xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-mmio-v3.c (revision 465191d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20 
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 			    unsigned int num)
24 {
25 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27 
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 		     unsigned long val)
31 {
32 	int lower = (offset & 4) * 8;
33 	int upper = lower + 8 * len - 1;
34 
35 	reg &= ~GENMASK_ULL(upper, lower);
36 	val &= GENMASK_ULL(len * 8 - 1, 0);
37 
38 	return reg | ((u64)val << lower);
39 }
40 
41 bool vgic_has_its(struct kvm *kvm)
42 {
43 	struct vgic_dist *dist = &kvm->arch.vgic;
44 
45 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 		return false;
47 
48 	return dist->has_its;
49 }
50 
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 	return (kvm_vgic_global_state.has_gicv4_1 ||
54 		(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56 
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  * 	       their configured groups.
62  */
63 
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 					    gpa_t addr, unsigned int len)
66 {
67 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 	u32 value = 0;
69 
70 	switch (addr & 0x0c) {
71 	case GICD_CTLR:
72 		if (vgic->enabled)
73 			value |= GICD_CTLR_ENABLE_SS_G1;
74 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 		if (vgic->nassgireq)
76 			value |= GICD_CTLR_nASSGIreq;
77 		break;
78 	case GICD_TYPER:
79 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 		value = (value >> 5) - 1;
81 		if (vgic_has_its(vcpu->kvm)) {
82 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 			value |= GICD_TYPER_LPIS;
84 		} else {
85 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 		}
87 		break;
88 	case GICD_TYPER2:
89 		if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90 			value = GICD_TYPER2_nASSGIcap;
91 		break;
92 	case GICD_IIDR:
93 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 		break;
97 	default:
98 		return 0;
99 	}
100 
101 	return value;
102 }
103 
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 				    gpa_t addr, unsigned int len,
106 				    unsigned long val)
107 {
108 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109 
110 	switch (addr & 0x0c) {
111 	case GICD_CTLR: {
112 		bool was_enabled, is_hwsgi;
113 
114 		mutex_lock(&vcpu->kvm->lock);
115 
116 		was_enabled = dist->enabled;
117 		is_hwsgi = dist->nassgireq;
118 
119 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120 
121 		/* Not a GICv4.1? No HW SGIs */
122 		if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123 			val &= ~GICD_CTLR_nASSGIreq;
124 
125 		/* Dist stays enabled? nASSGIreq is RO */
126 		if (was_enabled && dist->enabled) {
127 			val &= ~GICD_CTLR_nASSGIreq;
128 			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 		}
130 
131 		/* Switching HW SGIs? */
132 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 		if (is_hwsgi != dist->nassgireq)
134 			vgic_v4_configure_vsgis(vcpu->kvm);
135 
136 		if (kvm_vgic_global_state.has_gicv4_1 &&
137 		    was_enabled != dist->enabled)
138 			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 		else if (!was_enabled && dist->enabled)
140 			vgic_kick_vcpus(vcpu->kvm);
141 
142 		mutex_unlock(&vcpu->kvm->lock);
143 		break;
144 	}
145 	case GICD_TYPER:
146 	case GICD_TYPER2:
147 	case GICD_IIDR:
148 		/* This is at best for documentation purposes... */
149 		return;
150 	}
151 }
152 
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 					   gpa_t addr, unsigned int len,
155 					   unsigned long val)
156 {
157 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158 	u32 reg;
159 
160 	switch (addr & 0x0c) {
161 	case GICD_TYPER2:
162 		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 			return -EINVAL;
164 		return 0;
165 	case GICD_IIDR:
166 		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167 		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168 			return -EINVAL;
169 
170 		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171 		switch (reg) {
172 		case KVM_VGIC_IMP_REV_2:
173 		case KVM_VGIC_IMP_REV_3:
174 			dist->implementation_rev = reg;
175 			return 0;
176 		default:
177 			return -EINVAL;
178 		}
179 	case GICD_CTLR:
180 		/* Not a GICv4.1? No HW SGIs */
181 		if (!kvm_vgic_global_state.has_gicv4_1)
182 			val &= ~GICD_CTLR_nASSGIreq;
183 
184 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186 		return 0;
187 	}
188 
189 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190 	return 0;
191 }
192 
193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194 					    gpa_t addr, unsigned int len)
195 {
196 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
197 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198 	unsigned long ret = 0;
199 
200 	if (!irq)
201 		return 0;
202 
203 	/* The upper word is RAZ for us. */
204 	if (!(addr & 4))
205 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206 
207 	vgic_put_irq(vcpu->kvm, irq);
208 	return ret;
209 }
210 
211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212 				    gpa_t addr, unsigned int len,
213 				    unsigned long val)
214 {
215 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
216 	struct vgic_irq *irq;
217 	unsigned long flags;
218 
219 	/* The upper word is WI for us since we don't implement Aff3. */
220 	if (addr & 4)
221 		return;
222 
223 	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224 
225 	if (!irq)
226 		return;
227 
228 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
229 
230 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
231 	irq->mpidr = val & GENMASK(23, 0);
232 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233 
234 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235 	vgic_put_irq(vcpu->kvm, irq);
236 }
237 
238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241 
242 	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244 
245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246 					     gpa_t addr, unsigned int len)
247 {
248 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249 	unsigned long val;
250 
251 	val = atomic_read(&vgic_cpu->ctlr);
252 	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253 		val |= GICR_CTLR_IR | GICR_CTLR_CES;
254 
255 	return val;
256 }
257 
258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259 				     gpa_t addr, unsigned int len,
260 				     unsigned long val)
261 {
262 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263 	u32 ctlr;
264 
265 	if (!vgic_has_its(vcpu->kvm))
266 		return;
267 
268 	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269 		/*
270 		 * Don't disable if RWP is set, as there already an
271 		 * ongoing disable. Funky guest...
272 		 */
273 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274 					      GICR_CTLR_ENABLE_LPIS,
275 					      GICR_CTLR_RWP);
276 		if (ctlr != GICR_CTLR_ENABLE_LPIS)
277 			return;
278 
279 		vgic_flush_pending_lpis(vcpu);
280 		vgic_its_invalidate_cache(vcpu->kvm);
281 		atomic_set_release(&vgic_cpu->ctlr, 0);
282 	} else {
283 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284 					      GICR_CTLR_ENABLE_LPIS);
285 		if (ctlr != 0)
286 			return;
287 
288 		vgic_enable_lpis(vcpu);
289 	}
290 }
291 
292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296 	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297 
298 	if (!rdreg)
299 		return false;
300 
301 	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302 		return false;
303 	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304 		struct list_head *rd_regions = &vgic->rd_regions;
305 		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306 
307 		/*
308 		 * the rdist is the last one of the redist region,
309 		 * check whether there is no other contiguous rdist region
310 		 */
311 		list_for_each_entry(iter, rd_regions, list) {
312 			if (iter->base == end && iter->free_index > 0)
313 				return false;
314 		}
315 	}
316 	return true;
317 }
318 
319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320 					      gpa_t addr, unsigned int len)
321 {
322 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323 	int target_vcpu_id = vcpu->vcpu_id;
324 	u64 value;
325 
326 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327 	value |= ((target_vcpu_id & 0xffff) << 8);
328 
329 	if (vgic_has_its(vcpu->kvm))
330 		value |= GICR_TYPER_PLPIS;
331 
332 	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333 		value |= GICR_TYPER_LAST;
334 
335 	return extract_bytes(value, addr & 7, len);
336 }
337 
338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339 					     gpa_t addr, unsigned int len)
340 {
341 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343 
344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345 					      gpa_t addr, unsigned int len)
346 {
347 	switch (addr & 0xffff) {
348 	case GICD_PIDR2:
349 		/* report a GICv3 compliant implementation */
350 		return 0x3b;
351 	}
352 
353 	return 0;
354 }
355 
356 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
357 						  gpa_t addr, unsigned int len)
358 {
359 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
360 	u32 value = 0;
361 	int i;
362 
363 	/*
364 	 * pending state of interrupt is latched in pending_latch variable.
365 	 * Userspace will save and restore pending state and line_level
366 	 * separately.
367 	 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
368 	 * for handling of ISPENDR and ICPENDR.
369 	 */
370 	for (i = 0; i < len * 8; i++) {
371 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
372 		bool state = irq->pending_latch;
373 
374 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
375 			int err;
376 
377 			err = irq_get_irqchip_state(irq->host_irq,
378 						    IRQCHIP_STATE_PENDING,
379 						    &state);
380 			WARN_ON(err);
381 		}
382 
383 		if (state)
384 			value |= (1U << i);
385 
386 		vgic_put_irq(vcpu->kvm, irq);
387 	}
388 
389 	return value;
390 }
391 
392 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
393 					 gpa_t addr, unsigned int len,
394 					 unsigned long val)
395 {
396 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
397 	int i;
398 	unsigned long flags;
399 
400 	for (i = 0; i < len * 8; i++) {
401 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
402 
403 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
404 		if (test_bit(i, &val)) {
405 			/*
406 			 * pending_latch is set irrespective of irq type
407 			 * (level or edge) to avoid dependency that VM should
408 			 * restore irq config before pending info.
409 			 */
410 			irq->pending_latch = true;
411 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
412 		} else {
413 			irq->pending_latch = false;
414 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
415 		}
416 
417 		vgic_put_irq(vcpu->kvm, irq);
418 	}
419 
420 	return 0;
421 }
422 
423 /* We want to avoid outer shareable. */
424 u64 vgic_sanitise_shareability(u64 field)
425 {
426 	switch (field) {
427 	case GIC_BASER_OuterShareable:
428 		return GIC_BASER_InnerShareable;
429 	default:
430 		return field;
431 	}
432 }
433 
434 /* Avoid any inner non-cacheable mapping. */
435 u64 vgic_sanitise_inner_cacheability(u64 field)
436 {
437 	switch (field) {
438 	case GIC_BASER_CACHE_nCnB:
439 	case GIC_BASER_CACHE_nC:
440 		return GIC_BASER_CACHE_RaWb;
441 	default:
442 		return field;
443 	}
444 }
445 
446 /* Non-cacheable or same-as-inner are OK. */
447 u64 vgic_sanitise_outer_cacheability(u64 field)
448 {
449 	switch (field) {
450 	case GIC_BASER_CACHE_SameAsInner:
451 	case GIC_BASER_CACHE_nC:
452 		return field;
453 	default:
454 		return GIC_BASER_CACHE_SameAsInner;
455 	}
456 }
457 
458 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
459 			u64 (*sanitise_fn)(u64))
460 {
461 	u64 field = (reg & field_mask) >> field_shift;
462 
463 	field = sanitise_fn(field) << field_shift;
464 	return (reg & ~field_mask) | field;
465 }
466 
467 #define PROPBASER_RES0_MASK						\
468 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
469 #define PENDBASER_RES0_MASK						\
470 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
471 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
472 
473 static u64 vgic_sanitise_pendbaser(u64 reg)
474 {
475 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
476 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
477 				  vgic_sanitise_shareability);
478 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
479 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
480 				  vgic_sanitise_inner_cacheability);
481 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
482 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
483 				  vgic_sanitise_outer_cacheability);
484 
485 	reg &= ~PENDBASER_RES0_MASK;
486 
487 	return reg;
488 }
489 
490 static u64 vgic_sanitise_propbaser(u64 reg)
491 {
492 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
493 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
494 				  vgic_sanitise_shareability);
495 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
496 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
497 				  vgic_sanitise_inner_cacheability);
498 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
499 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
500 				  vgic_sanitise_outer_cacheability);
501 
502 	reg &= ~PROPBASER_RES0_MASK;
503 	return reg;
504 }
505 
506 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
507 					     gpa_t addr, unsigned int len)
508 {
509 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
510 
511 	return extract_bytes(dist->propbaser, addr & 7, len);
512 }
513 
514 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
515 				     gpa_t addr, unsigned int len,
516 				     unsigned long val)
517 {
518 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
519 	u64 old_propbaser, propbaser;
520 
521 	/* Storing a value with LPIs already enabled is undefined */
522 	if (vgic_lpis_enabled(vcpu))
523 		return;
524 
525 	do {
526 		old_propbaser = READ_ONCE(dist->propbaser);
527 		propbaser = old_propbaser;
528 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
529 		propbaser = vgic_sanitise_propbaser(propbaser);
530 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
531 			   propbaser) != old_propbaser);
532 }
533 
534 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
535 					     gpa_t addr, unsigned int len)
536 {
537 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
538 	u64 value = vgic_cpu->pendbaser;
539 
540 	value &= ~GICR_PENDBASER_PTZ;
541 
542 	return extract_bytes(value, addr & 7, len);
543 }
544 
545 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
546 				     gpa_t addr, unsigned int len,
547 				     unsigned long val)
548 {
549 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
550 	u64 old_pendbaser, pendbaser;
551 
552 	/* Storing a value with LPIs already enabled is undefined */
553 	if (vgic_lpis_enabled(vcpu))
554 		return;
555 
556 	do {
557 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
558 		pendbaser = old_pendbaser;
559 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
560 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
561 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
562 			   pendbaser) != old_pendbaser);
563 }
564 
565 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
566 					 gpa_t addr, unsigned int len)
567 {
568 	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
569 }
570 
571 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
572 {
573 	if (busy) {
574 		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
575 		smp_mb__after_atomic();
576 	} else {
577 		smp_mb__before_atomic();
578 		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
579 	}
580 }
581 
582 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
583 				   gpa_t addr, unsigned int len,
584 				   unsigned long val)
585 {
586 	struct vgic_irq *irq;
587 
588 	/*
589 	 * If the guest wrote only to the upper 32bit part of the
590 	 * register, drop the write on the floor, as it is only for
591 	 * vPEs (which we don't support for obvious reasons).
592 	 *
593 	 * Also discard the access if LPIs are not enabled.
594 	 */
595 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
596 		return;
597 
598 	vgic_set_rdist_busy(vcpu, true);
599 
600 	irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
601 	if (irq) {
602 		vgic_its_inv_lpi(vcpu->kvm, irq);
603 		vgic_put_irq(vcpu->kvm, irq);
604 	}
605 
606 	vgic_set_rdist_busy(vcpu, false);
607 }
608 
609 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
610 				   gpa_t addr, unsigned int len,
611 				   unsigned long val)
612 {
613 	/* See vgic_mmio_write_invlpi() for the early return rationale */
614 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
615 		return;
616 
617 	vgic_set_rdist_busy(vcpu, true);
618 	vgic_its_invall(vcpu);
619 	vgic_set_rdist_busy(vcpu, false);
620 }
621 
622 /*
623  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
624  * redistributors, while SPIs are covered by registers in the distributor
625  * block. Trying to set private IRQs in this block gets ignored.
626  * We take some special care here to fix the calculation of the register
627  * offset.
628  */
629 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
630 	{								\
631 		.reg_offset = off,					\
632 		.bits_per_irq = bpi,					\
633 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
634 		.access_flags = acc,					\
635 		.read = vgic_mmio_read_raz,				\
636 		.write = vgic_mmio_write_wi,				\
637 	}, {								\
638 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
639 		.bits_per_irq = bpi,					\
640 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
641 		.access_flags = acc,					\
642 		.read = rd,						\
643 		.write = wr,						\
644 		.uaccess_read = ur,					\
645 		.uaccess_write = uw,					\
646 	}
647 
648 static const struct vgic_register_region vgic_v3_dist_registers[] = {
649 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
650 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
651 		NULL, vgic_mmio_uaccess_write_v3_misc,
652 		16, VGIC_ACCESS_32bit),
653 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
654 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
655 		VGIC_ACCESS_32bit),
656 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
657 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
658 		VGIC_ACCESS_32bit),
659 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
660 		vgic_mmio_read_enable, vgic_mmio_write_senable,
661 		NULL, vgic_uaccess_write_senable, 1,
662 		VGIC_ACCESS_32bit),
663 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
664 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
665 	       NULL, vgic_uaccess_write_cenable, 1,
666 		VGIC_ACCESS_32bit),
667 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
668 		vgic_mmio_read_pending, vgic_mmio_write_spending,
669 		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
670 		VGIC_ACCESS_32bit),
671 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
672 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
673 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
674 		VGIC_ACCESS_32bit),
675 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
676 		vgic_mmio_read_active, vgic_mmio_write_sactive,
677 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
678 		VGIC_ACCESS_32bit),
679 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
680 		vgic_mmio_read_active, vgic_mmio_write_cactive,
681 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
682 		1, VGIC_ACCESS_32bit),
683 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
684 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
685 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
686 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
687 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
688 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
689 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
690 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
691 		VGIC_ACCESS_32bit),
692 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
693 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
694 		VGIC_ACCESS_32bit),
695 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
696 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
697 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
698 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
699 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
700 		VGIC_ACCESS_32bit),
701 };
702 
703 static const struct vgic_register_region vgic_v3_rd_registers[] = {
704 	/* RD_base registers */
705 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
706 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
707 		VGIC_ACCESS_32bit),
708 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
709 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
710 		VGIC_ACCESS_32bit),
711 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
712 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
713 		VGIC_ACCESS_32bit),
714 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
715 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
716 		NULL, vgic_mmio_uaccess_write_wi, 8,
717 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
718 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
719 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
720 		VGIC_ACCESS_32bit),
721 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
722 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
723 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
724 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
725 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
726 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
727 	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
728 		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
729 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
730 	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
731 		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
732 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
733 	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
734 		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
735 		VGIC_ACCESS_32bit),
736 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
737 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
738 		VGIC_ACCESS_32bit),
739 	/* SGI_base registers */
740 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
741 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
742 		VGIC_ACCESS_32bit),
743 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
744 		vgic_mmio_read_enable, vgic_mmio_write_senable,
745 		NULL, vgic_uaccess_write_senable, 4,
746 		VGIC_ACCESS_32bit),
747 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
748 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
749 		NULL, vgic_uaccess_write_cenable, 4,
750 		VGIC_ACCESS_32bit),
751 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
752 		vgic_mmio_read_pending, vgic_mmio_write_spending,
753 		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
754 		VGIC_ACCESS_32bit),
755 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
756 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
757 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
758 		VGIC_ACCESS_32bit),
759 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
760 		vgic_mmio_read_active, vgic_mmio_write_sactive,
761 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
762 		VGIC_ACCESS_32bit),
763 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
764 		vgic_mmio_read_active, vgic_mmio_write_cactive,
765 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
766 		VGIC_ACCESS_32bit),
767 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
768 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
769 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
770 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
771 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
772 		VGIC_ACCESS_32bit),
773 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
774 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
775 		VGIC_ACCESS_32bit),
776 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
777 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
778 		VGIC_ACCESS_32bit),
779 };
780 
781 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
782 {
783 	dev->regions = vgic_v3_dist_registers;
784 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
785 
786 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
787 
788 	return SZ_64K;
789 }
790 
791 /**
792  * vgic_register_redist_iodev - register a single redist iodev
793  * @vcpu:    The VCPU to which the redistributor belongs
794  *
795  * Register a KVM iodev for this VCPU's redistributor using the address
796  * provided.
797  *
798  * Return 0 on success, -ERRNO otherwise.
799  */
800 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
801 {
802 	struct kvm *kvm = vcpu->kvm;
803 	struct vgic_dist *vgic = &kvm->arch.vgic;
804 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
805 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
806 	struct vgic_redist_region *rdreg;
807 	gpa_t rd_base;
808 	int ret;
809 
810 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
811 		return 0;
812 
813 	/*
814 	 * We may be creating VCPUs before having set the base address for the
815 	 * redistributor region, in which case we will come back to this
816 	 * function for all VCPUs when the base address is set.  Just return
817 	 * without doing any work for now.
818 	 */
819 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
820 	if (!rdreg)
821 		return 0;
822 
823 	if (!vgic_v3_check_base(kvm))
824 		return -EINVAL;
825 
826 	vgic_cpu->rdreg = rdreg;
827 	vgic_cpu->rdreg_index = rdreg->free_index;
828 
829 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
830 
831 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
832 	rd_dev->base_addr = rd_base;
833 	rd_dev->iodev_type = IODEV_REDIST;
834 	rd_dev->regions = vgic_v3_rd_registers;
835 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
836 	rd_dev->redist_vcpu = vcpu;
837 
838 	mutex_lock(&kvm->slots_lock);
839 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
840 				      2 * SZ_64K, &rd_dev->dev);
841 	mutex_unlock(&kvm->slots_lock);
842 
843 	if (ret)
844 		return ret;
845 
846 	rdreg->free_index++;
847 	return 0;
848 }
849 
850 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
851 {
852 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
853 
854 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
855 }
856 
857 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
858 {
859 	struct kvm_vcpu *vcpu;
860 	unsigned long c;
861 	int ret = 0;
862 
863 	kvm_for_each_vcpu(c, vcpu, kvm) {
864 		ret = vgic_register_redist_iodev(vcpu);
865 		if (ret)
866 			break;
867 	}
868 
869 	if (ret) {
870 		/* The current c failed, so iterate over the previous ones. */
871 		int i;
872 
873 		mutex_lock(&kvm->slots_lock);
874 		for (i = 0; i < c; i++) {
875 			vcpu = kvm_get_vcpu(kvm, i);
876 			vgic_unregister_redist_iodev(vcpu);
877 		}
878 		mutex_unlock(&kvm->slots_lock);
879 	}
880 
881 	return ret;
882 }
883 
884 /**
885  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
886  *
887  * Performs various checks before inserting the rdist region in the list.
888  * Those tests depend on whether the size of the rdist region is known
889  * (ie. count != 0). The list is sorted by rdist region index.
890  *
891  * @kvm: kvm handle
892  * @index: redist region index
893  * @base: base of the new rdist region
894  * @count: number of redistributors the region is made of (0 in the old style
895  * single region, whose size is induced from the number of vcpus)
896  *
897  * Return 0 on success, < 0 otherwise
898  */
899 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
900 				       gpa_t base, uint32_t count)
901 {
902 	struct vgic_dist *d = &kvm->arch.vgic;
903 	struct vgic_redist_region *rdreg;
904 	struct list_head *rd_regions = &d->rd_regions;
905 	int nr_vcpus = atomic_read(&kvm->online_vcpus);
906 	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
907 			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
908 	int ret;
909 
910 	/* cross the end of memory ? */
911 	if (base + size < base)
912 		return -EINVAL;
913 
914 	if (list_empty(rd_regions)) {
915 		if (index != 0)
916 			return -EINVAL;
917 	} else {
918 		rdreg = list_last_entry(rd_regions,
919 					struct vgic_redist_region, list);
920 
921 		/* Don't mix single region and discrete redist regions */
922 		if (!count && rdreg->count)
923 			return -EINVAL;
924 
925 		if (!count)
926 			return -EEXIST;
927 
928 		if (index != rdreg->index + 1)
929 			return -EINVAL;
930 	}
931 
932 	/*
933 	 * For legacy single-region redistributor regions (!count),
934 	 * check that the redistributor region does not overlap with the
935 	 * distributor's address space.
936 	 */
937 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
938 		vgic_dist_overlap(kvm, base, size))
939 		return -EINVAL;
940 
941 	/* collision with any other rdist region? */
942 	if (vgic_v3_rdist_overlap(kvm, base, size))
943 		return -EINVAL;
944 
945 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
946 	if (!rdreg)
947 		return -ENOMEM;
948 
949 	rdreg->base = VGIC_ADDR_UNDEF;
950 
951 	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
952 	if (ret)
953 		goto free;
954 
955 	rdreg->base = base;
956 	rdreg->count = count;
957 	rdreg->free_index = 0;
958 	rdreg->index = index;
959 
960 	list_add_tail(&rdreg->list, rd_regions);
961 	return 0;
962 free:
963 	kfree(rdreg);
964 	return ret;
965 }
966 
967 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
968 {
969 	list_del(&rdreg->list);
970 	kfree(rdreg);
971 }
972 
973 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
974 {
975 	int ret;
976 
977 	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
978 	if (ret)
979 		return ret;
980 
981 	/*
982 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
983 	 * afterwards will register the iodevs when needed.
984 	 */
985 	ret = vgic_register_all_redist_iodevs(kvm);
986 	if (ret) {
987 		struct vgic_redist_region *rdreg;
988 
989 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
990 		vgic_v3_free_redist_region(rdreg);
991 		return ret;
992 	}
993 
994 	return 0;
995 }
996 
997 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
998 {
999 	const struct vgic_register_region *region;
1000 	struct vgic_io_device iodev;
1001 	struct vgic_reg_attr reg_attr;
1002 	struct kvm_vcpu *vcpu;
1003 	gpa_t addr;
1004 	int ret;
1005 
1006 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
1007 	if (ret)
1008 		return ret;
1009 
1010 	vcpu = reg_attr.vcpu;
1011 	addr = reg_attr.addr;
1012 
1013 	switch (attr->group) {
1014 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1015 		iodev.regions = vgic_v3_dist_registers;
1016 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1017 		iodev.base_addr = 0;
1018 		break;
1019 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1020 		iodev.regions = vgic_v3_rd_registers;
1021 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1022 		iodev.base_addr = 0;
1023 		break;
1024 	}
1025 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
1026 		u64 reg, id;
1027 
1028 		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
1029 		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
1030 	}
1031 	default:
1032 		return -ENXIO;
1033 	}
1034 
1035 	/* We only support aligned 32-bit accesses. */
1036 	if (addr & 3)
1037 		return -ENXIO;
1038 
1039 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1040 	if (!region)
1041 		return -ENXIO;
1042 
1043 	return 0;
1044 }
1045 /*
1046  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1047  * generation register ICC_SGI1R_EL1) with a given VCPU.
1048  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1049  * return -1.
1050  */
1051 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1052 {
1053 	unsigned long affinity;
1054 	int level0;
1055 
1056 	/*
1057 	 * Split the current VCPU's MPIDR into affinity level 0 and the
1058 	 * rest as this is what we have to compare against.
1059 	 */
1060 	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1061 	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1062 	affinity &= ~MPIDR_LEVEL_MASK;
1063 
1064 	/* bail out if the upper three levels don't match */
1065 	if (sgi_aff != affinity)
1066 		return -1;
1067 
1068 	/* Is this VCPU's bit set in the mask ? */
1069 	if (!(sgi_cpu_mask & BIT(level0)))
1070 		return -1;
1071 
1072 	return level0;
1073 }
1074 
1075 /*
1076  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1077  * so provide a wrapper to use the existing defines to isolate a certain
1078  * affinity level.
1079  */
1080 #define SGI_AFFINITY_LEVEL(reg, level) \
1081 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1082 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1083 
1084 /**
1085  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1086  * @vcpu: The VCPU requesting a SGI
1087  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1088  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1089  *
1090  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1091  * This will trap in sys_regs.c and call this function.
1092  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1093  * target processors as well as a bitmask of 16 Aff0 CPUs.
1094  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1095  * check for matching ones. If this bit is set, we signal all, but not the
1096  * calling VCPU.
1097  */
1098 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1099 {
1100 	struct kvm *kvm = vcpu->kvm;
1101 	struct kvm_vcpu *c_vcpu;
1102 	u16 target_cpus;
1103 	u64 mpidr;
1104 	int sgi;
1105 	int vcpu_id = vcpu->vcpu_id;
1106 	bool broadcast;
1107 	unsigned long c, flags;
1108 
1109 	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1110 	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1111 	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1112 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1113 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1114 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1115 
1116 	/*
1117 	 * We iterate over all VCPUs to find the MPIDRs matching the request.
1118 	 * If we have handled one CPU, we clear its bit to detect early
1119 	 * if we are already finished. This avoids iterating through all
1120 	 * VCPUs when most of the times we just signal a single VCPU.
1121 	 */
1122 	kvm_for_each_vcpu(c, c_vcpu, kvm) {
1123 		struct vgic_irq *irq;
1124 
1125 		/* Exit early if we have dealt with all requested CPUs */
1126 		if (!broadcast && target_cpus == 0)
1127 			break;
1128 
1129 		/* Don't signal the calling VCPU */
1130 		if (broadcast && c == vcpu_id)
1131 			continue;
1132 
1133 		if (!broadcast) {
1134 			int level0;
1135 
1136 			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1137 			if (level0 == -1)
1138 				continue;
1139 
1140 			/* remove this matching VCPU from the mask */
1141 			target_cpus &= ~BIT(level0);
1142 		}
1143 
1144 		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1145 
1146 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
1147 
1148 		/*
1149 		 * An access targeting Group0 SGIs can only generate
1150 		 * those, while an access targeting Group1 SGIs can
1151 		 * generate interrupts of either group.
1152 		 */
1153 		if (!irq->group || allow_group1) {
1154 			if (!irq->hw) {
1155 				irq->pending_latch = true;
1156 				vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1157 			} else {
1158 				/* HW SGI? Ask the GIC to inject it */
1159 				int err;
1160 				err = irq_set_irqchip_state(irq->host_irq,
1161 							    IRQCHIP_STATE_PENDING,
1162 							    true);
1163 				WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1164 				raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1165 			}
1166 		} else {
1167 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1168 		}
1169 
1170 		vgic_put_irq(vcpu->kvm, irq);
1171 	}
1172 }
1173 
1174 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1175 			 int offset, u32 *val)
1176 {
1177 	struct vgic_io_device dev = {
1178 		.regions = vgic_v3_dist_registers,
1179 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1180 	};
1181 
1182 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1183 }
1184 
1185 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1186 			   int offset, u32 *val)
1187 {
1188 	struct vgic_io_device rd_dev = {
1189 		.regions = vgic_v3_rd_registers,
1190 		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1191 	};
1192 
1193 	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1194 }
1195 
1196 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1197 				    u32 intid, u64 *val)
1198 {
1199 	if (intid % 32)
1200 		return -EINVAL;
1201 
1202 	if (is_write)
1203 		vgic_write_irq_line_level_info(vcpu, intid, *val);
1204 	else
1205 		*val = vgic_read_irq_line_level_info(vcpu, intid);
1206 
1207 	return 0;
1208 }
1209