1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VGICv3 MMIO handling functions 4 */ 5 6 #include <linux/bitfield.h> 7 #include <linux/irqchip/arm-gic-v3.h> 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/interrupt.h> 11 #include <kvm/iodev.h> 12 #include <kvm/arm_vgic.h> 13 14 #include <asm/kvm_emulate.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 18 #include "vgic.h" 19 #include "vgic-mmio.h" 20 21 /* extract @num bytes at @offset bytes offset in data */ 22 unsigned long extract_bytes(u64 data, unsigned int offset, 23 unsigned int num) 24 { 25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0); 26 } 27 28 /* allows updates of any half of a 64-bit register (or the whole thing) */ 29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len, 30 unsigned long val) 31 { 32 int lower = (offset & 4) * 8; 33 int upper = lower + 8 * len - 1; 34 35 reg &= ~GENMASK_ULL(upper, lower); 36 val &= GENMASK_ULL(len * 8 - 1, 0); 37 38 return reg | ((u64)val << lower); 39 } 40 41 bool vgic_has_its(struct kvm *kvm) 42 { 43 struct vgic_dist *dist = &kvm->arch.vgic; 44 45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3) 46 return false; 47 48 return dist->has_its; 49 } 50 51 bool vgic_supports_direct_msis(struct kvm *kvm) 52 { 53 return (kvm_vgic_global_state.has_gicv4_1 || 54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm))); 55 } 56 57 /* 58 * The Revision field in the IIDR have the following meanings: 59 * 60 * Revision 2: Interrupt groups are guest-configurable and signaled using 61 * their configured groups. 62 */ 63 64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, 65 gpa_t addr, unsigned int len) 66 { 67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; 68 u32 value = 0; 69 70 switch (addr & 0x0c) { 71 case GICD_CTLR: 72 if (vgic->enabled) 73 value |= GICD_CTLR_ENABLE_SS_G1; 74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; 75 if (vgic->nassgireq) 76 value |= GICD_CTLR_nASSGIreq; 77 break; 78 case GICD_TYPER: 79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; 80 value = (value >> 5) - 1; 81 if (vgic_has_its(vcpu->kvm)) { 82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19; 83 value |= GICD_TYPER_LPIS; 84 } else { 85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19; 86 } 87 break; 88 case GICD_TYPER2: 89 if (kvm_vgic_global_state.has_gicv4_1) 90 value = GICD_TYPER2_nASSGIcap; 91 break; 92 case GICD_IIDR: 93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | 94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | 95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); 96 break; 97 default: 98 return 0; 99 } 100 101 return value; 102 } 103 104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu, 105 gpa_t addr, unsigned int len, 106 unsigned long val) 107 { 108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 109 110 switch (addr & 0x0c) { 111 case GICD_CTLR: { 112 bool was_enabled, is_hwsgi; 113 114 mutex_lock(&vcpu->kvm->lock); 115 116 was_enabled = dist->enabled; 117 is_hwsgi = dist->nassgireq; 118 119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; 120 121 /* Not a GICv4.1? No HW SGIs */ 122 if (!kvm_vgic_global_state.has_gicv4_1) 123 val &= ~GICD_CTLR_nASSGIreq; 124 125 /* Dist stays enabled? nASSGIreq is RO */ 126 if (was_enabled && dist->enabled) { 127 val &= ~GICD_CTLR_nASSGIreq; 128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi); 129 } 130 131 /* Switching HW SGIs? */ 132 dist->nassgireq = val & GICD_CTLR_nASSGIreq; 133 if (is_hwsgi != dist->nassgireq) 134 vgic_v4_configure_vsgis(vcpu->kvm); 135 136 if (kvm_vgic_global_state.has_gicv4_1 && 137 was_enabled != dist->enabled) 138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4); 139 else if (!was_enabled && dist->enabled) 140 vgic_kick_vcpus(vcpu->kvm); 141 142 mutex_unlock(&vcpu->kvm->lock); 143 break; 144 } 145 case GICD_TYPER: 146 case GICD_TYPER2: 147 case GICD_IIDR: 148 /* This is at best for documentation purposes... */ 149 return; 150 } 151 } 152 153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu, 154 gpa_t addr, unsigned int len, 155 unsigned long val) 156 { 157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 158 159 switch (addr & 0x0c) { 160 case GICD_TYPER2: 161 case GICD_IIDR: 162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len)) 163 return -EINVAL; 164 return 0; 165 case GICD_CTLR: 166 /* Not a GICv4.1? No HW SGIs */ 167 if (!kvm_vgic_global_state.has_gicv4_1) 168 val &= ~GICD_CTLR_nASSGIreq; 169 170 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; 171 dist->nassgireq = val & GICD_CTLR_nASSGIreq; 172 return 0; 173 } 174 175 vgic_mmio_write_v3_misc(vcpu, addr, len, val); 176 return 0; 177 } 178 179 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu, 180 gpa_t addr, unsigned int len) 181 { 182 int intid = VGIC_ADDR_TO_INTID(addr, 64); 183 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); 184 unsigned long ret = 0; 185 186 if (!irq) 187 return 0; 188 189 /* The upper word is RAZ for us. */ 190 if (!(addr & 4)) 191 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len); 192 193 vgic_put_irq(vcpu->kvm, irq); 194 return ret; 195 } 196 197 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, 198 gpa_t addr, unsigned int len, 199 unsigned long val) 200 { 201 int intid = VGIC_ADDR_TO_INTID(addr, 64); 202 struct vgic_irq *irq; 203 unsigned long flags; 204 205 /* The upper word is WI for us since we don't implement Aff3. */ 206 if (addr & 4) 207 return; 208 209 irq = vgic_get_irq(vcpu->kvm, NULL, intid); 210 211 if (!irq) 212 return; 213 214 raw_spin_lock_irqsave(&irq->irq_lock, flags); 215 216 /* We only care about and preserve Aff0, Aff1 and Aff2. */ 217 irq->mpidr = val & GENMASK(23, 0); 218 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr); 219 220 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 221 vgic_put_irq(vcpu->kvm, irq); 222 } 223 224 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu, 225 gpa_t addr, unsigned int len) 226 { 227 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 228 229 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0; 230 } 231 232 233 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu, 234 gpa_t addr, unsigned int len, 235 unsigned long val) 236 { 237 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 238 bool was_enabled = vgic_cpu->lpis_enabled; 239 240 if (!vgic_has_its(vcpu->kvm)) 241 return; 242 243 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS; 244 245 if (was_enabled && !vgic_cpu->lpis_enabled) { 246 vgic_flush_pending_lpis(vcpu); 247 vgic_its_invalidate_cache(vcpu->kvm); 248 } 249 250 if (!was_enabled && vgic_cpu->lpis_enabled) 251 vgic_enable_lpis(vcpu); 252 } 253 254 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, 255 gpa_t addr, unsigned int len) 256 { 257 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 258 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 259 struct vgic_redist_region *rdreg = vgic_cpu->rdreg; 260 int target_vcpu_id = vcpu->vcpu_id; 261 gpa_t last_rdist_typer = rdreg->base + GICR_TYPER + 262 (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE; 263 u64 value; 264 265 value = (u64)(mpidr & GENMASK(23, 0)) << 32; 266 value |= ((target_vcpu_id & 0xffff) << 8); 267 268 if (addr == last_rdist_typer) 269 value |= GICR_TYPER_LAST; 270 if (vgic_has_its(vcpu->kvm)) 271 value |= GICR_TYPER_PLPIS; 272 273 return extract_bytes(value, addr & 7, len); 274 } 275 276 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu, 277 gpa_t addr, unsigned int len) 278 { 279 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); 280 } 281 282 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu, 283 gpa_t addr, unsigned int len) 284 { 285 switch (addr & 0xffff) { 286 case GICD_PIDR2: 287 /* report a GICv3 compliant implementation */ 288 return 0x3b; 289 } 290 291 return 0; 292 } 293 294 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu, 295 gpa_t addr, unsigned int len) 296 { 297 u32 intid = VGIC_ADDR_TO_INTID(addr, 1); 298 u32 value = 0; 299 int i; 300 301 /* 302 * pending state of interrupt is latched in pending_latch variable. 303 * Userspace will save and restore pending state and line_level 304 * separately. 305 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst 306 * for handling of ISPENDR and ICPENDR. 307 */ 308 for (i = 0; i < len * 8; i++) { 309 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 310 bool state = irq->pending_latch; 311 312 if (irq->hw && vgic_irq_is_sgi(irq->intid)) { 313 int err; 314 315 err = irq_get_irqchip_state(irq->host_irq, 316 IRQCHIP_STATE_PENDING, 317 &state); 318 WARN_ON(err); 319 } 320 321 if (state) 322 value |= (1U << i); 323 324 vgic_put_irq(vcpu->kvm, irq); 325 } 326 327 return value; 328 } 329 330 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu, 331 gpa_t addr, unsigned int len, 332 unsigned long val) 333 { 334 u32 intid = VGIC_ADDR_TO_INTID(addr, 1); 335 int i; 336 unsigned long flags; 337 338 for (i = 0; i < len * 8; i++) { 339 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 340 341 raw_spin_lock_irqsave(&irq->irq_lock, flags); 342 if (test_bit(i, &val)) { 343 /* 344 * pending_latch is set irrespective of irq type 345 * (level or edge) to avoid dependency that VM should 346 * restore irq config before pending info. 347 */ 348 irq->pending_latch = true; 349 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 350 } else { 351 irq->pending_latch = false; 352 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 353 } 354 355 vgic_put_irq(vcpu->kvm, irq); 356 } 357 358 return 0; 359 } 360 361 /* We want to avoid outer shareable. */ 362 u64 vgic_sanitise_shareability(u64 field) 363 { 364 switch (field) { 365 case GIC_BASER_OuterShareable: 366 return GIC_BASER_InnerShareable; 367 default: 368 return field; 369 } 370 } 371 372 /* Avoid any inner non-cacheable mapping. */ 373 u64 vgic_sanitise_inner_cacheability(u64 field) 374 { 375 switch (field) { 376 case GIC_BASER_CACHE_nCnB: 377 case GIC_BASER_CACHE_nC: 378 return GIC_BASER_CACHE_RaWb; 379 default: 380 return field; 381 } 382 } 383 384 /* Non-cacheable or same-as-inner are OK. */ 385 u64 vgic_sanitise_outer_cacheability(u64 field) 386 { 387 switch (field) { 388 case GIC_BASER_CACHE_SameAsInner: 389 case GIC_BASER_CACHE_nC: 390 return field; 391 default: 392 return GIC_BASER_CACHE_SameAsInner; 393 } 394 } 395 396 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, 397 u64 (*sanitise_fn)(u64)) 398 { 399 u64 field = (reg & field_mask) >> field_shift; 400 401 field = sanitise_fn(field) << field_shift; 402 return (reg & ~field_mask) | field; 403 } 404 405 #define PROPBASER_RES0_MASK \ 406 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5)) 407 #define PENDBASER_RES0_MASK \ 408 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \ 409 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0)) 410 411 static u64 vgic_sanitise_pendbaser(u64 reg) 412 { 413 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK, 414 GICR_PENDBASER_SHAREABILITY_SHIFT, 415 vgic_sanitise_shareability); 416 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK, 417 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT, 418 vgic_sanitise_inner_cacheability); 419 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK, 420 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT, 421 vgic_sanitise_outer_cacheability); 422 423 reg &= ~PENDBASER_RES0_MASK; 424 425 return reg; 426 } 427 428 static u64 vgic_sanitise_propbaser(u64 reg) 429 { 430 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK, 431 GICR_PROPBASER_SHAREABILITY_SHIFT, 432 vgic_sanitise_shareability); 433 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK, 434 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT, 435 vgic_sanitise_inner_cacheability); 436 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK, 437 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT, 438 vgic_sanitise_outer_cacheability); 439 440 reg &= ~PROPBASER_RES0_MASK; 441 return reg; 442 } 443 444 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu, 445 gpa_t addr, unsigned int len) 446 { 447 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 448 449 return extract_bytes(dist->propbaser, addr & 7, len); 450 } 451 452 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu, 453 gpa_t addr, unsigned int len, 454 unsigned long val) 455 { 456 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 457 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 458 u64 old_propbaser, propbaser; 459 460 /* Storing a value with LPIs already enabled is undefined */ 461 if (vgic_cpu->lpis_enabled) 462 return; 463 464 do { 465 old_propbaser = READ_ONCE(dist->propbaser); 466 propbaser = old_propbaser; 467 propbaser = update_64bit_reg(propbaser, addr & 4, len, val); 468 propbaser = vgic_sanitise_propbaser(propbaser); 469 } while (cmpxchg64(&dist->propbaser, old_propbaser, 470 propbaser) != old_propbaser); 471 } 472 473 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu, 474 gpa_t addr, unsigned int len) 475 { 476 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 477 u64 value = vgic_cpu->pendbaser; 478 479 value &= ~GICR_PENDBASER_PTZ; 480 481 return extract_bytes(value, addr & 7, len); 482 } 483 484 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu, 485 gpa_t addr, unsigned int len, 486 unsigned long val) 487 { 488 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 489 u64 old_pendbaser, pendbaser; 490 491 /* Storing a value with LPIs already enabled is undefined */ 492 if (vgic_cpu->lpis_enabled) 493 return; 494 495 do { 496 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser); 497 pendbaser = old_pendbaser; 498 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val); 499 pendbaser = vgic_sanitise_pendbaser(pendbaser); 500 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser, 501 pendbaser) != old_pendbaser); 502 } 503 504 /* 505 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the 506 * redistributors, while SPIs are covered by registers in the distributor 507 * block. Trying to set private IRQs in this block gets ignored. 508 * We take some special care here to fix the calculation of the register 509 * offset. 510 */ 511 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \ 512 { \ 513 .reg_offset = off, \ 514 .bits_per_irq = bpi, \ 515 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ 516 .access_flags = acc, \ 517 .read = vgic_mmio_read_raz, \ 518 .write = vgic_mmio_write_wi, \ 519 }, { \ 520 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ 521 .bits_per_irq = bpi, \ 522 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \ 523 .access_flags = acc, \ 524 .read = rd, \ 525 .write = wr, \ 526 .uaccess_read = ur, \ 527 .uaccess_write = uw, \ 528 } 529 530 static const struct vgic_register_region vgic_v3_dist_registers[] = { 531 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR, 532 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 533 NULL, vgic_mmio_uaccess_write_v3_misc, 534 16, VGIC_ACCESS_32bit), 535 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR, 536 vgic_mmio_read_rao, vgic_mmio_write_wi, 4, 537 VGIC_ACCESS_32bit), 538 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR, 539 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1, 540 VGIC_ACCESS_32bit), 541 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER, 542 vgic_mmio_read_enable, vgic_mmio_write_senable, 543 NULL, vgic_uaccess_write_senable, 1, 544 VGIC_ACCESS_32bit), 545 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER, 546 vgic_mmio_read_enable, vgic_mmio_write_cenable, 547 NULL, vgic_uaccess_write_cenable, 1, 548 VGIC_ACCESS_32bit), 549 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR, 550 vgic_mmio_read_pending, vgic_mmio_write_spending, 551 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1, 552 VGIC_ACCESS_32bit), 553 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR, 554 vgic_mmio_read_pending, vgic_mmio_write_cpending, 555 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1, 556 VGIC_ACCESS_32bit), 557 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER, 558 vgic_mmio_read_active, vgic_mmio_write_sactive, 559 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, 560 VGIC_ACCESS_32bit), 561 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER, 562 vgic_mmio_read_active, vgic_mmio_write_cactive, 563 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 564 1, VGIC_ACCESS_32bit), 565 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR, 566 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, 567 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 568 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR, 569 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8, 570 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 571 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR, 572 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, 573 VGIC_ACCESS_32bit), 574 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR, 575 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1, 576 VGIC_ACCESS_32bit), 577 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER, 578 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64, 579 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 580 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS, 581 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, 582 VGIC_ACCESS_32bit), 583 }; 584 585 static const struct vgic_register_region vgic_v3_rd_registers[] = { 586 /* RD_base registers */ 587 REGISTER_DESC_WITH_LENGTH(GICR_CTLR, 588 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4, 589 VGIC_ACCESS_32bit), 590 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR, 591 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 592 VGIC_ACCESS_32bit), 593 REGISTER_DESC_WITH_LENGTH(GICR_IIDR, 594 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4, 595 VGIC_ACCESS_32bit), 596 REGISTER_DESC_WITH_LENGTH(GICR_TYPER, 597 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8, 598 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 599 REGISTER_DESC_WITH_LENGTH(GICR_WAKER, 600 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 601 VGIC_ACCESS_32bit), 602 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER, 603 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8, 604 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 605 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER, 606 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8, 607 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 608 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS, 609 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, 610 VGIC_ACCESS_32bit), 611 /* SGI_base registers */ 612 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0, 613 vgic_mmio_read_group, vgic_mmio_write_group, 4, 614 VGIC_ACCESS_32bit), 615 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0, 616 vgic_mmio_read_enable, vgic_mmio_write_senable, 617 NULL, vgic_uaccess_write_senable, 4, 618 VGIC_ACCESS_32bit), 619 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0, 620 vgic_mmio_read_enable, vgic_mmio_write_cenable, 621 NULL, vgic_uaccess_write_cenable, 4, 622 VGIC_ACCESS_32bit), 623 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0, 624 vgic_mmio_read_pending, vgic_mmio_write_spending, 625 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4, 626 VGIC_ACCESS_32bit), 627 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0, 628 vgic_mmio_read_pending, vgic_mmio_write_cpending, 629 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4, 630 VGIC_ACCESS_32bit), 631 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0, 632 vgic_mmio_read_active, vgic_mmio_write_sactive, 633 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4, 634 VGIC_ACCESS_32bit), 635 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0, 636 vgic_mmio_read_active, vgic_mmio_write_cactive, 637 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4, 638 VGIC_ACCESS_32bit), 639 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0, 640 vgic_mmio_read_priority, vgic_mmio_write_priority, 32, 641 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 642 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0, 643 vgic_mmio_read_config, vgic_mmio_write_config, 8, 644 VGIC_ACCESS_32bit), 645 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0, 646 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 647 VGIC_ACCESS_32bit), 648 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR, 649 vgic_mmio_read_raz, vgic_mmio_write_wi, 4, 650 VGIC_ACCESS_32bit), 651 }; 652 653 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) 654 { 655 dev->regions = vgic_v3_dist_registers; 656 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); 657 658 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); 659 660 return SZ_64K; 661 } 662 663 /** 664 * vgic_register_redist_iodev - register a single redist iodev 665 * @vcpu: The VCPU to which the redistributor belongs 666 * 667 * Register a KVM iodev for this VCPU's redistributor using the address 668 * provided. 669 * 670 * Return 0 on success, -ERRNO otherwise. 671 */ 672 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu) 673 { 674 struct kvm *kvm = vcpu->kvm; 675 struct vgic_dist *vgic = &kvm->arch.vgic; 676 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 677 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; 678 struct vgic_redist_region *rdreg; 679 gpa_t rd_base; 680 int ret; 681 682 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) 683 return 0; 684 685 /* 686 * We may be creating VCPUs before having set the base address for the 687 * redistributor region, in which case we will come back to this 688 * function for all VCPUs when the base address is set. Just return 689 * without doing any work for now. 690 */ 691 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions); 692 if (!rdreg) 693 return 0; 694 695 if (!vgic_v3_check_base(kvm)) 696 return -EINVAL; 697 698 vgic_cpu->rdreg = rdreg; 699 700 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE; 701 702 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); 703 rd_dev->base_addr = rd_base; 704 rd_dev->iodev_type = IODEV_REDIST; 705 rd_dev->regions = vgic_v3_rd_registers; 706 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); 707 rd_dev->redist_vcpu = vcpu; 708 709 mutex_lock(&kvm->slots_lock); 710 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, 711 2 * SZ_64K, &rd_dev->dev); 712 mutex_unlock(&kvm->slots_lock); 713 714 if (ret) 715 return ret; 716 717 rdreg->free_index++; 718 return 0; 719 } 720 721 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu) 722 { 723 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; 724 725 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev); 726 } 727 728 static int vgic_register_all_redist_iodevs(struct kvm *kvm) 729 { 730 struct kvm_vcpu *vcpu; 731 int c, ret = 0; 732 733 kvm_for_each_vcpu(c, vcpu, kvm) { 734 ret = vgic_register_redist_iodev(vcpu); 735 if (ret) 736 break; 737 } 738 739 if (ret) { 740 /* The current c failed, so we start with the previous one. */ 741 mutex_lock(&kvm->slots_lock); 742 for (c--; c >= 0; c--) { 743 vcpu = kvm_get_vcpu(kvm, c); 744 vgic_unregister_redist_iodev(vcpu); 745 } 746 mutex_unlock(&kvm->slots_lock); 747 } 748 749 return ret; 750 } 751 752 /** 753 * vgic_v3_insert_redist_region - Insert a new redistributor region 754 * 755 * Performs various checks before inserting the rdist region in the list. 756 * Those tests depend on whether the size of the rdist region is known 757 * (ie. count != 0). The list is sorted by rdist region index. 758 * 759 * @kvm: kvm handle 760 * @index: redist region index 761 * @base: base of the new rdist region 762 * @count: number of redistributors the region is made of (0 in the old style 763 * single region, whose size is induced from the number of vcpus) 764 * 765 * Return 0 on success, < 0 otherwise 766 */ 767 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index, 768 gpa_t base, uint32_t count) 769 { 770 struct vgic_dist *d = &kvm->arch.vgic; 771 struct vgic_redist_region *rdreg; 772 struct list_head *rd_regions = &d->rd_regions; 773 size_t size = count * KVM_VGIC_V3_REDIST_SIZE; 774 int ret; 775 776 /* single rdist region already set ?*/ 777 if (!count && !list_empty(rd_regions)) 778 return -EINVAL; 779 780 /* cross the end of memory ? */ 781 if (base + size < base) 782 return -EINVAL; 783 784 if (list_empty(rd_regions)) { 785 if (index != 0) 786 return -EINVAL; 787 } else { 788 rdreg = list_last_entry(rd_regions, 789 struct vgic_redist_region, list); 790 if (index != rdreg->index + 1) 791 return -EINVAL; 792 793 /* Cannot add an explicitly sized regions after legacy region */ 794 if (!rdreg->count) 795 return -EINVAL; 796 } 797 798 /* 799 * For legacy single-region redistributor regions (!count), 800 * check that the redistributor region does not overlap with the 801 * distributor's address space. 802 */ 803 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 804 vgic_dist_overlap(kvm, base, size)) 805 return -EINVAL; 806 807 /* collision with any other rdist region? */ 808 if (vgic_v3_rdist_overlap(kvm, base, size)) 809 return -EINVAL; 810 811 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL); 812 if (!rdreg) 813 return -ENOMEM; 814 815 rdreg->base = VGIC_ADDR_UNDEF; 816 817 ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K); 818 if (ret) 819 goto free; 820 821 rdreg->base = base; 822 rdreg->count = count; 823 rdreg->free_index = 0; 824 rdreg->index = index; 825 826 list_add_tail(&rdreg->list, rd_regions); 827 return 0; 828 free: 829 kfree(rdreg); 830 return ret; 831 } 832 833 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count) 834 { 835 int ret; 836 837 ret = vgic_v3_insert_redist_region(kvm, index, addr, count); 838 if (ret) 839 return ret; 840 841 /* 842 * Register iodevs for each existing VCPU. Adding more VCPUs 843 * afterwards will register the iodevs when needed. 844 */ 845 ret = vgic_register_all_redist_iodevs(kvm); 846 if (ret) 847 return ret; 848 849 return 0; 850 } 851 852 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) 853 { 854 const struct vgic_register_region *region; 855 struct vgic_io_device iodev; 856 struct vgic_reg_attr reg_attr; 857 struct kvm_vcpu *vcpu; 858 gpa_t addr; 859 int ret; 860 861 ret = vgic_v3_parse_attr(dev, attr, ®_attr); 862 if (ret) 863 return ret; 864 865 vcpu = reg_attr.vcpu; 866 addr = reg_attr.addr; 867 868 switch (attr->group) { 869 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: 870 iodev.regions = vgic_v3_dist_registers; 871 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); 872 iodev.base_addr = 0; 873 break; 874 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{ 875 iodev.regions = vgic_v3_rd_registers; 876 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); 877 iodev.base_addr = 0; 878 break; 879 } 880 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: { 881 u64 reg, id; 882 883 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK); 884 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, ®); 885 } 886 default: 887 return -ENXIO; 888 } 889 890 /* We only support aligned 32-bit accesses. */ 891 if (addr & 3) 892 return -ENXIO; 893 894 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); 895 if (!region) 896 return -ENXIO; 897 898 return 0; 899 } 900 /* 901 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI 902 * generation register ICC_SGI1R_EL1) with a given VCPU. 903 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise 904 * return -1. 905 */ 906 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) 907 { 908 unsigned long affinity; 909 int level0; 910 911 /* 912 * Split the current VCPU's MPIDR into affinity level 0 and the 913 * rest as this is what we have to compare against. 914 */ 915 affinity = kvm_vcpu_get_mpidr_aff(vcpu); 916 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); 917 affinity &= ~MPIDR_LEVEL_MASK; 918 919 /* bail out if the upper three levels don't match */ 920 if (sgi_aff != affinity) 921 return -1; 922 923 /* Is this VCPU's bit set in the mask ? */ 924 if (!(sgi_cpu_mask & BIT(level0))) 925 return -1; 926 927 return level0; 928 } 929 930 /* 931 * The ICC_SGI* registers encode the affinity differently from the MPIDR, 932 * so provide a wrapper to use the existing defines to isolate a certain 933 * affinity level. 934 */ 935 #define SGI_AFFINITY_LEVEL(reg, level) \ 936 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ 937 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) 938 939 /** 940 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs 941 * @vcpu: The VCPU requesting a SGI 942 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU 943 * @allow_group1: Does the sysreg access allow generation of G1 SGIs 944 * 945 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. 946 * This will trap in sys_regs.c and call this function. 947 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the 948 * target processors as well as a bitmask of 16 Aff0 CPUs. 949 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to 950 * check for matching ones. If this bit is set, we signal all, but not the 951 * calling VCPU. 952 */ 953 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1) 954 { 955 struct kvm *kvm = vcpu->kvm; 956 struct kvm_vcpu *c_vcpu; 957 u16 target_cpus; 958 u64 mpidr; 959 int sgi, c; 960 int vcpu_id = vcpu->vcpu_id; 961 bool broadcast; 962 unsigned long flags; 963 964 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; 965 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); 966 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; 967 mpidr = SGI_AFFINITY_LEVEL(reg, 3); 968 mpidr |= SGI_AFFINITY_LEVEL(reg, 2); 969 mpidr |= SGI_AFFINITY_LEVEL(reg, 1); 970 971 /* 972 * We iterate over all VCPUs to find the MPIDRs matching the request. 973 * If we have handled one CPU, we clear its bit to detect early 974 * if we are already finished. This avoids iterating through all 975 * VCPUs when most of the times we just signal a single VCPU. 976 */ 977 kvm_for_each_vcpu(c, c_vcpu, kvm) { 978 struct vgic_irq *irq; 979 980 /* Exit early if we have dealt with all requested CPUs */ 981 if (!broadcast && target_cpus == 0) 982 break; 983 984 /* Don't signal the calling VCPU */ 985 if (broadcast && c == vcpu_id) 986 continue; 987 988 if (!broadcast) { 989 int level0; 990 991 level0 = match_mpidr(mpidr, target_cpus, c_vcpu); 992 if (level0 == -1) 993 continue; 994 995 /* remove this matching VCPU from the mask */ 996 target_cpus &= ~BIT(level0); 997 } 998 999 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi); 1000 1001 raw_spin_lock_irqsave(&irq->irq_lock, flags); 1002 1003 /* 1004 * An access targetting Group0 SGIs can only generate 1005 * those, while an access targetting Group1 SGIs can 1006 * generate interrupts of either group. 1007 */ 1008 if (!irq->group || allow_group1) { 1009 if (!irq->hw) { 1010 irq->pending_latch = true; 1011 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 1012 } else { 1013 /* HW SGI? Ask the GIC to inject it */ 1014 int err; 1015 err = irq_set_irqchip_state(irq->host_irq, 1016 IRQCHIP_STATE_PENDING, 1017 true); 1018 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); 1019 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1020 } 1021 } else { 1022 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1023 } 1024 1025 vgic_put_irq(vcpu->kvm, irq); 1026 } 1027 } 1028 1029 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, 1030 int offset, u32 *val) 1031 { 1032 struct vgic_io_device dev = { 1033 .regions = vgic_v3_dist_registers, 1034 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers), 1035 }; 1036 1037 return vgic_uaccess(vcpu, &dev, is_write, offset, val); 1038 } 1039 1040 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write, 1041 int offset, u32 *val) 1042 { 1043 struct vgic_io_device rd_dev = { 1044 .regions = vgic_v3_rd_registers, 1045 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers), 1046 }; 1047 1048 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val); 1049 } 1050 1051 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write, 1052 u32 intid, u64 *val) 1053 { 1054 if (intid % 32) 1055 return -EINVAL; 1056 1057 if (is_write) 1058 vgic_write_irq_line_level_info(vcpu, intid, *val); 1059 else 1060 *val = vgic_read_irq_line_level_info(vcpu, intid); 1061 1062 return 0; 1063 } 1064