xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-mmio-v2.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv2 MMIO handling functions
4  */
5 
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/nospec.h>
10 
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16 
17 /*
18  * The Revision field in the IIDR have the following meanings:
19  *
20  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
21  * Revision 2: Interrupt groups are guest-configurable and signaled using
22  * 	       their configured groups.
23  */
24 
25 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
26 					    gpa_t addr, unsigned int len)
27 {
28 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
29 	u32 value;
30 
31 	switch (addr & 0x0c) {
32 	case GIC_DIST_CTRL:
33 		value = vgic->enabled ? GICD_ENABLE : 0;
34 		break;
35 	case GIC_DIST_CTR:
36 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
37 		value = (value >> 5) - 1;
38 		value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
39 		break;
40 	case GIC_DIST_IIDR:
41 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
42 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
43 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
44 		break;
45 	default:
46 		return 0;
47 	}
48 
49 	return value;
50 }
51 
52 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
53 				    gpa_t addr, unsigned int len,
54 				    unsigned long val)
55 {
56 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
57 	bool was_enabled = dist->enabled;
58 
59 	switch (addr & 0x0c) {
60 	case GIC_DIST_CTRL:
61 		dist->enabled = val & GICD_ENABLE;
62 		if (!was_enabled && dist->enabled)
63 			vgic_kick_vcpus(vcpu->kvm);
64 		break;
65 	case GIC_DIST_CTR:
66 	case GIC_DIST_IIDR:
67 		/* Nothing to do */
68 		return;
69 	}
70 }
71 
72 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
73 					   gpa_t addr, unsigned int len,
74 					   unsigned long val)
75 {
76 	switch (addr & 0x0c) {
77 	case GIC_DIST_IIDR:
78 		if (val != vgic_mmio_read_v2_misc(vcpu, addr, len))
79 			return -EINVAL;
80 
81 		/*
82 		 * If we observe a write to GICD_IIDR we know that userspace
83 		 * has been updated and has had a chance to cope with older
84 		 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
85 		 * interrupts as group 1, and therefore we now allow groups to
86 		 * be user writable.  Doing this by default would break
87 		 * migration from old kernels to new kernels with legacy
88 		 * userspace.
89 		 */
90 		vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
91 		return 0;
92 	}
93 
94 	vgic_mmio_write_v2_misc(vcpu, addr, len, val);
95 	return 0;
96 }
97 
98 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
99 					    gpa_t addr, unsigned int len,
100 					    unsigned long val)
101 {
102 	if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
103 		vgic_mmio_write_group(vcpu, addr, len, val);
104 
105 	return 0;
106 }
107 
108 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
109 				 gpa_t addr, unsigned int len,
110 				 unsigned long val)
111 {
112 	int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
113 	int intid = val & 0xf;
114 	int targets = (val >> 16) & 0xff;
115 	int mode = (val >> 24) & 0x03;
116 	int c;
117 	struct kvm_vcpu *vcpu;
118 	unsigned long flags;
119 
120 	switch (mode) {
121 	case 0x0:		/* as specified by targets */
122 		break;
123 	case 0x1:
124 		targets = (1U << nr_vcpus) - 1;			/* all, ... */
125 		targets &= ~(1U << source_vcpu->vcpu_id);	/* but self */
126 		break;
127 	case 0x2:		/* this very vCPU only */
128 		targets = (1U << source_vcpu->vcpu_id);
129 		break;
130 	case 0x3:		/* reserved */
131 		return;
132 	}
133 
134 	kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
135 		struct vgic_irq *irq;
136 
137 		if (!(targets & (1U << c)))
138 			continue;
139 
140 		irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
141 
142 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
143 		irq->pending_latch = true;
144 		irq->source |= 1U << source_vcpu->vcpu_id;
145 
146 		vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
147 		vgic_put_irq(source_vcpu->kvm, irq);
148 	}
149 }
150 
151 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
152 					   gpa_t addr, unsigned int len)
153 {
154 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
155 	int i;
156 	u64 val = 0;
157 
158 	for (i = 0; i < len; i++) {
159 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
160 
161 		val |= (u64)irq->targets << (i * 8);
162 
163 		vgic_put_irq(vcpu->kvm, irq);
164 	}
165 
166 	return val;
167 }
168 
169 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
170 				   gpa_t addr, unsigned int len,
171 				   unsigned long val)
172 {
173 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
174 	u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
175 	int i;
176 	unsigned long flags;
177 
178 	/* GICD_ITARGETSR[0-7] are read-only */
179 	if (intid < VGIC_NR_PRIVATE_IRQS)
180 		return;
181 
182 	for (i = 0; i < len; i++) {
183 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
184 		int target;
185 
186 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
187 
188 		irq->targets = (val >> (i * 8)) & cpu_mask;
189 		target = irq->targets ? __ffs(irq->targets) : 0;
190 		irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
191 
192 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
193 		vgic_put_irq(vcpu->kvm, irq);
194 	}
195 }
196 
197 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
198 					    gpa_t addr, unsigned int len)
199 {
200 	u32 intid = addr & 0x0f;
201 	int i;
202 	u64 val = 0;
203 
204 	for (i = 0; i < len; i++) {
205 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
206 
207 		val |= (u64)irq->source << (i * 8);
208 
209 		vgic_put_irq(vcpu->kvm, irq);
210 	}
211 	return val;
212 }
213 
214 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
215 				     gpa_t addr, unsigned int len,
216 				     unsigned long val)
217 {
218 	u32 intid = addr & 0x0f;
219 	int i;
220 	unsigned long flags;
221 
222 	for (i = 0; i < len; i++) {
223 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
224 
225 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
226 
227 		irq->source &= ~((val >> (i * 8)) & 0xff);
228 		if (!irq->source)
229 			irq->pending_latch = false;
230 
231 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
232 		vgic_put_irq(vcpu->kvm, irq);
233 	}
234 }
235 
236 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
237 				     gpa_t addr, unsigned int len,
238 				     unsigned long val)
239 {
240 	u32 intid = addr & 0x0f;
241 	int i;
242 	unsigned long flags;
243 
244 	for (i = 0; i < len; i++) {
245 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
246 
247 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
248 
249 		irq->source |= (val >> (i * 8)) & 0xff;
250 
251 		if (irq->source) {
252 			irq->pending_latch = true;
253 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
254 		} else {
255 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
256 		}
257 		vgic_put_irq(vcpu->kvm, irq);
258 	}
259 }
260 
261 #define GICC_ARCH_VERSION_V2	0x2
262 
263 /* These are for userland accesses only, there is no guest-facing emulation. */
264 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
265 					   gpa_t addr, unsigned int len)
266 {
267 	struct vgic_vmcr vmcr;
268 	u32 val;
269 
270 	vgic_get_vmcr(vcpu, &vmcr);
271 
272 	switch (addr & 0xff) {
273 	case GIC_CPU_CTRL:
274 		val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
275 		val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
276 		val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
277 		val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
278 		val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
279 		val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
280 
281 		break;
282 	case GIC_CPU_PRIMASK:
283 		/*
284 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
285 		 * the PMR field as GICH_VMCR.VMPriMask rather than
286 		 * GICC_PMR.Priority, so we expose the upper five bits of
287 		 * priority mask to userspace using the lower bits in the
288 		 * unsigned long.
289 		 */
290 		val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
291 			GICV_PMR_PRIORITY_SHIFT;
292 		break;
293 	case GIC_CPU_BINPOINT:
294 		val = vmcr.bpr;
295 		break;
296 	case GIC_CPU_ALIAS_BINPOINT:
297 		val = vmcr.abpr;
298 		break;
299 	case GIC_CPU_IDENT:
300 		val = ((PRODUCT_ID_KVM << 20) |
301 		       (GICC_ARCH_VERSION_V2 << 16) |
302 		       IMPLEMENTER_ARM);
303 		break;
304 	default:
305 		return 0;
306 	}
307 
308 	return val;
309 }
310 
311 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
312 				   gpa_t addr, unsigned int len,
313 				   unsigned long val)
314 {
315 	struct vgic_vmcr vmcr;
316 
317 	vgic_get_vmcr(vcpu, &vmcr);
318 
319 	switch (addr & 0xff) {
320 	case GIC_CPU_CTRL:
321 		vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
322 		vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
323 		vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
324 		vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
325 		vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
326 		vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
327 
328 		break;
329 	case GIC_CPU_PRIMASK:
330 		/*
331 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
332 		 * the PMR field as GICH_VMCR.VMPriMask rather than
333 		 * GICC_PMR.Priority, so we expose the upper five bits of
334 		 * priority mask to userspace using the lower bits in the
335 		 * unsigned long.
336 		 */
337 		vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
338 			GICV_PMR_PRIORITY_MASK;
339 		break;
340 	case GIC_CPU_BINPOINT:
341 		vmcr.bpr = val;
342 		break;
343 	case GIC_CPU_ALIAS_BINPOINT:
344 		vmcr.abpr = val;
345 		break;
346 	}
347 
348 	vgic_set_vmcr(vcpu, &vmcr);
349 }
350 
351 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
352 					gpa_t addr, unsigned int len)
353 {
354 	int n; /* which APRn is this */
355 
356 	n = (addr >> 2) & 0x3;
357 
358 	if (kvm_vgic_global_state.type == VGIC_V2) {
359 		/* GICv2 hardware systems support max. 32 groups */
360 		if (n != 0)
361 			return 0;
362 		return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
363 	} else {
364 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
365 
366 		if (n > vgic_v3_max_apr_idx(vcpu))
367 			return 0;
368 
369 		n = array_index_nospec(n, 4);
370 
371 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
372 		return vgicv3->vgic_ap1r[n];
373 	}
374 }
375 
376 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
377 				gpa_t addr, unsigned int len,
378 				unsigned long val)
379 {
380 	int n; /* which APRn is this */
381 
382 	n = (addr >> 2) & 0x3;
383 
384 	if (kvm_vgic_global_state.type == VGIC_V2) {
385 		/* GICv2 hardware systems support max. 32 groups */
386 		if (n != 0)
387 			return;
388 		vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
389 	} else {
390 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
391 
392 		if (n > vgic_v3_max_apr_idx(vcpu))
393 			return;
394 
395 		n = array_index_nospec(n, 4);
396 
397 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
398 		vgicv3->vgic_ap1r[n] = val;
399 	}
400 }
401 
402 static const struct vgic_register_region vgic_v2_dist_registers[] = {
403 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
404 		vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
405 		NULL, vgic_mmio_uaccess_write_v2_misc,
406 		12, VGIC_ACCESS_32bit),
407 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
408 		vgic_mmio_read_group, vgic_mmio_write_group,
409 		NULL, vgic_mmio_uaccess_write_v2_group, 1,
410 		VGIC_ACCESS_32bit),
411 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
412 		vgic_mmio_read_enable, vgic_mmio_write_senable,
413 		NULL, vgic_uaccess_write_senable, 1,
414 		VGIC_ACCESS_32bit),
415 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
416 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
417 		NULL, vgic_uaccess_write_cenable, 1,
418 		VGIC_ACCESS_32bit),
419 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
420 		vgic_mmio_read_pending, vgic_mmio_write_spending,
421 		NULL, vgic_uaccess_write_spending, 1,
422 		VGIC_ACCESS_32bit),
423 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
424 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
425 		NULL, vgic_uaccess_write_cpending, 1,
426 		VGIC_ACCESS_32bit),
427 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
428 		vgic_mmio_read_active, vgic_mmio_write_sactive,
429 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
430 		VGIC_ACCESS_32bit),
431 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
432 		vgic_mmio_read_active, vgic_mmio_write_cactive,
433 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
434 		VGIC_ACCESS_32bit),
435 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
436 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
437 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
438 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
439 		vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
440 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
441 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
442 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
443 		VGIC_ACCESS_32bit),
444 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
445 		vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
446 		VGIC_ACCESS_32bit),
447 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
448 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
449 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
450 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
451 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
452 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
453 };
454 
455 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
456 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
457 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
458 		VGIC_ACCESS_32bit),
459 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
460 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
461 		VGIC_ACCESS_32bit),
462 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
463 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
464 		VGIC_ACCESS_32bit),
465 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
466 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
467 		VGIC_ACCESS_32bit),
468 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
469 		vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
470 		VGIC_ACCESS_32bit),
471 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
472 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
473 		VGIC_ACCESS_32bit),
474 };
475 
476 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
477 {
478 	dev->regions = vgic_v2_dist_registers;
479 	dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
480 
481 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
482 
483 	return SZ_4K;
484 }
485 
486 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
487 {
488 	const struct vgic_register_region *region;
489 	struct vgic_io_device iodev;
490 	struct vgic_reg_attr reg_attr;
491 	struct kvm_vcpu *vcpu;
492 	gpa_t addr;
493 	int ret;
494 
495 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
496 	if (ret)
497 		return ret;
498 
499 	vcpu = reg_attr.vcpu;
500 	addr = reg_attr.addr;
501 
502 	switch (attr->group) {
503 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
504 		iodev.regions = vgic_v2_dist_registers;
505 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
506 		iodev.base_addr = 0;
507 		break;
508 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
509 		iodev.regions = vgic_v2_cpu_registers;
510 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
511 		iodev.base_addr = 0;
512 		break;
513 	default:
514 		return -ENXIO;
515 	}
516 
517 	/* We only support aligned 32-bit accesses. */
518 	if (addr & 3)
519 		return -ENXIO;
520 
521 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
522 	if (!region)
523 		return -ENXIO;
524 
525 	return 0;
526 }
527 
528 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
529 			  int offset, u32 *val)
530 {
531 	struct vgic_io_device dev = {
532 		.regions = vgic_v2_cpu_registers,
533 		.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
534 		.iodev_type = IODEV_CPUIF,
535 	};
536 
537 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
538 }
539 
540 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
541 			 int offset, u32 *val)
542 {
543 	struct vgic_io_device dev = {
544 		.regions = vgic_v2_dist_registers,
545 		.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
546 		.iodev_type = IODEV_DIST,
547 	};
548 
549 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
550 }
551