958 		*val = region->read(r_vcpu, addr, sizeof(u32));
959 
960 	return 0;
961 }
962 
963 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
964 			      gpa_t addr, const u32 *val)
965 {
966 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
967 	const struct vgic_register_region *region;
968 	struct kvm_vcpu *r_vcpu;
969 
970 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
971 	if (!region)
972 		return 0;
973 
974 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
975 	if (region->uaccess_write)
976 		return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
977 
978 	region->write(r_vcpu, addr, sizeof(u32), *val);
979 	return 0;
980 }
981 
982 /*
983  * Userland access to VGIC registers.
984  */
985 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
986 		 bool is_write, int offset, u32 *val)
987 {
988 	if (is_write)
989 		return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
990 	else
991 		return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
992 }
993 
994 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
995 			      gpa_t addr, int len, void *val)
996 {
997 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
998 	const struct vgic_register_region *region;
999 	unsigned long data = 0;
1000 
1001 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1002 	if (!region) {
1003 		memset(val, 0, len);
1004 		return 0;
1005 	}
1006 
1007 	switch (iodev->iodev_type) {
1008 	case IODEV_CPUIF:
1009 		data = region->read(vcpu, addr, len);
1010 		break;
1011 	case IODEV_DIST:
1012 		data = region->read(vcpu, addr, len);
1013 		break;
1014 	case IODEV_REDIST:
1015 		data = region->read(iodev->redist_vcpu, addr, len);
1016 		break;
1017 	case IODEV_ITS:
1018 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1019 		break;
1020 	}
1021 
1022 	vgic_data_host_to_mmio_bus(val, len, data);
1023 	return 0;
1024 }
1025 
1026 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027 			       gpa_t addr, int len, const void *val)
1028 {
1029 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030 	const struct vgic_register_region *region;
1031 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1032 
1033 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1034 	if (!region)
1035 		return 0;
1036 
1037 	switch (iodev->iodev_type) {
1038 	case IODEV_CPUIF:
1039 		region->write(vcpu, addr, len, data);
1040 		break;
1041 	case IODEV_DIST:
1042 		region->write(vcpu, addr, len, data);
1043 		break;
1044 	case IODEV_REDIST:
1045 		region->write(iodev->redist_vcpu, addr, len, data);
1046 		break;
1047 	case IODEV_ITS:
1048 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1049 		break;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 struct kvm_io_device_ops kvm_io_gic_ops = {
1056 	.read = dispatch_mmio_read,
1057 	.write = dispatch_mmio_write,
1058 };
1059 
1060 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1061 			     enum vgic_type type)
1062 {
1063 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1064 	int ret = 0;
1065 	unsigned int len;
1066 
1067 	switch (type) {
1068 	case VGIC_V2:
1069 		len = vgic_v2_init_dist_iodev(io_device);
1070 		break;
1071 	case VGIC_V3:
1072 		len = vgic_v3_init_dist_iodev(io_device);
1073 		break;
1074 	default:
1075 		BUG_ON(1);
1076 	}
1077 
1078 	io_device->base_addr = dist_base_address;
1079 	io_device->iodev_type = IODEV_DIST;
1080 	io_device->redist_vcpu = NULL;
1081 
1082 	mutex_lock(&kvm->slots_lock);
1083 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1084 				      len, &io_device->dev);
1085 	mutex_unlock(&kvm->slots_lock);
1086 
1087 	return ret;
1088 }
1089