xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-mmio.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15 
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18 
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 				 gpa_t addr, unsigned int len)
21 {
22 	return 0;
23 }
24 
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 				 gpa_t addr, unsigned int len)
27 {
28 	return -1UL;
29 }
30 
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 			unsigned int len, unsigned long val)
33 {
34 	/* Ignore */
35 }
36 
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 			       unsigned int len, unsigned long val)
39 {
40 	/* Ignore */
41 	return 0;
42 }
43 
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 				   gpa_t addr, unsigned int len)
46 {
47 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 	u32 value = 0;
49 	int i;
50 
51 	/* Loop over all IRQs affected by this read */
52 	for (i = 0; i < len * 8; i++) {
53 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54 
55 		if (irq->group)
56 			value |= BIT(i);
57 
58 		vgic_put_irq(vcpu->kvm, irq);
59 	}
60 
61 	return value;
62 }
63 
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 	WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68 
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 			   unsigned int len, unsigned long val)
71 {
72 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 	int i;
74 	unsigned long flags;
75 
76 	for (i = 0; i < len * 8; i++) {
77 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78 
79 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 		irq->group = !!(val & BIT(i));
81 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 			vgic_update_vsgi(irq);
83 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 		} else {
85 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 		}
87 
88 		vgic_put_irq(vcpu->kvm, irq);
89 	}
90 }
91 
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 				    gpa_t addr, unsigned int len)
98 {
99 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 	u32 value = 0;
101 	int i;
102 
103 	/* Loop over all IRQs affected by this read */
104 	for (i = 0; i < len * 8; i++) {
105 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106 
107 		if (irq->enabled)
108 			value |= (1U << i);
109 
110 		vgic_put_irq(vcpu->kvm, irq);
111 	}
112 
113 	return value;
114 }
115 
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 			     gpa_t addr, unsigned int len,
118 			     unsigned long val)
119 {
120 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 	int i;
122 	unsigned long flags;
123 
124 	for_each_set_bit(i, &val, len * 8) {
125 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126 
127 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 			if (!irq->enabled) {
130 				struct irq_data *data;
131 
132 				irq->enabled = true;
133 				data = &irq_to_desc(irq->host_irq)->irq_data;
134 				while (irqd_irq_disabled(data))
135 					enable_irq(irq->host_irq);
136 			}
137 
138 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 			vgic_put_irq(vcpu->kvm, irq);
140 
141 			continue;
142 		} else if (vgic_irq_is_mapped_level(irq)) {
143 			bool was_high = irq->line_level;
144 
145 			/*
146 			 * We need to update the state of the interrupt because
147 			 * the guest might have changed the state of the device
148 			 * while the interrupt was disabled at the VGIC level.
149 			 */
150 			irq->line_level = vgic_get_phys_line_level(irq);
151 			/*
152 			 * Deactivate the physical interrupt so the GIC will let
153 			 * us know when it is asserted again.
154 			 */
155 			if (!irq->active && was_high && !irq->line_level)
156 				vgic_irq_set_phys_active(irq, false);
157 		}
158 		irq->enabled = true;
159 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160 
161 		vgic_put_irq(vcpu->kvm, irq);
162 	}
163 }
164 
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 			     gpa_t addr, unsigned int len,
167 			     unsigned long val)
168 {
169 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 	int i;
171 	unsigned long flags;
172 
173 	for_each_set_bit(i, &val, len * 8) {
174 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175 
176 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 		if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 			disable_irq_nosync(irq->host_irq);
179 
180 		irq->enabled = false;
181 
182 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 		vgic_put_irq(vcpu->kvm, irq);
184 	}
185 }
186 
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 			       gpa_t addr, unsigned int len,
189 			       unsigned long val)
190 {
191 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 	int i;
193 	unsigned long flags;
194 
195 	for_each_set_bit(i, &val, len * 8) {
196 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197 
198 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 		irq->enabled = true;
200 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201 
202 		vgic_put_irq(vcpu->kvm, irq);
203 	}
204 
205 	return 0;
206 }
207 
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 			       gpa_t addr, unsigned int len,
210 			       unsigned long val)
211 {
212 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 	int i;
214 	unsigned long flags;
215 
216 	for_each_set_bit(i, &val, len * 8) {
217 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218 
219 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 		irq->enabled = false;
221 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222 
223 		vgic_put_irq(vcpu->kvm, irq);
224 	}
225 
226 	return 0;
227 }
228 
229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230 				    gpa_t addr, unsigned int len,
231 				    bool is_user)
232 {
233 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234 	u32 value = 0;
235 	int i;
236 
237 	/* Loop over all IRQs affected by this read */
238 	for (i = 0; i < len * 8; i++) {
239 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240 		unsigned long flags;
241 		bool val;
242 
243 		/*
244 		 * When used from userspace with a GICv3 model:
245 		 *
246 		 * Pending state of interrupt is latched in pending_latch
247 		 * variable.  Userspace will save and restore pending state
248 		 * and line_level separately.
249 		 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250 		 * for handling of ISPENDR and ICPENDR.
251 		 */
252 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
253 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254 			int err;
255 
256 			val = false;
257 			err = irq_get_irqchip_state(irq->host_irq,
258 						    IRQCHIP_STATE_PENDING,
259 						    &val);
260 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261 		} else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262 			val = vgic_get_phys_line_level(irq);
263 		} else {
264 			switch (vcpu->kvm->arch.vgic.vgic_model) {
265 			case KVM_DEV_TYPE_ARM_VGIC_V3:
266 				if (is_user) {
267 					val = irq->pending_latch;
268 					break;
269 				}
270 				fallthrough;
271 			default:
272 				val = irq_is_pending(irq);
273 				break;
274 			}
275 		}
276 
277 		value |= ((u32)val << i);
278 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279 
280 		vgic_put_irq(vcpu->kvm, irq);
281 	}
282 
283 	return value;
284 }
285 
286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287 				     gpa_t addr, unsigned int len)
288 {
289 	return __read_pending(vcpu, addr, len, false);
290 }
291 
292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293 					gpa_t addr, unsigned int len)
294 {
295 	return __read_pending(vcpu, addr, len, true);
296 }
297 
298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300 	return (vgic_irq_is_sgi(irq->intid) &&
301 		vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303 
304 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
305 			      gpa_t addr, unsigned int len,
306 			      unsigned long val)
307 {
308 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
309 	int i;
310 	unsigned long flags;
311 
312 	for_each_set_bit(i, &val, len * 8) {
313 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
314 
315 		/* GICD_ISPENDR0 SGI bits are WI */
316 		if (is_vgic_v2_sgi(vcpu, irq)) {
317 			vgic_put_irq(vcpu->kvm, irq);
318 			continue;
319 		}
320 
321 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
322 
323 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
324 			/* HW SGI? Ask the GIC to inject it */
325 			int err;
326 			err = irq_set_irqchip_state(irq->host_irq,
327 						    IRQCHIP_STATE_PENDING,
328 						    true);
329 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
330 
331 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
332 			vgic_put_irq(vcpu->kvm, irq);
333 
334 			continue;
335 		}
336 
337 		irq->pending_latch = true;
338 		if (irq->hw)
339 			vgic_irq_set_phys_active(irq, true);
340 
341 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
342 		vgic_put_irq(vcpu->kvm, irq);
343 	}
344 }
345 
346 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
347 				gpa_t addr, unsigned int len,
348 				unsigned long val)
349 {
350 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
351 	int i;
352 	unsigned long flags;
353 
354 	for_each_set_bit(i, &val, len * 8) {
355 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
356 
357 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
358 		irq->pending_latch = true;
359 
360 		/*
361 		 * GICv2 SGIs are terribly broken. We can't restore
362 		 * the source of the interrupt, so just pick the vcpu
363 		 * itself as the source...
364 		 */
365 		if (is_vgic_v2_sgi(vcpu, irq))
366 			irq->source |= BIT(vcpu->vcpu_id);
367 
368 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
369 
370 		vgic_put_irq(vcpu->kvm, irq);
371 	}
372 
373 	return 0;
374 }
375 
376 /* Must be called with irq->irq_lock held */
377 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
378 {
379 	irq->pending_latch = false;
380 
381 	/*
382 	 * We don't want the guest to effectively mask the physical
383 	 * interrupt by doing a write to SPENDR followed by a write to
384 	 * CPENDR for HW interrupts, so we clear the active state on
385 	 * the physical side if the virtual interrupt is not active.
386 	 * This may lead to taking an additional interrupt on the
387 	 * host, but that should not be a problem as the worst that
388 	 * can happen is an additional vgic injection.  We also clear
389 	 * the pending state to maintain proper semantics for edge HW
390 	 * interrupts.
391 	 */
392 	vgic_irq_set_phys_pending(irq, false);
393 	if (!irq->active)
394 		vgic_irq_set_phys_active(irq, false);
395 }
396 
397 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
398 			      gpa_t addr, unsigned int len,
399 			      unsigned long val)
400 {
401 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
402 	int i;
403 	unsigned long flags;
404 
405 	for_each_set_bit(i, &val, len * 8) {
406 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
407 
408 		/* GICD_ICPENDR0 SGI bits are WI */
409 		if (is_vgic_v2_sgi(vcpu, irq)) {
410 			vgic_put_irq(vcpu->kvm, irq);
411 			continue;
412 		}
413 
414 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
415 
416 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417 			/* HW SGI? Ask the GIC to clear its pending bit */
418 			int err;
419 			err = irq_set_irqchip_state(irq->host_irq,
420 						    IRQCHIP_STATE_PENDING,
421 						    false);
422 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423 
424 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425 			vgic_put_irq(vcpu->kvm, irq);
426 
427 			continue;
428 		}
429 
430 		if (irq->hw)
431 			vgic_hw_irq_cpending(vcpu, irq);
432 		else
433 			irq->pending_latch = false;
434 
435 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436 		vgic_put_irq(vcpu->kvm, irq);
437 	}
438 }
439 
440 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
441 				gpa_t addr, unsigned int len,
442 				unsigned long val)
443 {
444 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
445 	int i;
446 	unsigned long flags;
447 
448 	for_each_set_bit(i, &val, len * 8) {
449 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
450 
451 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
452 		/*
453 		 * More fun with GICv2 SGIs! If we're clearing one of them
454 		 * from userspace, which source vcpu to clear? Let's not
455 		 * even think of it, and blow the whole set.
456 		 */
457 		if (is_vgic_v2_sgi(vcpu, irq))
458 			irq->source = 0;
459 
460 		irq->pending_latch = false;
461 
462 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
463 
464 		vgic_put_irq(vcpu->kvm, irq);
465 	}
466 
467 	return 0;
468 }
469 
470 /*
471  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
472  * is not queued on some running VCPU's LRs, because then the change to the
473  * active state can be overwritten when the VCPU's state is synced coming back
474  * from the guest.
475  *
476  * For shared interrupts as well as GICv3 private interrupts, we have to
477  * stop all the VCPUs because interrupts can be migrated while we don't hold
478  * the IRQ locks and we don't want to be chasing moving targets.
479  *
480  * For GICv2 private interrupts we don't have to do anything because
481  * userspace accesses to the VGIC state already require all VCPUs to be
482  * stopped, and only the VCPU itself can modify its private interrupts
483  * active state, which guarantees that the VCPU is not running.
484  */
485 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
486 {
487 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
488 	    intid >= VGIC_NR_PRIVATE_IRQS)
489 		kvm_arm_halt_guest(vcpu->kvm);
490 }
491 
492 /* See vgic_access_active_prepare */
493 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
494 {
495 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
496 	    intid >= VGIC_NR_PRIVATE_IRQS)
497 		kvm_arm_resume_guest(vcpu->kvm);
498 }
499 
500 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
501 					     gpa_t addr, unsigned int len)
502 {
503 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
504 	u32 value = 0;
505 	int i;
506 
507 	/* Loop over all IRQs affected by this read */
508 	for (i = 0; i < len * 8; i++) {
509 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
510 
511 		/*
512 		 * Even for HW interrupts, don't evaluate the HW state as
513 		 * all the guest is interested in is the virtual state.
514 		 */
515 		if (irq->active)
516 			value |= (1U << i);
517 
518 		vgic_put_irq(vcpu->kvm, irq);
519 	}
520 
521 	return value;
522 }
523 
524 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
525 				    gpa_t addr, unsigned int len)
526 {
527 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
528 	u32 val;
529 
530 	mutex_lock(&vcpu->kvm->lock);
531 	vgic_access_active_prepare(vcpu, intid);
532 
533 	val = __vgic_mmio_read_active(vcpu, addr, len);
534 
535 	vgic_access_active_finish(vcpu, intid);
536 	mutex_unlock(&vcpu->kvm->lock);
537 
538 	return val;
539 }
540 
541 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
542 				    gpa_t addr, unsigned int len)
543 {
544 	return __vgic_mmio_read_active(vcpu, addr, len);
545 }
546 
547 /* Must be called with irq->irq_lock held */
548 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
549 				      bool active, bool is_uaccess)
550 {
551 	if (is_uaccess)
552 		return;
553 
554 	irq->active = active;
555 	vgic_irq_set_phys_active(irq, active);
556 }
557 
558 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
559 				    bool active)
560 {
561 	unsigned long flags;
562 	struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
563 
564 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
565 
566 	if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
567 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
568 	} else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
569 		/*
570 		 * GICv4.1 VSGI feature doesn't track an active state,
571 		 * so let's not kid ourselves, there is nothing we can
572 		 * do here.
573 		 */
574 		irq->active = false;
575 	} else {
576 		u32 model = vcpu->kvm->arch.vgic.vgic_model;
577 		u8 active_source;
578 
579 		irq->active = active;
580 
581 		/*
582 		 * The GICv2 architecture indicates that the source CPUID for
583 		 * an SGI should be provided during an EOI which implies that
584 		 * the active state is stored somewhere, but at the same time
585 		 * this state is not architecturally exposed anywhere and we
586 		 * have no way of knowing the right source.
587 		 *
588 		 * This may lead to a VCPU not being able to receive
589 		 * additional instances of a particular SGI after migration
590 		 * for a GICv2 VM on some GIC implementations.  Oh well.
591 		 */
592 		active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
593 
594 		if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
595 		    active && vgic_irq_is_sgi(irq->intid))
596 			irq->active_source = active_source;
597 	}
598 
599 	if (irq->active)
600 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
601 	else
602 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
603 }
604 
605 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
606 				      gpa_t addr, unsigned int len,
607 				      unsigned long val)
608 {
609 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
610 	int i;
611 
612 	for_each_set_bit(i, &val, len * 8) {
613 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
614 		vgic_mmio_change_active(vcpu, irq, false);
615 		vgic_put_irq(vcpu->kvm, irq);
616 	}
617 }
618 
619 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
620 			     gpa_t addr, unsigned int len,
621 			     unsigned long val)
622 {
623 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
624 
625 	mutex_lock(&vcpu->kvm->lock);
626 	vgic_access_active_prepare(vcpu, intid);
627 
628 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
629 
630 	vgic_access_active_finish(vcpu, intid);
631 	mutex_unlock(&vcpu->kvm->lock);
632 }
633 
634 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
635 				     gpa_t addr, unsigned int len,
636 				     unsigned long val)
637 {
638 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
639 	return 0;
640 }
641 
642 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
643 				      gpa_t addr, unsigned int len,
644 				      unsigned long val)
645 {
646 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
647 	int i;
648 
649 	for_each_set_bit(i, &val, len * 8) {
650 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
651 		vgic_mmio_change_active(vcpu, irq, true);
652 		vgic_put_irq(vcpu->kvm, irq);
653 	}
654 }
655 
656 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
657 			     gpa_t addr, unsigned int len,
658 			     unsigned long val)
659 {
660 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
661 
662 	mutex_lock(&vcpu->kvm->lock);
663 	vgic_access_active_prepare(vcpu, intid);
664 
665 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
666 
667 	vgic_access_active_finish(vcpu, intid);
668 	mutex_unlock(&vcpu->kvm->lock);
669 }
670 
671 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
672 				     gpa_t addr, unsigned int len,
673 				     unsigned long val)
674 {
675 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
676 	return 0;
677 }
678 
679 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
680 				      gpa_t addr, unsigned int len)
681 {
682 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
683 	int i;
684 	u64 val = 0;
685 
686 	for (i = 0; i < len; i++) {
687 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
688 
689 		val |= (u64)irq->priority << (i * 8);
690 
691 		vgic_put_irq(vcpu->kvm, irq);
692 	}
693 
694 	return val;
695 }
696 
697 /*
698  * We currently don't handle changing the priority of an interrupt that
699  * is already pending on a VCPU. If there is a need for this, we would
700  * need to make this VCPU exit and re-evaluate the priorities, potentially
701  * leading to this interrupt getting presented now to the guest (if it has
702  * been masked by the priority mask before).
703  */
704 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
705 			      gpa_t addr, unsigned int len,
706 			      unsigned long val)
707 {
708 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
709 	int i;
710 	unsigned long flags;
711 
712 	for (i = 0; i < len; i++) {
713 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
714 
715 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
716 		/* Narrow the priority range to what we actually support */
717 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
718 		if (irq->hw && vgic_irq_is_sgi(irq->intid))
719 			vgic_update_vsgi(irq);
720 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
721 
722 		vgic_put_irq(vcpu->kvm, irq);
723 	}
724 }
725 
726 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
727 				    gpa_t addr, unsigned int len)
728 {
729 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
730 	u32 value = 0;
731 	int i;
732 
733 	for (i = 0; i < len * 4; i++) {
734 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
735 
736 		if (irq->config == VGIC_CONFIG_EDGE)
737 			value |= (2U << (i * 2));
738 
739 		vgic_put_irq(vcpu->kvm, irq);
740 	}
741 
742 	return value;
743 }
744 
745 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
746 			    gpa_t addr, unsigned int len,
747 			    unsigned long val)
748 {
749 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
750 	int i;
751 	unsigned long flags;
752 
753 	for (i = 0; i < len * 4; i++) {
754 		struct vgic_irq *irq;
755 
756 		/*
757 		 * The configuration cannot be changed for SGIs in general,
758 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
759 		 * code relies on PPIs being level triggered, so we also
760 		 * make them read-only here.
761 		 */
762 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
763 			continue;
764 
765 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
766 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
767 
768 		if (test_bit(i * 2 + 1, &val))
769 			irq->config = VGIC_CONFIG_EDGE;
770 		else
771 			irq->config = VGIC_CONFIG_LEVEL;
772 
773 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
774 		vgic_put_irq(vcpu->kvm, irq);
775 	}
776 }
777 
778 u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
779 {
780 	int i;
781 	u32 val = 0;
782 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
783 
784 	for (i = 0; i < 32; i++) {
785 		struct vgic_irq *irq;
786 
787 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
788 			continue;
789 
790 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
791 		if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
792 			val |= (1U << i);
793 
794 		vgic_put_irq(vcpu->kvm, irq);
795 	}
796 
797 	return val;
798 }
799 
800 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
801 				    const u32 val)
802 {
803 	int i;
804 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
805 	unsigned long flags;
806 
807 	for (i = 0; i < 32; i++) {
808 		struct vgic_irq *irq;
809 		bool new_level;
810 
811 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
812 			continue;
813 
814 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
815 
816 		/*
817 		 * Line level is set irrespective of irq type
818 		 * (level or edge) to avoid dependency that VM should
819 		 * restore irq config before line level.
820 		 */
821 		new_level = !!(val & (1U << i));
822 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
823 		irq->line_level = new_level;
824 		if (new_level)
825 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
826 		else
827 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
828 
829 		vgic_put_irq(vcpu->kvm, irq);
830 	}
831 }
832 
833 static int match_region(const void *key, const void *elt)
834 {
835 	const unsigned int offset = (unsigned long)key;
836 	const struct vgic_register_region *region = elt;
837 
838 	if (offset < region->reg_offset)
839 		return -1;
840 
841 	if (offset >= region->reg_offset + region->len)
842 		return 1;
843 
844 	return 0;
845 }
846 
847 const struct vgic_register_region *
848 vgic_find_mmio_region(const struct vgic_register_region *regions,
849 		      int nr_regions, unsigned int offset)
850 {
851 	return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
852 		       sizeof(regions[0]), match_region);
853 }
854 
855 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
856 {
857 	if (kvm_vgic_global_state.type == VGIC_V2)
858 		vgic_v2_set_vmcr(vcpu, vmcr);
859 	else
860 		vgic_v3_set_vmcr(vcpu, vmcr);
861 }
862 
863 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
864 {
865 	if (kvm_vgic_global_state.type == VGIC_V2)
866 		vgic_v2_get_vmcr(vcpu, vmcr);
867 	else
868 		vgic_v3_get_vmcr(vcpu, vmcr);
869 }
870 
871 /*
872  * kvm_mmio_read_buf() returns a value in a format where it can be converted
873  * to a byte array and be directly observed as the guest wanted it to appear
874  * in memory if it had done the store itself, which is LE for the GIC, as the
875  * guest knows the GIC is always LE.
876  *
877  * We convert this value to the CPUs native format to deal with it as a data
878  * value.
879  */
880 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
881 {
882 	unsigned long data = kvm_mmio_read_buf(val, len);
883 
884 	switch (len) {
885 	case 1:
886 		return data;
887 	case 2:
888 		return le16_to_cpu(data);
889 	case 4:
890 		return le32_to_cpu(data);
891 	default:
892 		return le64_to_cpu(data);
893 	}
894 }
895 
896 /*
897  * kvm_mmio_write_buf() expects a value in a format such that if converted to
898  * a byte array it is observed as the guest would see it if it could perform
899  * the load directly.  Since the GIC is LE, and the guest knows this, the
900  * guest expects a value in little endian format.
901  *
902  * We convert the data value from the CPUs native format to LE so that the
903  * value is returned in the proper format.
904  */
905 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
906 				unsigned long data)
907 {
908 	switch (len) {
909 	case 1:
910 		break;
911 	case 2:
912 		data = cpu_to_le16(data);
913 		break;
914 	case 4:
915 		data = cpu_to_le32(data);
916 		break;
917 	default:
918 		data = cpu_to_le64(data);
919 	}
920 
921 	kvm_mmio_write_buf(buf, len, data);
922 }
923 
924 static
925 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
926 {
927 	return container_of(dev, struct vgic_io_device, dev);
928 }
929 
930 static bool check_region(const struct kvm *kvm,
931 			 const struct vgic_register_region *region,
932 			 gpa_t addr, int len)
933 {
934 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
935 
936 	switch (len) {
937 	case sizeof(u8):
938 		flags = VGIC_ACCESS_8bit;
939 		break;
940 	case sizeof(u32):
941 		flags = VGIC_ACCESS_32bit;
942 		break;
943 	case sizeof(u64):
944 		flags = VGIC_ACCESS_64bit;
945 		break;
946 	default:
947 		return false;
948 	}
949 
950 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
951 		if (!region->bits_per_irq)
952 			return true;
953 
954 		/* Do we access a non-allocated IRQ? */
955 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
956 	}
957 
958 	return false;
959 }
960 
961 const struct vgic_register_region *
962 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
963 		     gpa_t addr, int len)
964 {
965 	const struct vgic_register_region *region;
966 
967 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
968 				       addr - iodev->base_addr);
969 	if (!region || !check_region(vcpu->kvm, region, addr, len))
970 		return NULL;
971 
972 	return region;
973 }
974 
975 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
976 			     gpa_t addr, u32 *val)
977 {
978 	const struct vgic_register_region *region;
979 	struct kvm_vcpu *r_vcpu;
980 
981 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
982 	if (!region) {
983 		*val = 0;
984 		return 0;
985 	}
986 
987 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
988 	if (region->uaccess_read)
989 		*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
990 	else
991 		*val = region->read(r_vcpu, addr, sizeof(u32));
992 
993 	return 0;
994 }
995 
996 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
997 			      gpa_t addr, const u32 *val)
998 {
999 	const struct vgic_register_region *region;
1000 	struct kvm_vcpu *r_vcpu;
1001 
1002 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
1003 	if (!region)
1004 		return 0;
1005 
1006 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
1007 	if (region->uaccess_write)
1008 		return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
1009 
1010 	region->write(r_vcpu, addr, sizeof(u32), *val);
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Userland access to VGIC registers.
1016  */
1017 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1018 		 bool is_write, int offset, u32 *val)
1019 {
1020 	if (is_write)
1021 		return vgic_uaccess_write(vcpu, dev, offset, val);
1022 	else
1023 		return vgic_uaccess_read(vcpu, dev, offset, val);
1024 }
1025 
1026 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027 			      gpa_t addr, int len, void *val)
1028 {
1029 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030 	const struct vgic_register_region *region;
1031 	unsigned long data = 0;
1032 
1033 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1034 	if (!region) {
1035 		memset(val, 0, len);
1036 		return 0;
1037 	}
1038 
1039 	switch (iodev->iodev_type) {
1040 	case IODEV_CPUIF:
1041 		data = region->read(vcpu, addr, len);
1042 		break;
1043 	case IODEV_DIST:
1044 		data = region->read(vcpu, addr, len);
1045 		break;
1046 	case IODEV_REDIST:
1047 		data = region->read(iodev->redist_vcpu, addr, len);
1048 		break;
1049 	case IODEV_ITS:
1050 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1051 		break;
1052 	}
1053 
1054 	vgic_data_host_to_mmio_bus(val, len, data);
1055 	return 0;
1056 }
1057 
1058 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1059 			       gpa_t addr, int len, const void *val)
1060 {
1061 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1062 	const struct vgic_register_region *region;
1063 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1064 
1065 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1066 	if (!region)
1067 		return 0;
1068 
1069 	switch (iodev->iodev_type) {
1070 	case IODEV_CPUIF:
1071 		region->write(vcpu, addr, len, data);
1072 		break;
1073 	case IODEV_DIST:
1074 		region->write(vcpu, addr, len, data);
1075 		break;
1076 	case IODEV_REDIST:
1077 		region->write(iodev->redist_vcpu, addr, len, data);
1078 		break;
1079 	case IODEV_ITS:
1080 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1081 		break;
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 const struct kvm_io_device_ops kvm_io_gic_ops = {
1088 	.read = dispatch_mmio_read,
1089 	.write = dispatch_mmio_write,
1090 };
1091 
1092 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1093 			     enum vgic_type type)
1094 {
1095 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1096 	int ret = 0;
1097 	unsigned int len;
1098 
1099 	switch (type) {
1100 	case VGIC_V2:
1101 		len = vgic_v2_init_dist_iodev(io_device);
1102 		break;
1103 	case VGIC_V3:
1104 		len = vgic_v3_init_dist_iodev(io_device);
1105 		break;
1106 	default:
1107 		BUG_ON(1);
1108 	}
1109 
1110 	io_device->base_addr = dist_base_address;
1111 	io_device->iodev_type = IODEV_DIST;
1112 	io_device->redist_vcpu = NULL;
1113 
1114 	mutex_lock(&kvm->slots_lock);
1115 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1116 				      len, &io_device->dev);
1117 	mutex_unlock(&kvm->slots_lock);
1118 
1119 	return ret;
1120 }
1121