xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-mmio-v2.c (revision d87c25e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv2 MMIO handling functions
4  */
5 
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/nospec.h>
10 
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16 
17 /*
18  * The Revision field in the IIDR have the following meanings:
19  *
20  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
21  * Revision 2: Interrupt groups are guest-configurable and signaled using
22  * 	       their configured groups.
23  */
24 
25 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
26 					    gpa_t addr, unsigned int len)
27 {
28 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
29 	u32 value;
30 
31 	switch (addr & 0x0c) {
32 	case GIC_DIST_CTRL:
33 		value = vgic->enabled ? GICD_ENABLE : 0;
34 		break;
35 	case GIC_DIST_CTR:
36 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
37 		value = (value >> 5) - 1;
38 		value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
39 		break;
40 	case GIC_DIST_IIDR:
41 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
42 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
43 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
44 		break;
45 	default:
46 		return 0;
47 	}
48 
49 	return value;
50 }
51 
52 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
53 				    gpa_t addr, unsigned int len,
54 				    unsigned long val)
55 {
56 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
57 	bool was_enabled = dist->enabled;
58 
59 	switch (addr & 0x0c) {
60 	case GIC_DIST_CTRL:
61 		dist->enabled = val & GICD_ENABLE;
62 		if (!was_enabled && dist->enabled)
63 			vgic_kick_vcpus(vcpu->kvm);
64 		break;
65 	case GIC_DIST_CTR:
66 	case GIC_DIST_IIDR:
67 		/* Nothing to do */
68 		return;
69 	}
70 }
71 
72 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
73 					   gpa_t addr, unsigned int len,
74 					   unsigned long val)
75 {
76 	switch (addr & 0x0c) {
77 	case GIC_DIST_IIDR:
78 		if (val != vgic_mmio_read_v2_misc(vcpu, addr, len))
79 			return -EINVAL;
80 
81 		/*
82 		 * If we observe a write to GICD_IIDR we know that userspace
83 		 * has been updated and has had a chance to cope with older
84 		 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
85 		 * interrupts as group 1, and therefore we now allow groups to
86 		 * be user writable.  Doing this by default would break
87 		 * migration from old kernels to new kernels with legacy
88 		 * userspace.
89 		 */
90 		vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
91 		return 0;
92 	}
93 
94 	vgic_mmio_write_v2_misc(vcpu, addr, len, val);
95 	return 0;
96 }
97 
98 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
99 					    gpa_t addr, unsigned int len,
100 					    unsigned long val)
101 {
102 	if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
103 		vgic_mmio_write_group(vcpu, addr, len, val);
104 
105 	return 0;
106 }
107 
108 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
109 				 gpa_t addr, unsigned int len,
110 				 unsigned long val)
111 {
112 	int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
113 	int intid = val & 0xf;
114 	int targets = (val >> 16) & 0xff;
115 	int mode = (val >> 24) & 0x03;
116 	struct kvm_vcpu *vcpu;
117 	unsigned long flags, c;
118 
119 	switch (mode) {
120 	case 0x0:		/* as specified by targets */
121 		break;
122 	case 0x1:
123 		targets = (1U << nr_vcpus) - 1;			/* all, ... */
124 		targets &= ~(1U << source_vcpu->vcpu_id);	/* but self */
125 		break;
126 	case 0x2:		/* this very vCPU only */
127 		targets = (1U << source_vcpu->vcpu_id);
128 		break;
129 	case 0x3:		/* reserved */
130 		return;
131 	}
132 
133 	kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
134 		struct vgic_irq *irq;
135 
136 		if (!(targets & (1U << c)))
137 			continue;
138 
139 		irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
140 
141 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
142 		irq->pending_latch = true;
143 		irq->source |= 1U << source_vcpu->vcpu_id;
144 
145 		vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
146 		vgic_put_irq(source_vcpu->kvm, irq);
147 	}
148 }
149 
150 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
151 					   gpa_t addr, unsigned int len)
152 {
153 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
154 	int i;
155 	u64 val = 0;
156 
157 	for (i = 0; i < len; i++) {
158 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
159 
160 		val |= (u64)irq->targets << (i * 8);
161 
162 		vgic_put_irq(vcpu->kvm, irq);
163 	}
164 
165 	return val;
166 }
167 
168 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
169 				   gpa_t addr, unsigned int len,
170 				   unsigned long val)
171 {
172 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
173 	u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
174 	int i;
175 	unsigned long flags;
176 
177 	/* GICD_ITARGETSR[0-7] are read-only */
178 	if (intid < VGIC_NR_PRIVATE_IRQS)
179 		return;
180 
181 	for (i = 0; i < len; i++) {
182 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
183 		int target;
184 
185 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
186 
187 		irq->targets = (val >> (i * 8)) & cpu_mask;
188 		target = irq->targets ? __ffs(irq->targets) : 0;
189 		irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
190 
191 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
192 		vgic_put_irq(vcpu->kvm, irq);
193 	}
194 }
195 
196 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
197 					    gpa_t addr, unsigned int len)
198 {
199 	u32 intid = addr & 0x0f;
200 	int i;
201 	u64 val = 0;
202 
203 	for (i = 0; i < len; i++) {
204 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
205 
206 		val |= (u64)irq->source << (i * 8);
207 
208 		vgic_put_irq(vcpu->kvm, irq);
209 	}
210 	return val;
211 }
212 
213 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
214 				     gpa_t addr, unsigned int len,
215 				     unsigned long val)
216 {
217 	u32 intid = addr & 0x0f;
218 	int i;
219 	unsigned long flags;
220 
221 	for (i = 0; i < len; i++) {
222 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
223 
224 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
225 
226 		irq->source &= ~((val >> (i * 8)) & 0xff);
227 		if (!irq->source)
228 			irq->pending_latch = false;
229 
230 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
231 		vgic_put_irq(vcpu->kvm, irq);
232 	}
233 }
234 
235 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
236 				     gpa_t addr, unsigned int len,
237 				     unsigned long val)
238 {
239 	u32 intid = addr & 0x0f;
240 	int i;
241 	unsigned long flags;
242 
243 	for (i = 0; i < len; i++) {
244 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
245 
246 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
247 
248 		irq->source |= (val >> (i * 8)) & 0xff;
249 
250 		if (irq->source) {
251 			irq->pending_latch = true;
252 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
253 		} else {
254 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
255 		}
256 		vgic_put_irq(vcpu->kvm, irq);
257 	}
258 }
259 
260 #define GICC_ARCH_VERSION_V2	0x2
261 
262 /* These are for userland accesses only, there is no guest-facing emulation. */
263 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
264 					   gpa_t addr, unsigned int len)
265 {
266 	struct vgic_vmcr vmcr;
267 	u32 val;
268 
269 	vgic_get_vmcr(vcpu, &vmcr);
270 
271 	switch (addr & 0xff) {
272 	case GIC_CPU_CTRL:
273 		val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
274 		val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
275 		val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
276 		val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
277 		val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
278 		val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
279 
280 		break;
281 	case GIC_CPU_PRIMASK:
282 		/*
283 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
284 		 * PMR field as GICH_VMCR.VMPriMask rather than
285 		 * GICC_PMR.Priority, so we expose the upper five bits of
286 		 * priority mask to userspace using the lower bits in the
287 		 * unsigned long.
288 		 */
289 		val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
290 			GICV_PMR_PRIORITY_SHIFT;
291 		break;
292 	case GIC_CPU_BINPOINT:
293 		val = vmcr.bpr;
294 		break;
295 	case GIC_CPU_ALIAS_BINPOINT:
296 		val = vmcr.abpr;
297 		break;
298 	case GIC_CPU_IDENT:
299 		val = ((PRODUCT_ID_KVM << 20) |
300 		       (GICC_ARCH_VERSION_V2 << 16) |
301 		       IMPLEMENTER_ARM);
302 		break;
303 	default:
304 		return 0;
305 	}
306 
307 	return val;
308 }
309 
310 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
311 				   gpa_t addr, unsigned int len,
312 				   unsigned long val)
313 {
314 	struct vgic_vmcr vmcr;
315 
316 	vgic_get_vmcr(vcpu, &vmcr);
317 
318 	switch (addr & 0xff) {
319 	case GIC_CPU_CTRL:
320 		vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
321 		vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
322 		vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
323 		vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
324 		vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
325 		vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
326 
327 		break;
328 	case GIC_CPU_PRIMASK:
329 		/*
330 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
331 		 * PMR field as GICH_VMCR.VMPriMask rather than
332 		 * GICC_PMR.Priority, so we expose the upper five bits of
333 		 * priority mask to userspace using the lower bits in the
334 		 * unsigned long.
335 		 */
336 		vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
337 			GICV_PMR_PRIORITY_MASK;
338 		break;
339 	case GIC_CPU_BINPOINT:
340 		vmcr.bpr = val;
341 		break;
342 	case GIC_CPU_ALIAS_BINPOINT:
343 		vmcr.abpr = val;
344 		break;
345 	}
346 
347 	vgic_set_vmcr(vcpu, &vmcr);
348 }
349 
350 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
351 					gpa_t addr, unsigned int len)
352 {
353 	int n; /* which APRn is this */
354 
355 	n = (addr >> 2) & 0x3;
356 
357 	if (kvm_vgic_global_state.type == VGIC_V2) {
358 		/* GICv2 hardware systems support max. 32 groups */
359 		if (n != 0)
360 			return 0;
361 		return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
362 	} else {
363 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
364 
365 		if (n > vgic_v3_max_apr_idx(vcpu))
366 			return 0;
367 
368 		n = array_index_nospec(n, 4);
369 
370 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
371 		return vgicv3->vgic_ap1r[n];
372 	}
373 }
374 
375 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
376 				gpa_t addr, unsigned int len,
377 				unsigned long val)
378 {
379 	int n; /* which APRn is this */
380 
381 	n = (addr >> 2) & 0x3;
382 
383 	if (kvm_vgic_global_state.type == VGIC_V2) {
384 		/* GICv2 hardware systems support max. 32 groups */
385 		if (n != 0)
386 			return;
387 		vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
388 	} else {
389 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
390 
391 		if (n > vgic_v3_max_apr_idx(vcpu))
392 			return;
393 
394 		n = array_index_nospec(n, 4);
395 
396 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
397 		vgicv3->vgic_ap1r[n] = val;
398 	}
399 }
400 
401 static const struct vgic_register_region vgic_v2_dist_registers[] = {
402 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
403 		vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
404 		NULL, vgic_mmio_uaccess_write_v2_misc,
405 		12, VGIC_ACCESS_32bit),
406 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
407 		vgic_mmio_read_group, vgic_mmio_write_group,
408 		NULL, vgic_mmio_uaccess_write_v2_group, 1,
409 		VGIC_ACCESS_32bit),
410 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
411 		vgic_mmio_read_enable, vgic_mmio_write_senable,
412 		NULL, vgic_uaccess_write_senable, 1,
413 		VGIC_ACCESS_32bit),
414 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
415 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
416 		NULL, vgic_uaccess_write_cenable, 1,
417 		VGIC_ACCESS_32bit),
418 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
419 		vgic_mmio_read_pending, vgic_mmio_write_spending,
420 		NULL, vgic_uaccess_write_spending, 1,
421 		VGIC_ACCESS_32bit),
422 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
423 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
424 		NULL, vgic_uaccess_write_cpending, 1,
425 		VGIC_ACCESS_32bit),
426 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
427 		vgic_mmio_read_active, vgic_mmio_write_sactive,
428 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
429 		VGIC_ACCESS_32bit),
430 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
431 		vgic_mmio_read_active, vgic_mmio_write_cactive,
432 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
433 		VGIC_ACCESS_32bit),
434 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
435 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
436 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
437 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
438 		vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
439 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
440 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
441 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
442 		VGIC_ACCESS_32bit),
443 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
444 		vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
445 		VGIC_ACCESS_32bit),
446 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
447 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
448 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
449 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
450 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
451 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
452 };
453 
454 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
455 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
456 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
457 		VGIC_ACCESS_32bit),
458 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
459 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
460 		VGIC_ACCESS_32bit),
461 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
462 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
463 		VGIC_ACCESS_32bit),
464 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
465 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
466 		VGIC_ACCESS_32bit),
467 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
468 		vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
469 		VGIC_ACCESS_32bit),
470 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
471 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
472 		VGIC_ACCESS_32bit),
473 };
474 
475 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
476 {
477 	dev->regions = vgic_v2_dist_registers;
478 	dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
479 
480 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
481 
482 	return SZ_4K;
483 }
484 
485 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
486 {
487 	const struct vgic_register_region *region;
488 	struct vgic_io_device iodev;
489 	struct vgic_reg_attr reg_attr;
490 	struct kvm_vcpu *vcpu;
491 	gpa_t addr;
492 	int ret;
493 
494 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
495 	if (ret)
496 		return ret;
497 
498 	vcpu = reg_attr.vcpu;
499 	addr = reg_attr.addr;
500 
501 	switch (attr->group) {
502 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
503 		iodev.regions = vgic_v2_dist_registers;
504 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
505 		iodev.base_addr = 0;
506 		break;
507 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
508 		iodev.regions = vgic_v2_cpu_registers;
509 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
510 		iodev.base_addr = 0;
511 		break;
512 	default:
513 		return -ENXIO;
514 	}
515 
516 	/* We only support aligned 32-bit accesses. */
517 	if (addr & 3)
518 		return -ENXIO;
519 
520 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
521 	if (!region)
522 		return -ENXIO;
523 
524 	return 0;
525 }
526 
527 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
528 			  int offset, u32 *val)
529 {
530 	struct vgic_io_device dev = {
531 		.regions = vgic_v2_cpu_registers,
532 		.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
533 		.iodev_type = IODEV_CPUIF,
534 	};
535 
536 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
537 }
538 
539 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
540 			 int offset, u32 *val)
541 {
542 	struct vgic_io_device dev = {
543 		.regions = vgic_v2_dist_registers,
544 		.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
545 		.iodev_type = IODEV_DIST,
546 	};
547 
548 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
549 }
550