1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VGICv3 MMIO handling functions 4 */ 5 6 #include <linux/bitfield.h> 7 #include <linux/irqchip/arm-gic-v3.h> 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/interrupt.h> 11 #include <kvm/iodev.h> 12 #include <kvm/arm_vgic.h> 13 14 #include <asm/kvm_emulate.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 18 #include "vgic.h" 19 #include "vgic-mmio.h" 20 21 /* extract @num bytes at @offset bytes offset in data */ 22 unsigned long extract_bytes(u64 data, unsigned int offset, 23 unsigned int num) 24 { 25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0); 26 } 27 28 /* allows updates of any half of a 64-bit register (or the whole thing) */ 29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len, 30 unsigned long val) 31 { 32 int lower = (offset & 4) * 8; 33 int upper = lower + 8 * len - 1; 34 35 reg &= ~GENMASK_ULL(upper, lower); 36 val &= GENMASK_ULL(len * 8 - 1, 0); 37 38 return reg | ((u64)val << lower); 39 } 40 41 bool vgic_has_its(struct kvm *kvm) 42 { 43 struct vgic_dist *dist = &kvm->arch.vgic; 44 45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3) 46 return false; 47 48 return dist->has_its; 49 } 50 51 bool vgic_supports_direct_msis(struct kvm *kvm) 52 { 53 return (kvm_vgic_global_state.has_gicv4_1 || 54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm))); 55 } 56 57 /* 58 * The Revision field in the IIDR have the following meanings: 59 * 60 * Revision 2: Interrupt groups are guest-configurable and signaled using 61 * their configured groups. 62 */ 63 64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, 65 gpa_t addr, unsigned int len) 66 { 67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; 68 u32 value = 0; 69 70 switch (addr & 0x0c) { 71 case GICD_CTLR: 72 if (vgic->enabled) 73 value |= GICD_CTLR_ENABLE_SS_G1; 74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; 75 if (vgic->nassgireq) 76 value |= GICD_CTLR_nASSGIreq; 77 break; 78 case GICD_TYPER: 79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; 80 value = (value >> 5) - 1; 81 if (vgic_has_its(vcpu->kvm)) { 82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19; 83 value |= GICD_TYPER_LPIS; 84 } else { 85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19; 86 } 87 break; 88 case GICD_TYPER2: 89 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi()) 90 value = GICD_TYPER2_nASSGIcap; 91 break; 92 case GICD_IIDR: 93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | 94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | 95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); 96 break; 97 default: 98 return 0; 99 } 100 101 return value; 102 } 103 104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu, 105 gpa_t addr, unsigned int len, 106 unsigned long val) 107 { 108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 109 110 switch (addr & 0x0c) { 111 case GICD_CTLR: { 112 bool was_enabled, is_hwsgi; 113 114 mutex_lock(&vcpu->kvm->arch.config_lock); 115 116 was_enabled = dist->enabled; 117 is_hwsgi = dist->nassgireq; 118 119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; 120 121 /* Not a GICv4.1? No HW SGIs */ 122 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi()) 123 val &= ~GICD_CTLR_nASSGIreq; 124 125 /* Dist stays enabled? nASSGIreq is RO */ 126 if (was_enabled && dist->enabled) { 127 val &= ~GICD_CTLR_nASSGIreq; 128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi); 129 } 130 131 /* Switching HW SGIs? */ 132 dist->nassgireq = val & GICD_CTLR_nASSGIreq; 133 if (is_hwsgi != dist->nassgireq) 134 vgic_v4_configure_vsgis(vcpu->kvm); 135 136 if (kvm_vgic_global_state.has_gicv4_1 && 137 was_enabled != dist->enabled) 138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4); 139 else if (!was_enabled && dist->enabled) 140 vgic_kick_vcpus(vcpu->kvm); 141 142 mutex_unlock(&vcpu->kvm->arch.config_lock); 143 break; 144 } 145 case GICD_TYPER: 146 case GICD_TYPER2: 147 case GICD_IIDR: 148 /* This is at best for documentation purposes... */ 149 return; 150 } 151 } 152 153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu, 154 gpa_t addr, unsigned int len, 155 unsigned long val) 156 { 157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 158 u32 reg; 159 160 switch (addr & 0x0c) { 161 case GICD_TYPER2: 162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len)) 163 return -EINVAL; 164 return 0; 165 case GICD_IIDR: 166 reg = vgic_mmio_read_v3_misc(vcpu, addr, len); 167 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK) 168 return -EINVAL; 169 170 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg); 171 switch (reg) { 172 case KVM_VGIC_IMP_REV_2: 173 case KVM_VGIC_IMP_REV_3: 174 dist->implementation_rev = reg; 175 return 0; 176 default: 177 return -EINVAL; 178 } 179 case GICD_CTLR: 180 /* Not a GICv4.1? No HW SGIs */ 181 if (!kvm_vgic_global_state.has_gicv4_1) 182 val &= ~GICD_CTLR_nASSGIreq; 183 184 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; 185 dist->nassgireq = val & GICD_CTLR_nASSGIreq; 186 return 0; 187 } 188 189 vgic_mmio_write_v3_misc(vcpu, addr, len, val); 190 return 0; 191 } 192 193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu, 194 gpa_t addr, unsigned int len) 195 { 196 int intid = VGIC_ADDR_TO_INTID(addr, 64); 197 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); 198 unsigned long ret = 0; 199 200 if (!irq) 201 return 0; 202 203 /* The upper word is RAZ for us. */ 204 if (!(addr & 4)) 205 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len); 206 207 vgic_put_irq(vcpu->kvm, irq); 208 return ret; 209 } 210 211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, 212 gpa_t addr, unsigned int len, 213 unsigned long val) 214 { 215 int intid = VGIC_ADDR_TO_INTID(addr, 64); 216 struct vgic_irq *irq; 217 unsigned long flags; 218 219 /* The upper word is WI for us since we don't implement Aff3. */ 220 if (addr & 4) 221 return; 222 223 irq = vgic_get_irq(vcpu->kvm, NULL, intid); 224 225 if (!irq) 226 return; 227 228 raw_spin_lock_irqsave(&irq->irq_lock, flags); 229 230 /* We only care about and preserve Aff0, Aff1 and Aff2. */ 231 irq->mpidr = val & GENMASK(23, 0); 232 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr); 233 234 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 235 vgic_put_irq(vcpu->kvm, irq); 236 } 237 238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu) 239 { 240 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 241 242 return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS; 243 } 244 245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu, 246 gpa_t addr, unsigned int len) 247 { 248 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 249 unsigned long val; 250 251 val = atomic_read(&vgic_cpu->ctlr); 252 if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3) 253 val |= GICR_CTLR_IR | GICR_CTLR_CES; 254 255 return val; 256 } 257 258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu, 259 gpa_t addr, unsigned int len, 260 unsigned long val) 261 { 262 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 263 u32 ctlr; 264 265 if (!vgic_has_its(vcpu->kvm)) 266 return; 267 268 if (!(val & GICR_CTLR_ENABLE_LPIS)) { 269 /* 270 * Don't disable if RWP is set, as there already an 271 * ongoing disable. Funky guest... 272 */ 273 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 274 GICR_CTLR_ENABLE_LPIS, 275 GICR_CTLR_RWP); 276 if (ctlr != GICR_CTLR_ENABLE_LPIS) 277 return; 278 279 vgic_flush_pending_lpis(vcpu); 280 vgic_its_invalidate_cache(vcpu->kvm); 281 atomic_set_release(&vgic_cpu->ctlr, 0); 282 } else { 283 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0, 284 GICR_CTLR_ENABLE_LPIS); 285 if (ctlr != 0) 286 return; 287 288 vgic_enable_lpis(vcpu); 289 } 290 } 291 292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu) 293 { 294 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; 295 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 296 struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg; 297 298 if (!rdreg) 299 return false; 300 301 if (vgic_cpu->rdreg_index < rdreg->free_index - 1) { 302 return false; 303 } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) { 304 struct list_head *rd_regions = &vgic->rd_regions; 305 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE; 306 307 /* 308 * the rdist is the last one of the redist region, 309 * check whether there is no other contiguous rdist region 310 */ 311 list_for_each_entry(iter, rd_regions, list) { 312 if (iter->base == end && iter->free_index > 0) 313 return false; 314 } 315 } 316 return true; 317 } 318 319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, 320 gpa_t addr, unsigned int len) 321 { 322 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 323 int target_vcpu_id = vcpu->vcpu_id; 324 u64 value; 325 326 value = (u64)(mpidr & GENMASK(23, 0)) << 32; 327 value |= ((target_vcpu_id & 0xffff) << 8); 328 329 if (vgic_has_its(vcpu->kvm)) 330 value |= GICR_TYPER_PLPIS; 331 332 if (vgic_mmio_vcpu_rdist_is_last(vcpu)) 333 value |= GICR_TYPER_LAST; 334 335 return extract_bytes(value, addr & 7, len); 336 } 337 338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu, 339 gpa_t addr, unsigned int len) 340 { 341 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); 342 } 343 344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu, 345 gpa_t addr, unsigned int len) 346 { 347 switch (addr & 0xffff) { 348 case GICD_PIDR2: 349 /* report a GICv3 compliant implementation */ 350 return 0x3b; 351 } 352 353 return 0; 354 } 355 356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu, 357 gpa_t addr, unsigned int len, 358 unsigned long val) 359 { 360 u32 intid = VGIC_ADDR_TO_INTID(addr, 1); 361 int i; 362 unsigned long flags; 363 364 for (i = 0; i < len * 8; i++) { 365 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 366 367 raw_spin_lock_irqsave(&irq->irq_lock, flags); 368 369 /* 370 * pending_latch is set irrespective of irq type 371 * (level or edge) to avoid dependency that VM should 372 * restore irq config before pending info. 373 */ 374 irq->pending_latch = test_bit(i, &val); 375 376 if (irq->hw && vgic_irq_is_sgi(irq->intid)) { 377 irq_set_irqchip_state(irq->host_irq, 378 IRQCHIP_STATE_PENDING, 379 irq->pending_latch); 380 irq->pending_latch = false; 381 } 382 383 if (irq->pending_latch) 384 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 385 else 386 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 387 388 vgic_put_irq(vcpu->kvm, irq); 389 } 390 391 return 0; 392 } 393 394 /* We want to avoid outer shareable. */ 395 u64 vgic_sanitise_shareability(u64 field) 396 { 397 switch (field) { 398 case GIC_BASER_OuterShareable: 399 return GIC_BASER_InnerShareable; 400 default: 401 return field; 402 } 403 } 404 405 /* Avoid any inner non-cacheable mapping. */ 406 u64 vgic_sanitise_inner_cacheability(u64 field) 407 { 408 switch (field) { 409 case GIC_BASER_CACHE_nCnB: 410 case GIC_BASER_CACHE_nC: 411 return GIC_BASER_CACHE_RaWb; 412 default: 413 return field; 414 } 415 } 416 417 /* Non-cacheable or same-as-inner are OK. */ 418 u64 vgic_sanitise_outer_cacheability(u64 field) 419 { 420 switch (field) { 421 case GIC_BASER_CACHE_SameAsInner: 422 case GIC_BASER_CACHE_nC: 423 return field; 424 default: 425 return GIC_BASER_CACHE_SameAsInner; 426 } 427 } 428 429 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, 430 u64 (*sanitise_fn)(u64)) 431 { 432 u64 field = (reg & field_mask) >> field_shift; 433 434 field = sanitise_fn(field) << field_shift; 435 return (reg & ~field_mask) | field; 436 } 437 438 #define PROPBASER_RES0_MASK \ 439 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5)) 440 #define PENDBASER_RES0_MASK \ 441 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \ 442 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0)) 443 444 static u64 vgic_sanitise_pendbaser(u64 reg) 445 { 446 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK, 447 GICR_PENDBASER_SHAREABILITY_SHIFT, 448 vgic_sanitise_shareability); 449 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK, 450 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT, 451 vgic_sanitise_inner_cacheability); 452 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK, 453 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT, 454 vgic_sanitise_outer_cacheability); 455 456 reg &= ~PENDBASER_RES0_MASK; 457 458 return reg; 459 } 460 461 static u64 vgic_sanitise_propbaser(u64 reg) 462 { 463 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK, 464 GICR_PROPBASER_SHAREABILITY_SHIFT, 465 vgic_sanitise_shareability); 466 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK, 467 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT, 468 vgic_sanitise_inner_cacheability); 469 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK, 470 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT, 471 vgic_sanitise_outer_cacheability); 472 473 reg &= ~PROPBASER_RES0_MASK; 474 return reg; 475 } 476 477 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu, 478 gpa_t addr, unsigned int len) 479 { 480 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 481 482 return extract_bytes(dist->propbaser, addr & 7, len); 483 } 484 485 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu, 486 gpa_t addr, unsigned int len, 487 unsigned long val) 488 { 489 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 490 u64 old_propbaser, propbaser; 491 492 /* Storing a value with LPIs already enabled is undefined */ 493 if (vgic_lpis_enabled(vcpu)) 494 return; 495 496 do { 497 old_propbaser = READ_ONCE(dist->propbaser); 498 propbaser = old_propbaser; 499 propbaser = update_64bit_reg(propbaser, addr & 4, len, val); 500 propbaser = vgic_sanitise_propbaser(propbaser); 501 } while (cmpxchg64(&dist->propbaser, old_propbaser, 502 propbaser) != old_propbaser); 503 } 504 505 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu, 506 gpa_t addr, unsigned int len) 507 { 508 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 509 u64 value = vgic_cpu->pendbaser; 510 511 value &= ~GICR_PENDBASER_PTZ; 512 513 return extract_bytes(value, addr & 7, len); 514 } 515 516 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu, 517 gpa_t addr, unsigned int len, 518 unsigned long val) 519 { 520 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 521 u64 old_pendbaser, pendbaser; 522 523 /* Storing a value with LPIs already enabled is undefined */ 524 if (vgic_lpis_enabled(vcpu)) 525 return; 526 527 do { 528 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser); 529 pendbaser = old_pendbaser; 530 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val); 531 pendbaser = vgic_sanitise_pendbaser(pendbaser); 532 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser, 533 pendbaser) != old_pendbaser); 534 } 535 536 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu, 537 gpa_t addr, unsigned int len) 538 { 539 return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy); 540 } 541 542 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy) 543 { 544 if (busy) { 545 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy); 546 smp_mb__after_atomic(); 547 } else { 548 smp_mb__before_atomic(); 549 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy); 550 } 551 } 552 553 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu, 554 gpa_t addr, unsigned int len, 555 unsigned long val) 556 { 557 struct vgic_irq *irq; 558 559 /* 560 * If the guest wrote only to the upper 32bit part of the 561 * register, drop the write on the floor, as it is only for 562 * vPEs (which we don't support for obvious reasons). 563 * 564 * Also discard the access if LPIs are not enabled. 565 */ 566 if ((addr & 4) || !vgic_lpis_enabled(vcpu)) 567 return; 568 569 vgic_set_rdist_busy(vcpu, true); 570 571 irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val)); 572 if (irq) { 573 vgic_its_inv_lpi(vcpu->kvm, irq); 574 vgic_put_irq(vcpu->kvm, irq); 575 } 576 577 vgic_set_rdist_busy(vcpu, false); 578 } 579 580 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu, 581 gpa_t addr, unsigned int len, 582 unsigned long val) 583 { 584 /* See vgic_mmio_write_invlpi() for the early return rationale */ 585 if ((addr & 4) || !vgic_lpis_enabled(vcpu)) 586 return; 587 588 vgic_set_rdist_busy(vcpu, true); 589 vgic_its_invall(vcpu); 590 vgic_set_rdist_busy(vcpu, false); 591 } 592 593 /* 594 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the 595 * redistributors, while SPIs are covered by registers in the distributor 596 * block. Trying to set private IRQs in this block gets ignored. 597 * We take some special care here to fix the calculation of the register 598 * offset. 599 */ 600 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \ 601 { \ 602 .reg_offset = off, \ 603 .bits_per_irq = bpi, \ 604 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ 605 .access_flags = acc, \ 606 .read = vgic_mmio_read_raz, \ 607 .write = vgic_mmio_write_wi, \ 608 }, { \ 609 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ 610 .bits_per_irq = bpi, \ 611 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \ 612 .access_flags = acc, \ 613 .read = rd, \ 614 .write = wr, \ 615 .uaccess_read = ur, \ 616 .uaccess_write = uw, \ 617 } 618 619 static const struct vgic_register_region vgic_v3_dist_registers[] = { 620 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR, 621 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 622 NULL, vgic_mmio_uaccess_write_v3_misc, 623 16, VGIC_ACCESS_32bit), 624 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR, 625 vgic_mmio_read_rao, vgic_mmio_write_wi, 4, 626 VGIC_ACCESS_32bit), 627 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR, 628 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1, 629 VGIC_ACCESS_32bit), 630 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER, 631 vgic_mmio_read_enable, vgic_mmio_write_senable, 632 NULL, vgic_uaccess_write_senable, 1, 633 VGIC_ACCESS_32bit), 634 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER, 635 vgic_mmio_read_enable, vgic_mmio_write_cenable, 636 NULL, vgic_uaccess_write_cenable, 1, 637 VGIC_ACCESS_32bit), 638 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR, 639 vgic_mmio_read_pending, vgic_mmio_write_spending, 640 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1, 641 VGIC_ACCESS_32bit), 642 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR, 643 vgic_mmio_read_pending, vgic_mmio_write_cpending, 644 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1, 645 VGIC_ACCESS_32bit), 646 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER, 647 vgic_mmio_read_active, vgic_mmio_write_sactive, 648 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, 649 VGIC_ACCESS_32bit), 650 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER, 651 vgic_mmio_read_active, vgic_mmio_write_cactive, 652 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 653 1, VGIC_ACCESS_32bit), 654 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR, 655 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, 656 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 657 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR, 658 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8, 659 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 660 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR, 661 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, 662 VGIC_ACCESS_32bit), 663 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR, 664 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1, 665 VGIC_ACCESS_32bit), 666 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER, 667 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64, 668 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 669 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS, 670 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, 671 VGIC_ACCESS_32bit), 672 }; 673 674 static const struct vgic_register_region vgic_v3_rd_registers[] = { 675 /* RD_base registers */ 676 REGISTER_DESC_WITH_LENGTH(GICR_CTLR, 677 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4, 678 VGIC_ACCESS_32bit), 679 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR, 680 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 681 VGIC_ACCESS_32bit), 682 REGISTER_DESC_WITH_LENGTH(GICR_IIDR, 683 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4, 684 VGIC_ACCESS_32bit), 685 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER, 686 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 687 NULL, vgic_mmio_uaccess_write_wi, 8, 688 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 689 REGISTER_DESC_WITH_LENGTH(GICR_WAKER, 690 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 691 VGIC_ACCESS_32bit), 692 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER, 693 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8, 694 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 695 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER, 696 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8, 697 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 698 REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR, 699 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8, 700 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 701 REGISTER_DESC_WITH_LENGTH(GICR_INVALLR, 702 vgic_mmio_read_raz, vgic_mmio_write_invall, 8, 703 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 704 REGISTER_DESC_WITH_LENGTH(GICR_SYNCR, 705 vgic_mmio_read_sync, vgic_mmio_write_wi, 4, 706 VGIC_ACCESS_32bit), 707 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS, 708 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, 709 VGIC_ACCESS_32bit), 710 /* SGI_base registers */ 711 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0, 712 vgic_mmio_read_group, vgic_mmio_write_group, 4, 713 VGIC_ACCESS_32bit), 714 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0, 715 vgic_mmio_read_enable, vgic_mmio_write_senable, 716 NULL, vgic_uaccess_write_senable, 4, 717 VGIC_ACCESS_32bit), 718 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0, 719 vgic_mmio_read_enable, vgic_mmio_write_cenable, 720 NULL, vgic_uaccess_write_cenable, 4, 721 VGIC_ACCESS_32bit), 722 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0, 723 vgic_mmio_read_pending, vgic_mmio_write_spending, 724 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4, 725 VGIC_ACCESS_32bit), 726 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0, 727 vgic_mmio_read_pending, vgic_mmio_write_cpending, 728 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4, 729 VGIC_ACCESS_32bit), 730 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0, 731 vgic_mmio_read_active, vgic_mmio_write_sactive, 732 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4, 733 VGIC_ACCESS_32bit), 734 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0, 735 vgic_mmio_read_active, vgic_mmio_write_cactive, 736 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4, 737 VGIC_ACCESS_32bit), 738 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0, 739 vgic_mmio_read_priority, vgic_mmio_write_priority, 32, 740 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 741 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0, 742 vgic_mmio_read_config, vgic_mmio_write_config, 8, 743 VGIC_ACCESS_32bit), 744 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0, 745 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 746 VGIC_ACCESS_32bit), 747 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR, 748 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 749 VGIC_ACCESS_32bit), 750 }; 751 752 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) 753 { 754 dev->regions = vgic_v3_dist_registers; 755 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); 756 757 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); 758 759 return SZ_64K; 760 } 761 762 /** 763 * vgic_register_redist_iodev - register a single redist iodev 764 * @vcpu: The VCPU to which the redistributor belongs 765 * 766 * Register a KVM iodev for this VCPU's redistributor using the address 767 * provided. 768 * 769 * Return 0 on success, -ERRNO otherwise. 770 */ 771 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu) 772 { 773 struct kvm *kvm = vcpu->kvm; 774 struct vgic_dist *vgic = &kvm->arch.vgic; 775 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 776 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; 777 struct vgic_redist_region *rdreg; 778 gpa_t rd_base; 779 int ret = 0; 780 781 lockdep_assert_held(&kvm->slots_lock); 782 mutex_lock(&kvm->arch.config_lock); 783 784 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) 785 goto out_unlock; 786 787 /* 788 * We may be creating VCPUs before having set the base address for the 789 * redistributor region, in which case we will come back to this 790 * function for all VCPUs when the base address is set. Just return 791 * without doing any work for now. 792 */ 793 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions); 794 if (!rdreg) 795 goto out_unlock; 796 797 if (!vgic_v3_check_base(kvm)) { 798 ret = -EINVAL; 799 goto out_unlock; 800 } 801 802 vgic_cpu->rdreg = rdreg; 803 vgic_cpu->rdreg_index = rdreg->free_index; 804 805 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE; 806 807 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); 808 rd_dev->base_addr = rd_base; 809 rd_dev->iodev_type = IODEV_REDIST; 810 rd_dev->regions = vgic_v3_rd_registers; 811 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); 812 rd_dev->redist_vcpu = vcpu; 813 814 mutex_unlock(&kvm->arch.config_lock); 815 816 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, 817 2 * SZ_64K, &rd_dev->dev); 818 if (ret) 819 return ret; 820 821 /* Protected by slots_lock */ 822 rdreg->free_index++; 823 return 0; 824 825 out_unlock: 826 mutex_unlock(&kvm->arch.config_lock); 827 return ret; 828 } 829 830 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu) 831 { 832 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; 833 834 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev); 835 } 836 837 static int vgic_register_all_redist_iodevs(struct kvm *kvm) 838 { 839 struct kvm_vcpu *vcpu; 840 unsigned long c; 841 int ret = 0; 842 843 kvm_for_each_vcpu(c, vcpu, kvm) { 844 ret = vgic_register_redist_iodev(vcpu); 845 if (ret) 846 break; 847 } 848 849 if (ret) { 850 /* The current c failed, so iterate over the previous ones. */ 851 int i; 852 853 for (i = 0; i < c; i++) { 854 vcpu = kvm_get_vcpu(kvm, i); 855 vgic_unregister_redist_iodev(vcpu); 856 } 857 } 858 859 return ret; 860 } 861 862 /** 863 * vgic_v3_alloc_redist_region - Allocate a new redistributor region 864 * 865 * Performs various checks before inserting the rdist region in the list. 866 * Those tests depend on whether the size of the rdist region is known 867 * (ie. count != 0). The list is sorted by rdist region index. 868 * 869 * @kvm: kvm handle 870 * @index: redist region index 871 * @base: base of the new rdist region 872 * @count: number of redistributors the region is made of (0 in the old style 873 * single region, whose size is induced from the number of vcpus) 874 * 875 * Return 0 on success, < 0 otherwise 876 */ 877 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index, 878 gpa_t base, uint32_t count) 879 { 880 struct vgic_dist *d = &kvm->arch.vgic; 881 struct vgic_redist_region *rdreg; 882 struct list_head *rd_regions = &d->rd_regions; 883 int nr_vcpus = atomic_read(&kvm->online_vcpus); 884 size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE 885 : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE; 886 int ret; 887 888 /* cross the end of memory ? */ 889 if (base + size < base) 890 return -EINVAL; 891 892 if (list_empty(rd_regions)) { 893 if (index != 0) 894 return -EINVAL; 895 } else { 896 rdreg = list_last_entry(rd_regions, 897 struct vgic_redist_region, list); 898 899 /* Don't mix single region and discrete redist regions */ 900 if (!count && rdreg->count) 901 return -EINVAL; 902 903 if (!count) 904 return -EEXIST; 905 906 if (index != rdreg->index + 1) 907 return -EINVAL; 908 } 909 910 /* 911 * For legacy single-region redistributor regions (!count), 912 * check that the redistributor region does not overlap with the 913 * distributor's address space. 914 */ 915 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 916 vgic_dist_overlap(kvm, base, size)) 917 return -EINVAL; 918 919 /* collision with any other rdist region? */ 920 if (vgic_v3_rdist_overlap(kvm, base, size)) 921 return -EINVAL; 922 923 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT); 924 if (!rdreg) 925 return -ENOMEM; 926 927 rdreg->base = VGIC_ADDR_UNDEF; 928 929 ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size); 930 if (ret) 931 goto free; 932 933 rdreg->base = base; 934 rdreg->count = count; 935 rdreg->free_index = 0; 936 rdreg->index = index; 937 938 list_add_tail(&rdreg->list, rd_regions); 939 return 0; 940 free: 941 kfree(rdreg); 942 return ret; 943 } 944 945 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg) 946 { 947 list_del(&rdreg->list); 948 kfree(rdreg); 949 } 950 951 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count) 952 { 953 int ret; 954 955 mutex_lock(&kvm->arch.config_lock); 956 ret = vgic_v3_alloc_redist_region(kvm, index, addr, count); 957 mutex_unlock(&kvm->arch.config_lock); 958 if (ret) 959 return ret; 960 961 /* 962 * Register iodevs for each existing VCPU. Adding more VCPUs 963 * afterwards will register the iodevs when needed. 964 */ 965 ret = vgic_register_all_redist_iodevs(kvm); 966 if (ret) { 967 struct vgic_redist_region *rdreg; 968 969 mutex_lock(&kvm->arch.config_lock); 970 rdreg = vgic_v3_rdist_region_from_index(kvm, index); 971 vgic_v3_free_redist_region(rdreg); 972 mutex_unlock(&kvm->arch.config_lock); 973 return ret; 974 } 975 976 return 0; 977 } 978 979 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) 980 { 981 const struct vgic_register_region *region; 982 struct vgic_io_device iodev; 983 struct vgic_reg_attr reg_attr; 984 struct kvm_vcpu *vcpu; 985 gpa_t addr; 986 int ret; 987 988 ret = vgic_v3_parse_attr(dev, attr, ®_attr); 989 if (ret) 990 return ret; 991 992 vcpu = reg_attr.vcpu; 993 addr = reg_attr.addr; 994 995 switch (attr->group) { 996 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: 997 iodev.regions = vgic_v3_dist_registers; 998 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); 999 iodev.base_addr = 0; 1000 break; 1001 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{ 1002 iodev.regions = vgic_v3_rd_registers; 1003 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); 1004 iodev.base_addr = 0; 1005 break; 1006 } 1007 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: 1008 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr); 1009 default: 1010 return -ENXIO; 1011 } 1012 1013 /* We only support aligned 32-bit accesses. */ 1014 if (addr & 3) 1015 return -ENXIO; 1016 1017 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); 1018 if (!region) 1019 return -ENXIO; 1020 1021 return 0; 1022 } 1023 /* 1024 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI 1025 * generation register ICC_SGI1R_EL1) with a given VCPU. 1026 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise 1027 * return -1. 1028 */ 1029 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) 1030 { 1031 unsigned long affinity; 1032 int level0; 1033 1034 /* 1035 * Split the current VCPU's MPIDR into affinity level 0 and the 1036 * rest as this is what we have to compare against. 1037 */ 1038 affinity = kvm_vcpu_get_mpidr_aff(vcpu); 1039 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); 1040 affinity &= ~MPIDR_LEVEL_MASK; 1041 1042 /* bail out if the upper three levels don't match */ 1043 if (sgi_aff != affinity) 1044 return -1; 1045 1046 /* Is this VCPU's bit set in the mask ? */ 1047 if (!(sgi_cpu_mask & BIT(level0))) 1048 return -1; 1049 1050 return level0; 1051 } 1052 1053 /* 1054 * The ICC_SGI* registers encode the affinity differently from the MPIDR, 1055 * so provide a wrapper to use the existing defines to isolate a certain 1056 * affinity level. 1057 */ 1058 #define SGI_AFFINITY_LEVEL(reg, level) \ 1059 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ 1060 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) 1061 1062 /** 1063 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs 1064 * @vcpu: The VCPU requesting a SGI 1065 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU 1066 * @allow_group1: Does the sysreg access allow generation of G1 SGIs 1067 * 1068 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. 1069 * This will trap in sys_regs.c and call this function. 1070 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the 1071 * target processors as well as a bitmask of 16 Aff0 CPUs. 1072 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to 1073 * check for matching ones. If this bit is set, we signal all, but not the 1074 * calling VCPU. 1075 */ 1076 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1) 1077 { 1078 struct kvm *kvm = vcpu->kvm; 1079 struct kvm_vcpu *c_vcpu; 1080 u16 target_cpus; 1081 u64 mpidr; 1082 int sgi; 1083 int vcpu_id = vcpu->vcpu_id; 1084 bool broadcast; 1085 unsigned long c, flags; 1086 1087 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; 1088 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); 1089 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; 1090 mpidr = SGI_AFFINITY_LEVEL(reg, 3); 1091 mpidr |= SGI_AFFINITY_LEVEL(reg, 2); 1092 mpidr |= SGI_AFFINITY_LEVEL(reg, 1); 1093 1094 /* 1095 * We iterate over all VCPUs to find the MPIDRs matching the request. 1096 * If we have handled one CPU, we clear its bit to detect early 1097 * if we are already finished. This avoids iterating through all 1098 * VCPUs when most of the times we just signal a single VCPU. 1099 */ 1100 kvm_for_each_vcpu(c, c_vcpu, kvm) { 1101 struct vgic_irq *irq; 1102 1103 /* Exit early if we have dealt with all requested CPUs */ 1104 if (!broadcast && target_cpus == 0) 1105 break; 1106 1107 /* Don't signal the calling VCPU */ 1108 if (broadcast && c == vcpu_id) 1109 continue; 1110 1111 if (!broadcast) { 1112 int level0; 1113 1114 level0 = match_mpidr(mpidr, target_cpus, c_vcpu); 1115 if (level0 == -1) 1116 continue; 1117 1118 /* remove this matching VCPU from the mask */ 1119 target_cpus &= ~BIT(level0); 1120 } 1121 1122 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi); 1123 1124 raw_spin_lock_irqsave(&irq->irq_lock, flags); 1125 1126 /* 1127 * An access targeting Group0 SGIs can only generate 1128 * those, while an access targeting Group1 SGIs can 1129 * generate interrupts of either group. 1130 */ 1131 if (!irq->group || allow_group1) { 1132 if (!irq->hw) { 1133 irq->pending_latch = true; 1134 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 1135 } else { 1136 /* HW SGI? Ask the GIC to inject it */ 1137 int err; 1138 err = irq_set_irqchip_state(irq->host_irq, 1139 IRQCHIP_STATE_PENDING, 1140 true); 1141 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); 1142 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1143 } 1144 } else { 1145 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1146 } 1147 1148 vgic_put_irq(vcpu->kvm, irq); 1149 } 1150 } 1151 1152 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, 1153 int offset, u32 *val) 1154 { 1155 struct vgic_io_device dev = { 1156 .regions = vgic_v3_dist_registers, 1157 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers), 1158 }; 1159 1160 return vgic_uaccess(vcpu, &dev, is_write, offset, val); 1161 } 1162 1163 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write, 1164 int offset, u32 *val) 1165 { 1166 struct vgic_io_device rd_dev = { 1167 .regions = vgic_v3_rd_registers, 1168 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers), 1169 }; 1170 1171 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val); 1172 } 1173 1174 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write, 1175 u32 intid, u32 *val) 1176 { 1177 if (intid % 32) 1178 return -EINVAL; 1179 1180 if (is_write) 1181 vgic_write_irq_line_level_info(vcpu, intid, *val); 1182 else 1183 *val = vgic_read_irq_line_level_info(vcpu, intid); 1184 1185 return 0; 1186 } 1187