1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VGICv2 MMIO handling functions 4 */ 5 6 #include <linux/irqchip/arm-gic.h> 7 #include <linux/kvm.h> 8 #include <linux/kvm_host.h> 9 #include <linux/nospec.h> 10 11 #include <kvm/iodev.h> 12 #include <kvm/arm_vgic.h> 13 14 #include "vgic.h" 15 #include "vgic-mmio.h" 16 17 /* 18 * The Revision field in the IIDR have the following meanings: 19 * 20 * Revision 1: Report GICv2 interrupts as group 0 instead of group 1 21 * Revision 2: Interrupt groups are guest-configurable and signaled using 22 * their configured groups. 23 */ 24 25 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu, 26 gpa_t addr, unsigned int len) 27 { 28 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; 29 u32 value; 30 31 switch (addr & 0x0c) { 32 case GIC_DIST_CTRL: 33 value = vgic->enabled ? GICD_ENABLE : 0; 34 break; 35 case GIC_DIST_CTR: 36 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; 37 value = (value >> 5) - 1; 38 value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; 39 break; 40 case GIC_DIST_IIDR: 41 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | 42 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | 43 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); 44 break; 45 default: 46 return 0; 47 } 48 49 return value; 50 } 51 52 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu, 53 gpa_t addr, unsigned int len, 54 unsigned long val) 55 { 56 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 57 bool was_enabled = dist->enabled; 58 59 switch (addr & 0x0c) { 60 case GIC_DIST_CTRL: 61 dist->enabled = val & GICD_ENABLE; 62 if (!was_enabled && dist->enabled) 63 vgic_kick_vcpus(vcpu->kvm); 64 break; 65 case GIC_DIST_CTR: 66 case GIC_DIST_IIDR: 67 /* Nothing to do */ 68 return; 69 } 70 } 71 72 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu, 73 gpa_t addr, unsigned int len, 74 unsigned long val) 75 { 76 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 77 u32 reg; 78 79 switch (addr & 0x0c) { 80 case GIC_DIST_IIDR: 81 reg = vgic_mmio_read_v2_misc(vcpu, addr, len); 82 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK) 83 return -EINVAL; 84 85 /* 86 * If we observe a write to GICD_IIDR we know that userspace 87 * has been updated and has had a chance to cope with older 88 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting 89 * interrupts as group 1, and therefore we now allow groups to 90 * be user writable. Doing this by default would break 91 * migration from old kernels to new kernels with legacy 92 * userspace. 93 */ 94 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg); 95 switch (reg) { 96 case KVM_VGIC_IMP_REV_2: 97 case KVM_VGIC_IMP_REV_3: 98 vcpu->kvm->arch.vgic.v2_groups_user_writable = true; 99 dist->implementation_rev = reg; 100 return 0; 101 default: 102 return -EINVAL; 103 } 104 } 105 106 vgic_mmio_write_v2_misc(vcpu, addr, len, val); 107 return 0; 108 } 109 110 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu, 111 gpa_t addr, unsigned int len, 112 unsigned long val) 113 { 114 if (vcpu->kvm->arch.vgic.v2_groups_user_writable) 115 vgic_mmio_write_group(vcpu, addr, len, val); 116 117 return 0; 118 } 119 120 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu, 121 gpa_t addr, unsigned int len, 122 unsigned long val) 123 { 124 int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus); 125 int intid = val & 0xf; 126 int targets = (val >> 16) & 0xff; 127 int mode = (val >> 24) & 0x03; 128 struct kvm_vcpu *vcpu; 129 unsigned long flags, c; 130 131 switch (mode) { 132 case 0x0: /* as specified by targets */ 133 break; 134 case 0x1: 135 targets = (1U << nr_vcpus) - 1; /* all, ... */ 136 targets &= ~(1U << source_vcpu->vcpu_id); /* but self */ 137 break; 138 case 0x2: /* this very vCPU only */ 139 targets = (1U << source_vcpu->vcpu_id); 140 break; 141 case 0x3: /* reserved */ 142 return; 143 } 144 145 kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) { 146 struct vgic_irq *irq; 147 148 if (!(targets & (1U << c))) 149 continue; 150 151 irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid); 152 153 raw_spin_lock_irqsave(&irq->irq_lock, flags); 154 irq->pending_latch = true; 155 irq->source |= 1U << source_vcpu->vcpu_id; 156 157 vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags); 158 vgic_put_irq(source_vcpu->kvm, irq); 159 } 160 } 161 162 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu, 163 gpa_t addr, unsigned int len) 164 { 165 u32 intid = VGIC_ADDR_TO_INTID(addr, 8); 166 int i; 167 u64 val = 0; 168 169 for (i = 0; i < len; i++) { 170 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 171 172 val |= (u64)irq->targets << (i * 8); 173 174 vgic_put_irq(vcpu->kvm, irq); 175 } 176 177 return val; 178 } 179 180 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu, 181 gpa_t addr, unsigned int len, 182 unsigned long val) 183 { 184 u32 intid = VGIC_ADDR_TO_INTID(addr, 8); 185 u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0); 186 int i; 187 unsigned long flags; 188 189 /* GICD_ITARGETSR[0-7] are read-only */ 190 if (intid < VGIC_NR_PRIVATE_IRQS) 191 return; 192 193 for (i = 0; i < len; i++) { 194 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i); 195 int target; 196 197 raw_spin_lock_irqsave(&irq->irq_lock, flags); 198 199 irq->targets = (val >> (i * 8)) & cpu_mask; 200 target = irq->targets ? __ffs(irq->targets) : 0; 201 irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target); 202 203 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 204 vgic_put_irq(vcpu->kvm, irq); 205 } 206 } 207 208 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu, 209 gpa_t addr, unsigned int len) 210 { 211 u32 intid = addr & 0x0f; 212 int i; 213 u64 val = 0; 214 215 for (i = 0; i < len; i++) { 216 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 217 218 val |= (u64)irq->source << (i * 8); 219 220 vgic_put_irq(vcpu->kvm, irq); 221 } 222 return val; 223 } 224 225 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu, 226 gpa_t addr, unsigned int len, 227 unsigned long val) 228 { 229 u32 intid = addr & 0x0f; 230 int i; 231 unsigned long flags; 232 233 for (i = 0; i < len; i++) { 234 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 235 236 raw_spin_lock_irqsave(&irq->irq_lock, flags); 237 238 irq->source &= ~((val >> (i * 8)) & 0xff); 239 if (!irq->source) 240 irq->pending_latch = false; 241 242 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 243 vgic_put_irq(vcpu->kvm, irq); 244 } 245 } 246 247 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu, 248 gpa_t addr, unsigned int len, 249 unsigned long val) 250 { 251 u32 intid = addr & 0x0f; 252 int i; 253 unsigned long flags; 254 255 for (i = 0; i < len; i++) { 256 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); 257 258 raw_spin_lock_irqsave(&irq->irq_lock, flags); 259 260 irq->source |= (val >> (i * 8)) & 0xff; 261 262 if (irq->source) { 263 irq->pending_latch = true; 264 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 265 } else { 266 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 267 } 268 vgic_put_irq(vcpu->kvm, irq); 269 } 270 } 271 272 #define GICC_ARCH_VERSION_V2 0x2 273 274 /* These are for userland accesses only, there is no guest-facing emulation. */ 275 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu, 276 gpa_t addr, unsigned int len) 277 { 278 struct vgic_vmcr vmcr; 279 u32 val; 280 281 vgic_get_vmcr(vcpu, &vmcr); 282 283 switch (addr & 0xff) { 284 case GIC_CPU_CTRL: 285 val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT; 286 val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT; 287 val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT; 288 val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT; 289 val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT; 290 val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT; 291 292 break; 293 case GIC_CPU_PRIMASK: 294 /* 295 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the 296 * PMR field as GICH_VMCR.VMPriMask rather than 297 * GICC_PMR.Priority, so we expose the upper five bits of 298 * priority mask to userspace using the lower bits in the 299 * unsigned long. 300 */ 301 val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >> 302 GICV_PMR_PRIORITY_SHIFT; 303 break; 304 case GIC_CPU_BINPOINT: 305 val = vmcr.bpr; 306 break; 307 case GIC_CPU_ALIAS_BINPOINT: 308 val = vmcr.abpr; 309 break; 310 case GIC_CPU_IDENT: 311 val = ((PRODUCT_ID_KVM << 20) | 312 (GICC_ARCH_VERSION_V2 << 16) | 313 IMPLEMENTER_ARM); 314 break; 315 default: 316 return 0; 317 } 318 319 return val; 320 } 321 322 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu, 323 gpa_t addr, unsigned int len, 324 unsigned long val) 325 { 326 struct vgic_vmcr vmcr; 327 328 vgic_get_vmcr(vcpu, &vmcr); 329 330 switch (addr & 0xff) { 331 case GIC_CPU_CTRL: 332 vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0); 333 vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1); 334 vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl); 335 vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn); 336 vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR); 337 vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS); 338 339 break; 340 case GIC_CPU_PRIMASK: 341 /* 342 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the 343 * PMR field as GICH_VMCR.VMPriMask rather than 344 * GICC_PMR.Priority, so we expose the upper five bits of 345 * priority mask to userspace using the lower bits in the 346 * unsigned long. 347 */ 348 vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) & 349 GICV_PMR_PRIORITY_MASK; 350 break; 351 case GIC_CPU_BINPOINT: 352 vmcr.bpr = val; 353 break; 354 case GIC_CPU_ALIAS_BINPOINT: 355 vmcr.abpr = val; 356 break; 357 } 358 359 vgic_set_vmcr(vcpu, &vmcr); 360 } 361 362 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu, 363 gpa_t addr, unsigned int len) 364 { 365 int n; /* which APRn is this */ 366 367 n = (addr >> 2) & 0x3; 368 369 if (kvm_vgic_global_state.type == VGIC_V2) { 370 /* GICv2 hardware systems support max. 32 groups */ 371 if (n != 0) 372 return 0; 373 return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr; 374 } else { 375 struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; 376 377 if (n > vgic_v3_max_apr_idx(vcpu)) 378 return 0; 379 380 n = array_index_nospec(n, 4); 381 382 /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ 383 return vgicv3->vgic_ap1r[n]; 384 } 385 } 386 387 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu, 388 gpa_t addr, unsigned int len, 389 unsigned long val) 390 { 391 int n; /* which APRn is this */ 392 393 n = (addr >> 2) & 0x3; 394 395 if (kvm_vgic_global_state.type == VGIC_V2) { 396 /* GICv2 hardware systems support max. 32 groups */ 397 if (n != 0) 398 return; 399 vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val; 400 } else { 401 struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; 402 403 if (n > vgic_v3_max_apr_idx(vcpu)) 404 return; 405 406 n = array_index_nospec(n, 4); 407 408 /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ 409 vgicv3->vgic_ap1r[n] = val; 410 } 411 } 412 413 static const struct vgic_register_region vgic_v2_dist_registers[] = { 414 REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL, 415 vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc, 416 NULL, vgic_mmio_uaccess_write_v2_misc, 417 12, VGIC_ACCESS_32bit), 418 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP, 419 vgic_mmio_read_group, vgic_mmio_write_group, 420 NULL, vgic_mmio_uaccess_write_v2_group, 1, 421 VGIC_ACCESS_32bit), 422 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET, 423 vgic_mmio_read_enable, vgic_mmio_write_senable, 424 NULL, vgic_uaccess_write_senable, 1, 425 VGIC_ACCESS_32bit), 426 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR, 427 vgic_mmio_read_enable, vgic_mmio_write_cenable, 428 NULL, vgic_uaccess_write_cenable, 1, 429 VGIC_ACCESS_32bit), 430 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET, 431 vgic_mmio_read_pending, vgic_mmio_write_spending, 432 NULL, vgic_uaccess_write_spending, 1, 433 VGIC_ACCESS_32bit), 434 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR, 435 vgic_mmio_read_pending, vgic_mmio_write_cpending, 436 NULL, vgic_uaccess_write_cpending, 1, 437 VGIC_ACCESS_32bit), 438 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET, 439 vgic_mmio_read_active, vgic_mmio_write_sactive, 440 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, 441 VGIC_ACCESS_32bit), 442 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR, 443 vgic_mmio_read_active, vgic_mmio_write_cactive, 444 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1, 445 VGIC_ACCESS_32bit), 446 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI, 447 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, 448 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 449 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET, 450 vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8, 451 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 452 REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG, 453 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, 454 VGIC_ACCESS_32bit), 455 REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT, 456 vgic_mmio_read_raz, vgic_mmio_write_sgir, 4, 457 VGIC_ACCESS_32bit), 458 REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR, 459 vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16, 460 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 461 REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET, 462 vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16, 463 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), 464 }; 465 466 static const struct vgic_register_region vgic_v2_cpu_registers[] = { 467 REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL, 468 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, 469 VGIC_ACCESS_32bit), 470 REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK, 471 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, 472 VGIC_ACCESS_32bit), 473 REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT, 474 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, 475 VGIC_ACCESS_32bit), 476 REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT, 477 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, 478 VGIC_ACCESS_32bit), 479 REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO, 480 vgic_mmio_read_apr, vgic_mmio_write_apr, 16, 481 VGIC_ACCESS_32bit), 482 REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT, 483 vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, 484 VGIC_ACCESS_32bit), 485 }; 486 487 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev) 488 { 489 dev->regions = vgic_v2_dist_registers; 490 dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); 491 492 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); 493 494 return SZ_4K; 495 } 496 497 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) 498 { 499 const struct vgic_register_region *region; 500 struct vgic_io_device iodev; 501 struct vgic_reg_attr reg_attr; 502 struct kvm_vcpu *vcpu; 503 gpa_t addr; 504 int ret; 505 506 ret = vgic_v2_parse_attr(dev, attr, ®_attr); 507 if (ret) 508 return ret; 509 510 vcpu = reg_attr.vcpu; 511 addr = reg_attr.addr; 512 513 switch (attr->group) { 514 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: 515 iodev.regions = vgic_v2_dist_registers; 516 iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); 517 iodev.base_addr = 0; 518 break; 519 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: 520 iodev.regions = vgic_v2_cpu_registers; 521 iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers); 522 iodev.base_addr = 0; 523 break; 524 default: 525 return -ENXIO; 526 } 527 528 /* We only support aligned 32-bit accesses. */ 529 if (addr & 3) 530 return -ENXIO; 531 532 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); 533 if (!region) 534 return -ENXIO; 535 536 return 0; 537 } 538 539 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, 540 int offset, u32 *val) 541 { 542 struct vgic_io_device dev = { 543 .regions = vgic_v2_cpu_registers, 544 .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers), 545 .iodev_type = IODEV_CPUIF, 546 }; 547 548 return vgic_uaccess(vcpu, &dev, is_write, offset, val); 549 } 550 551 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, 552 int offset, u32 *val) 553 { 554 struct vgic_io_device dev = { 555 .regions = vgic_v2_dist_registers, 556 .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers), 557 .iodev_type = IODEV_DIST, 558 }; 559 560 return vgic_uaccess(vcpu, &dev, is_write, offset, val); 561 } 562