1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGICv3 MMIO handling functions
4 */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 unsigned int num)
24 {
25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 unsigned long val)
31 {
32 int lower = (offset & 4) * 8;
33 int upper = lower + 8 * len - 1;
34
35 reg &= ~GENMASK_ULL(upper, lower);
36 val &= GENMASK_ULL(len * 8 - 1, 0);
37
38 return reg | ((u64)val << lower);
39 }
40
vgic_has_its(struct kvm * kvm)41 bool vgic_has_its(struct kvm *kvm)
42 {
43 struct vgic_dist *dist = &kvm->arch.vgic;
44
45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 return false;
47
48 return dist->has_its;
49 }
50
vgic_supports_direct_msis(struct kvm * kvm)51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 return (kvm_vgic_global_state.has_gicv4_1 ||
54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * their configured groups.
62 */
63
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 gpa_t addr, unsigned int len)
66 {
67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 u32 value = 0;
69
70 switch (addr & 0x0c) {
71 case GICD_CTLR:
72 if (vgic->enabled)
73 value |= GICD_CTLR_ENABLE_SS_G1;
74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 if (vgic->nassgireq)
76 value |= GICD_CTLR_nASSGIreq;
77 break;
78 case GICD_TYPER:
79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 value = (value >> 5) - 1;
81 if (vgic_has_its(vcpu->kvm)) {
82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 value |= GICD_TYPER_LPIS;
84 } else {
85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 }
87 break;
88 case GICD_TYPER2:
89 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90 value = GICD_TYPER2_nASSGIcap;
91 break;
92 case GICD_IIDR:
93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 break;
97 default:
98 return 0;
99 }
100
101 return value;
102 }
103
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110 switch (addr & 0x0c) {
111 case GICD_CTLR: {
112 bool was_enabled, is_hwsgi;
113
114 mutex_lock(&vcpu->kvm->arch.config_lock);
115
116 was_enabled = dist->enabled;
117 is_hwsgi = dist->nassgireq;
118
119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121 /* Not a GICv4.1? No HW SGIs */
122 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123 val &= ~GICD_CTLR_nASSGIreq;
124
125 /* Dist stays enabled? nASSGIreq is RO */
126 if (was_enabled && dist->enabled) {
127 val &= ~GICD_CTLR_nASSGIreq;
128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 }
130
131 /* Switching HW SGIs? */
132 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 if (is_hwsgi != dist->nassgireq)
134 vgic_v4_configure_vsgis(vcpu->kvm);
135
136 if (kvm_vgic_global_state.has_gicv4_1 &&
137 was_enabled != dist->enabled)
138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 else if (!was_enabled && dist->enabled)
140 vgic_kick_vcpus(vcpu->kvm);
141
142 mutex_unlock(&vcpu->kvm->arch.config_lock);
143 break;
144 }
145 case GICD_TYPER:
146 case GICD_TYPER2:
147 case GICD_IIDR:
148 /* This is at best for documentation purposes... */
149 return;
150 }
151 }
152
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 gpa_t addr, unsigned int len,
155 unsigned long val)
156 {
157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158 u32 reg;
159
160 switch (addr & 0x0c) {
161 case GICD_TYPER2:
162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 return -EINVAL;
164 return 0;
165 case GICD_IIDR:
166 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168 return -EINVAL;
169
170 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171 switch (reg) {
172 case KVM_VGIC_IMP_REV_2:
173 case KVM_VGIC_IMP_REV_3:
174 dist->implementation_rev = reg;
175 return 0;
176 default:
177 return -EINVAL;
178 }
179 case GICD_CTLR:
180 /* Not a GICv4.1? No HW SGIs */
181 if (!kvm_vgic_global_state.has_gicv4_1)
182 val &= ~GICD_CTLR_nASSGIreq;
183
184 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186 return 0;
187 }
188
189 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190 return 0;
191 }
192
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194 gpa_t addr, unsigned int len)
195 {
196 int intid = VGIC_ADDR_TO_INTID(addr, 64);
197 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198 unsigned long ret = 0;
199
200 if (!irq)
201 return 0;
202
203 /* The upper word is RAZ for us. */
204 if (!(addr & 4))
205 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207 vgic_put_irq(vcpu->kvm, irq);
208 return ret;
209 }
210
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212 gpa_t addr, unsigned int len,
213 unsigned long val)
214 {
215 int intid = VGIC_ADDR_TO_INTID(addr, 64);
216 struct vgic_irq *irq;
217 unsigned long flags;
218
219 /* The upper word is WI for us since we don't implement Aff3. */
220 if (addr & 4)
221 return;
222
223 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225 if (!irq)
226 return;
227
228 raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230 /* We only care about and preserve Aff0, Aff1 and Aff2. */
231 irq->mpidr = val & GENMASK(23, 0);
232 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235 vgic_put_irq(vcpu->kvm, irq);
236 }
237
vgic_lpis_enabled(struct kvm_vcpu * vcpu)238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242 return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246 gpa_t addr, unsigned int len)
247 {
248 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249 unsigned long val;
250
251 val = atomic_read(&vgic_cpu->ctlr);
252 if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255 return val;
256 }
257
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259 gpa_t addr, unsigned int len,
260 unsigned long val)
261 {
262 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263 u32 ctlr;
264
265 if (!vgic_has_its(vcpu->kvm))
266 return;
267
268 if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269 /*
270 * Don't disable if RWP is set, as there already an
271 * ongoing disable. Funky guest...
272 */
273 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274 GICR_CTLR_ENABLE_LPIS,
275 GICR_CTLR_RWP);
276 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277 return;
278
279 vgic_flush_pending_lpis(vcpu);
280 vgic_its_invalidate_cache(vcpu->kvm);
281 atomic_set_release(&vgic_cpu->ctlr, 0);
282 } else {
283 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284 GICR_CTLR_ENABLE_LPIS);
285 if (ctlr != 0)
286 return;
287
288 vgic_enable_lpis(vcpu);
289 }
290 }
291
vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu * vcpu)292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296 struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298 if (!rdreg)
299 return false;
300
301 if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302 return false;
303 } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304 struct list_head *rd_regions = &vgic->rd_regions;
305 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307 /*
308 * the rdist is the last one of the redist region,
309 * check whether there is no other contiguous rdist region
310 */
311 list_for_each_entry(iter, rd_regions, list) {
312 if (iter->base == end && iter->free_index > 0)
313 return false;
314 }
315 }
316 return true;
317 }
318
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320 gpa_t addr, unsigned int len)
321 {
322 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323 int target_vcpu_id = vcpu->vcpu_id;
324 u64 value;
325
326 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327 value |= ((target_vcpu_id & 0xffff) << 8);
328
329 if (vgic_has_its(vcpu->kvm))
330 value |= GICR_TYPER_PLPIS;
331
332 if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333 value |= GICR_TYPER_LAST;
334
335 return extract_bytes(value, addr & 7, len);
336 }
337
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339 gpa_t addr, unsigned int len)
340 {
341 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345 gpa_t addr, unsigned int len)
346 {
347 switch (addr & 0xffff) {
348 case GICD_PIDR2:
349 /* report a GICv3 compliant implementation */
350 return 0x3b;
351 }
352
353 return 0;
354 }
355
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357 gpa_t addr, unsigned int len,
358 unsigned long val)
359 {
360 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
361 int i;
362 unsigned long flags;
363
364 for (i = 0; i < len * 8; i++) {
365 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
366
367 raw_spin_lock_irqsave(&irq->irq_lock, flags);
368
369 /*
370 * pending_latch is set irrespective of irq type
371 * (level or edge) to avoid dependency that VM should
372 * restore irq config before pending info.
373 */
374 irq->pending_latch = test_bit(i, &val);
375
376 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
377 irq_set_irqchip_state(irq->host_irq,
378 IRQCHIP_STATE_PENDING,
379 irq->pending_latch);
380 irq->pending_latch = false;
381 }
382
383 if (irq->pending_latch)
384 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
385 else
386 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
387
388 vgic_put_irq(vcpu->kvm, irq);
389 }
390
391 return 0;
392 }
393
394 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)395 u64 vgic_sanitise_shareability(u64 field)
396 {
397 switch (field) {
398 case GIC_BASER_OuterShareable:
399 return GIC_BASER_InnerShareable;
400 default:
401 return field;
402 }
403 }
404
405 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)406 u64 vgic_sanitise_inner_cacheability(u64 field)
407 {
408 switch (field) {
409 case GIC_BASER_CACHE_nCnB:
410 case GIC_BASER_CACHE_nC:
411 return GIC_BASER_CACHE_RaWb;
412 default:
413 return field;
414 }
415 }
416
417 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)418 u64 vgic_sanitise_outer_cacheability(u64 field)
419 {
420 switch (field) {
421 case GIC_BASER_CACHE_SameAsInner:
422 case GIC_BASER_CACHE_nC:
423 return field;
424 default:
425 return GIC_BASER_CACHE_SameAsInner;
426 }
427 }
428
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))429 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
430 u64 (*sanitise_fn)(u64))
431 {
432 u64 field = (reg & field_mask) >> field_shift;
433
434 field = sanitise_fn(field) << field_shift;
435 return (reg & ~field_mask) | field;
436 }
437
438 #define PROPBASER_RES0_MASK \
439 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
440 #define PENDBASER_RES0_MASK \
441 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
442 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
443
vgic_sanitise_pendbaser(u64 reg)444 static u64 vgic_sanitise_pendbaser(u64 reg)
445 {
446 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
447 GICR_PENDBASER_SHAREABILITY_SHIFT,
448 vgic_sanitise_shareability);
449 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
450 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
451 vgic_sanitise_inner_cacheability);
452 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
453 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
454 vgic_sanitise_outer_cacheability);
455
456 reg &= ~PENDBASER_RES0_MASK;
457
458 return reg;
459 }
460
vgic_sanitise_propbaser(u64 reg)461 static u64 vgic_sanitise_propbaser(u64 reg)
462 {
463 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
464 GICR_PROPBASER_SHAREABILITY_SHIFT,
465 vgic_sanitise_shareability);
466 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
467 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
468 vgic_sanitise_inner_cacheability);
469 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
470 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
471 vgic_sanitise_outer_cacheability);
472
473 reg &= ~PROPBASER_RES0_MASK;
474 return reg;
475 }
476
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)477 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
478 gpa_t addr, unsigned int len)
479 {
480 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
481
482 return extract_bytes(dist->propbaser, addr & 7, len);
483 }
484
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)485 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
486 gpa_t addr, unsigned int len,
487 unsigned long val)
488 {
489 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
490 u64 old_propbaser, propbaser;
491
492 /* Storing a value with LPIs already enabled is undefined */
493 if (vgic_lpis_enabled(vcpu))
494 return;
495
496 do {
497 old_propbaser = READ_ONCE(dist->propbaser);
498 propbaser = old_propbaser;
499 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
500 propbaser = vgic_sanitise_propbaser(propbaser);
501 } while (cmpxchg64(&dist->propbaser, old_propbaser,
502 propbaser) != old_propbaser);
503 }
504
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)505 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
506 gpa_t addr, unsigned int len)
507 {
508 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
509 u64 value = vgic_cpu->pendbaser;
510
511 value &= ~GICR_PENDBASER_PTZ;
512
513 return extract_bytes(value, addr & 7, len);
514 }
515
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)516 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
517 gpa_t addr, unsigned int len,
518 unsigned long val)
519 {
520 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
521 u64 old_pendbaser, pendbaser;
522
523 /* Storing a value with LPIs already enabled is undefined */
524 if (vgic_lpis_enabled(vcpu))
525 return;
526
527 do {
528 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
529 pendbaser = old_pendbaser;
530 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
531 pendbaser = vgic_sanitise_pendbaser(pendbaser);
532 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
533 pendbaser) != old_pendbaser);
534 }
535
vgic_mmio_read_sync(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)536 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
537 gpa_t addr, unsigned int len)
538 {
539 return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
540 }
541
vgic_set_rdist_busy(struct kvm_vcpu * vcpu,bool busy)542 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
543 {
544 if (busy) {
545 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
546 smp_mb__after_atomic();
547 } else {
548 smp_mb__before_atomic();
549 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
550 }
551 }
552
vgic_mmio_write_invlpi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)553 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
554 gpa_t addr, unsigned int len,
555 unsigned long val)
556 {
557 struct vgic_irq *irq;
558
559 /*
560 * If the guest wrote only to the upper 32bit part of the
561 * register, drop the write on the floor, as it is only for
562 * vPEs (which we don't support for obvious reasons).
563 *
564 * Also discard the access if LPIs are not enabled.
565 */
566 if ((addr & 4) || !vgic_lpis_enabled(vcpu))
567 return;
568
569 vgic_set_rdist_busy(vcpu, true);
570
571 irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
572 if (irq) {
573 vgic_its_inv_lpi(vcpu->kvm, irq);
574 vgic_put_irq(vcpu->kvm, irq);
575 }
576
577 vgic_set_rdist_busy(vcpu, false);
578 }
579
vgic_mmio_write_invall(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)580 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
581 gpa_t addr, unsigned int len,
582 unsigned long val)
583 {
584 /* See vgic_mmio_write_invlpi() for the early return rationale */
585 if ((addr & 4) || !vgic_lpis_enabled(vcpu))
586 return;
587
588 vgic_set_rdist_busy(vcpu, true);
589 vgic_its_invall(vcpu);
590 vgic_set_rdist_busy(vcpu, false);
591 }
592
593 /*
594 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
595 * redistributors, while SPIs are covered by registers in the distributor
596 * block. Trying to set private IRQs in this block gets ignored.
597 * We take some special care here to fix the calculation of the register
598 * offset.
599 */
600 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
601 { \
602 .reg_offset = off, \
603 .bits_per_irq = bpi, \
604 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
605 .access_flags = acc, \
606 .read = vgic_mmio_read_raz, \
607 .write = vgic_mmio_write_wi, \
608 }, { \
609 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
610 .bits_per_irq = bpi, \
611 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
612 .access_flags = acc, \
613 .read = rd, \
614 .write = wr, \
615 .uaccess_read = ur, \
616 .uaccess_write = uw, \
617 }
618
619 static const struct vgic_register_region vgic_v3_dist_registers[] = {
620 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
621 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
622 NULL, vgic_mmio_uaccess_write_v3_misc,
623 16, VGIC_ACCESS_32bit),
624 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
625 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
626 VGIC_ACCESS_32bit),
627 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
628 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
629 VGIC_ACCESS_32bit),
630 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
631 vgic_mmio_read_enable, vgic_mmio_write_senable,
632 NULL, vgic_uaccess_write_senable, 1,
633 VGIC_ACCESS_32bit),
634 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
635 vgic_mmio_read_enable, vgic_mmio_write_cenable,
636 NULL, vgic_uaccess_write_cenable, 1,
637 VGIC_ACCESS_32bit),
638 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
639 vgic_mmio_read_pending, vgic_mmio_write_spending,
640 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
641 VGIC_ACCESS_32bit),
642 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
643 vgic_mmio_read_pending, vgic_mmio_write_cpending,
644 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
645 VGIC_ACCESS_32bit),
646 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
647 vgic_mmio_read_active, vgic_mmio_write_sactive,
648 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
649 VGIC_ACCESS_32bit),
650 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
651 vgic_mmio_read_active, vgic_mmio_write_cactive,
652 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
653 1, VGIC_ACCESS_32bit),
654 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
655 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
656 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
657 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
658 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
659 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
660 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
661 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
662 VGIC_ACCESS_32bit),
663 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
664 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
665 VGIC_ACCESS_32bit),
666 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
667 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
668 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
669 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
670 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
671 VGIC_ACCESS_32bit),
672 };
673
674 static const struct vgic_register_region vgic_v3_rd_registers[] = {
675 /* RD_base registers */
676 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
677 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
678 VGIC_ACCESS_32bit),
679 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
680 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
681 VGIC_ACCESS_32bit),
682 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
683 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
684 VGIC_ACCESS_32bit),
685 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
686 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
687 NULL, vgic_mmio_uaccess_write_wi, 8,
688 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
689 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
690 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
691 VGIC_ACCESS_32bit),
692 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
693 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
694 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
695 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
696 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
697 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
698 REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
699 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
700 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
701 REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
702 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
703 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
704 REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
705 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
706 VGIC_ACCESS_32bit),
707 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
708 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
709 VGIC_ACCESS_32bit),
710 /* SGI_base registers */
711 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
712 vgic_mmio_read_group, vgic_mmio_write_group, 4,
713 VGIC_ACCESS_32bit),
714 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
715 vgic_mmio_read_enable, vgic_mmio_write_senable,
716 NULL, vgic_uaccess_write_senable, 4,
717 VGIC_ACCESS_32bit),
718 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
719 vgic_mmio_read_enable, vgic_mmio_write_cenable,
720 NULL, vgic_uaccess_write_cenable, 4,
721 VGIC_ACCESS_32bit),
722 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
723 vgic_mmio_read_pending, vgic_mmio_write_spending,
724 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
725 VGIC_ACCESS_32bit),
726 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
727 vgic_mmio_read_pending, vgic_mmio_write_cpending,
728 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
729 VGIC_ACCESS_32bit),
730 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
731 vgic_mmio_read_active, vgic_mmio_write_sactive,
732 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
733 VGIC_ACCESS_32bit),
734 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
735 vgic_mmio_read_active, vgic_mmio_write_cactive,
736 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
737 VGIC_ACCESS_32bit),
738 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
739 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
740 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
741 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
742 vgic_mmio_read_config, vgic_mmio_write_config, 8,
743 VGIC_ACCESS_32bit),
744 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
745 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
746 VGIC_ACCESS_32bit),
747 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
748 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
749 VGIC_ACCESS_32bit),
750 };
751
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)752 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
753 {
754 dev->regions = vgic_v3_dist_registers;
755 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
756
757 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
758
759 return SZ_64K;
760 }
761
762 /**
763 * vgic_register_redist_iodev - register a single redist iodev
764 * @vcpu: The VCPU to which the redistributor belongs
765 *
766 * Register a KVM iodev for this VCPU's redistributor using the address
767 * provided.
768 *
769 * Return 0 on success, -ERRNO otherwise.
770 */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)771 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
772 {
773 struct kvm *kvm = vcpu->kvm;
774 struct vgic_dist *vgic = &kvm->arch.vgic;
775 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
776 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
777 struct vgic_redist_region *rdreg;
778 gpa_t rd_base;
779 int ret = 0;
780
781 lockdep_assert_held(&kvm->slots_lock);
782 mutex_lock(&kvm->arch.config_lock);
783
784 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
785 goto out_unlock;
786
787 /*
788 * We may be creating VCPUs before having set the base address for the
789 * redistributor region, in which case we will come back to this
790 * function for all VCPUs when the base address is set. Just return
791 * without doing any work for now.
792 */
793 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
794 if (!rdreg)
795 goto out_unlock;
796
797 if (!vgic_v3_check_base(kvm)) {
798 ret = -EINVAL;
799 goto out_unlock;
800 }
801
802 vgic_cpu->rdreg = rdreg;
803 vgic_cpu->rdreg_index = rdreg->free_index;
804
805 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
806
807 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
808 rd_dev->base_addr = rd_base;
809 rd_dev->iodev_type = IODEV_REDIST;
810 rd_dev->regions = vgic_v3_rd_registers;
811 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
812 rd_dev->redist_vcpu = vcpu;
813
814 mutex_unlock(&kvm->arch.config_lock);
815
816 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
817 2 * SZ_64K, &rd_dev->dev);
818 if (ret)
819 return ret;
820
821 /* Protected by slots_lock */
822 rdreg->free_index++;
823 return 0;
824
825 out_unlock:
826 mutex_unlock(&kvm->arch.config_lock);
827 return ret;
828 }
829
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)830 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
831 {
832 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
833
834 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
835 }
836
vgic_register_all_redist_iodevs(struct kvm * kvm)837 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
838 {
839 struct kvm_vcpu *vcpu;
840 unsigned long c;
841 int ret = 0;
842
843 kvm_for_each_vcpu(c, vcpu, kvm) {
844 ret = vgic_register_redist_iodev(vcpu);
845 if (ret)
846 break;
847 }
848
849 if (ret) {
850 /* The current c failed, so iterate over the previous ones. */
851 int i;
852
853 for (i = 0; i < c; i++) {
854 vcpu = kvm_get_vcpu(kvm, i);
855 vgic_unregister_redist_iodev(vcpu);
856 }
857 }
858
859 return ret;
860 }
861
862 /**
863 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
864 *
865 * Performs various checks before inserting the rdist region in the list.
866 * Those tests depend on whether the size of the rdist region is known
867 * (ie. count != 0). The list is sorted by rdist region index.
868 *
869 * @kvm: kvm handle
870 * @index: redist region index
871 * @base: base of the new rdist region
872 * @count: number of redistributors the region is made of (0 in the old style
873 * single region, whose size is induced from the number of vcpus)
874 *
875 * Return 0 on success, < 0 otherwise
876 */
vgic_v3_alloc_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)877 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
878 gpa_t base, uint32_t count)
879 {
880 struct vgic_dist *d = &kvm->arch.vgic;
881 struct vgic_redist_region *rdreg;
882 struct list_head *rd_regions = &d->rd_regions;
883 int nr_vcpus = atomic_read(&kvm->online_vcpus);
884 size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
885 : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
886 int ret;
887
888 /* cross the end of memory ? */
889 if (base + size < base)
890 return -EINVAL;
891
892 if (list_empty(rd_regions)) {
893 if (index != 0)
894 return -EINVAL;
895 } else {
896 rdreg = list_last_entry(rd_regions,
897 struct vgic_redist_region, list);
898
899 /* Don't mix single region and discrete redist regions */
900 if (!count && rdreg->count)
901 return -EINVAL;
902
903 if (!count)
904 return -EEXIST;
905
906 if (index != rdreg->index + 1)
907 return -EINVAL;
908 }
909
910 /*
911 * For legacy single-region redistributor regions (!count),
912 * check that the redistributor region does not overlap with the
913 * distributor's address space.
914 */
915 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
916 vgic_dist_overlap(kvm, base, size))
917 return -EINVAL;
918
919 /* collision with any other rdist region? */
920 if (vgic_v3_rdist_overlap(kvm, base, size))
921 return -EINVAL;
922
923 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
924 if (!rdreg)
925 return -ENOMEM;
926
927 rdreg->base = VGIC_ADDR_UNDEF;
928
929 ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
930 if (ret)
931 goto free;
932
933 rdreg->base = base;
934 rdreg->count = count;
935 rdreg->free_index = 0;
936 rdreg->index = index;
937
938 list_add_tail(&rdreg->list, rd_regions);
939 return 0;
940 free:
941 kfree(rdreg);
942 return ret;
943 }
944
vgic_v3_free_redist_region(struct kvm * kvm,struct vgic_redist_region * rdreg)945 void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
946 {
947 struct kvm_vcpu *vcpu;
948 unsigned long c;
949
950 lockdep_assert_held(&kvm->arch.config_lock);
951
952 /* Garbage collect the region */
953 kvm_for_each_vcpu(c, vcpu, kvm) {
954 if (vcpu->arch.vgic_cpu.rdreg == rdreg)
955 vcpu->arch.vgic_cpu.rdreg = NULL;
956 }
957
958 list_del(&rdreg->list);
959 kfree(rdreg);
960 }
961
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)962 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
963 {
964 int ret;
965
966 mutex_lock(&kvm->arch.config_lock);
967 ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
968 mutex_unlock(&kvm->arch.config_lock);
969 if (ret)
970 return ret;
971
972 /*
973 * Register iodevs for each existing VCPU. Adding more VCPUs
974 * afterwards will register the iodevs when needed.
975 */
976 ret = vgic_register_all_redist_iodevs(kvm);
977 if (ret) {
978 struct vgic_redist_region *rdreg;
979
980 mutex_lock(&kvm->arch.config_lock);
981 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
982 vgic_v3_free_redist_region(kvm, rdreg);
983 mutex_unlock(&kvm->arch.config_lock);
984 return ret;
985 }
986
987 return 0;
988 }
989
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)990 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
991 {
992 const struct vgic_register_region *region;
993 struct vgic_io_device iodev;
994 struct vgic_reg_attr reg_attr;
995 struct kvm_vcpu *vcpu;
996 gpa_t addr;
997 int ret;
998
999 ret = vgic_v3_parse_attr(dev, attr, ®_attr);
1000 if (ret)
1001 return ret;
1002
1003 vcpu = reg_attr.vcpu;
1004 addr = reg_attr.addr;
1005
1006 switch (attr->group) {
1007 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1008 iodev.regions = vgic_v3_dist_registers;
1009 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1010 iodev.base_addr = 0;
1011 break;
1012 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1013 iodev.regions = vgic_v3_rd_registers;
1014 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1015 iodev.base_addr = 0;
1016 break;
1017 }
1018 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1019 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1020 default:
1021 return -ENXIO;
1022 }
1023
1024 /* We only support aligned 32-bit accesses. */
1025 if (addr & 3)
1026 return -ENXIO;
1027
1028 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1029 if (!region)
1030 return -ENXIO;
1031
1032 return 0;
1033 }
1034 /*
1035 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1036 * generation register ICC_SGI1R_EL1) with a given VCPU.
1037 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1038 * return -1.
1039 */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)1040 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1041 {
1042 unsigned long affinity;
1043 int level0;
1044
1045 /*
1046 * Split the current VCPU's MPIDR into affinity level 0 and the
1047 * rest as this is what we have to compare against.
1048 */
1049 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1050 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1051 affinity &= ~MPIDR_LEVEL_MASK;
1052
1053 /* bail out if the upper three levels don't match */
1054 if (sgi_aff != affinity)
1055 return -1;
1056
1057 /* Is this VCPU's bit set in the mask ? */
1058 if (!(sgi_cpu_mask & BIT(level0)))
1059 return -1;
1060
1061 return level0;
1062 }
1063
1064 /*
1065 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1066 * so provide a wrapper to use the existing defines to isolate a certain
1067 * affinity level.
1068 */
1069 #define SGI_AFFINITY_LEVEL(reg, level) \
1070 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1071 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1072
1073 /**
1074 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1075 * @vcpu: The VCPU requesting a SGI
1076 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1077 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1078 *
1079 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1080 * This will trap in sys_regs.c and call this function.
1081 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1082 * target processors as well as a bitmask of 16 Aff0 CPUs.
1083 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1084 * check for matching ones. If this bit is set, we signal all, but not the
1085 * calling VCPU.
1086 */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)1087 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1088 {
1089 struct kvm *kvm = vcpu->kvm;
1090 struct kvm_vcpu *c_vcpu;
1091 u16 target_cpus;
1092 u64 mpidr;
1093 int sgi;
1094 int vcpu_id = vcpu->vcpu_id;
1095 bool broadcast;
1096 unsigned long c, flags;
1097
1098 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1099 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1100 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1101 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1102 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1103 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1104
1105 /*
1106 * We iterate over all VCPUs to find the MPIDRs matching the request.
1107 * If we have handled one CPU, we clear its bit to detect early
1108 * if we are already finished. This avoids iterating through all
1109 * VCPUs when most of the times we just signal a single VCPU.
1110 */
1111 kvm_for_each_vcpu(c, c_vcpu, kvm) {
1112 struct vgic_irq *irq;
1113
1114 /* Exit early if we have dealt with all requested CPUs */
1115 if (!broadcast && target_cpus == 0)
1116 break;
1117
1118 /* Don't signal the calling VCPU */
1119 if (broadcast && c == vcpu_id)
1120 continue;
1121
1122 if (!broadcast) {
1123 int level0;
1124
1125 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1126 if (level0 == -1)
1127 continue;
1128
1129 /* remove this matching VCPU from the mask */
1130 target_cpus &= ~BIT(level0);
1131 }
1132
1133 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1134
1135 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1136
1137 /*
1138 * An access targeting Group0 SGIs can only generate
1139 * those, while an access targeting Group1 SGIs can
1140 * generate interrupts of either group.
1141 */
1142 if (!irq->group || allow_group1) {
1143 if (!irq->hw) {
1144 irq->pending_latch = true;
1145 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1146 } else {
1147 /* HW SGI? Ask the GIC to inject it */
1148 int err;
1149 err = irq_set_irqchip_state(irq->host_irq,
1150 IRQCHIP_STATE_PENDING,
1151 true);
1152 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1153 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1154 }
1155 } else {
1156 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1157 }
1158
1159 vgic_put_irq(vcpu->kvm, irq);
1160 }
1161 }
1162
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1163 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1164 int offset, u32 *val)
1165 {
1166 struct vgic_io_device dev = {
1167 .regions = vgic_v3_dist_registers,
1168 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1169 };
1170
1171 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1172 }
1173
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1174 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1175 int offset, u32 *val)
1176 {
1177 struct vgic_io_device rd_dev = {
1178 .regions = vgic_v3_rd_registers,
1179 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1180 };
1181
1182 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1183 }
1184
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u32 * val)1185 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1186 u32 intid, u32 *val)
1187 {
1188 if (intid % 32)
1189 return -EINVAL;
1190
1191 if (is_write)
1192 vgic_write_irq_line_level_info(vcpu, intid, *val);
1193 else
1194 *val = vgic_read_irq_line_level_info(vcpu, intid);
1195
1196 return 0;
1197 }
1198