1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static int vgic_its_save_tables_v0(struct vgic_its *its); 27 static int vgic_its_restore_tables_v0(struct vgic_its *its); 28 static int vgic_its_commit_v0(struct vgic_its *its); 29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32 /* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41 { 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92 out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116 } 117 118 struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126 }; 127 128 #define COLLECTION_NOT_MAPPED ((u32)~0) 129 130 struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135 }; 136 137 #define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140 struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146 }; 147 148 struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154 }; 155 156 /** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167 struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174 }; 175 176 #define ABI_0_ESZ 8 177 #define ESZ_MAX ABI_0_ESZ 178 179 static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188 }; 189 190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193 { 194 return &its_table_abi_versions[its->abi_rev]; 195 } 196 197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198 { 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204 } 205 206 /* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211 { 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219 } 220 221 /* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228 { 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241 } 242 243 /* To be used as an iterator this macro misses the enclosing parentheses */ 244 #define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248 #define GIC_LPI_OFFSET 8192 249 250 #define VITS_TYPER_IDBITS 16 251 #define VITS_TYPER_DEVBITS 16 252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255 /* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260 { 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269 } 270 271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274 /* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282 { 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312 } 313 314 /* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320 { 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352 } 353 354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355 { 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379 } 380 381 /* 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 383 * is targeting) to the VGIC's view, which deals with target VCPUs. 384 * Needs to be called whenever either the collection for a LPIs has 385 * changed or the collection itself got retargeted. 386 */ 387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 388 { 389 struct kvm_vcpu *vcpu; 390 391 if (!its_is_collection_mapped(ite->collection)) 392 return; 393 394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 395 update_affinity(ite->irq, vcpu); 396 } 397 398 /* 399 * Updates the target VCPU for every LPI targeting this collection. 400 * Must be called with the its_lock mutex held. 401 */ 402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 403 struct its_collection *coll) 404 { 405 struct its_device *device; 406 struct its_ite *ite; 407 408 for_each_lpi_its(device, ite, its) { 409 if (ite->collection != coll) 410 continue; 411 412 update_affinity_ite(kvm, ite); 413 } 414 } 415 416 static u32 max_lpis_propbaser(u64 propbaser) 417 { 418 int nr_idbits = (propbaser & 0x1f) + 1; 419 420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 421 } 422 423 /* 424 * Sync the pending table pending bit of LPIs targeting @vcpu 425 * with our own data structures. This relies on the LPI being 426 * mapped before. 427 */ 428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 429 { 430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 431 struct vgic_irq *irq; 432 int last_byte_offset = -1; 433 int ret = 0; 434 u32 *intids; 435 int nr_irqs, i; 436 unsigned long flags; 437 u8 pendmask; 438 439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 440 if (nr_irqs < 0) 441 return nr_irqs; 442 443 for (i = 0; i < nr_irqs; i++) { 444 int byte_offset, bit_nr; 445 446 byte_offset = intids[i] / BITS_PER_BYTE; 447 bit_nr = intids[i] % BITS_PER_BYTE; 448 449 /* 450 * For contiguously allocated LPIs chances are we just read 451 * this very same byte in the last iteration. Reuse that. 452 */ 453 if (byte_offset != last_byte_offset) { 454 ret = kvm_read_guest_lock(vcpu->kvm, 455 pendbase + byte_offset, 456 &pendmask, 1); 457 if (ret) { 458 kfree(intids); 459 return ret; 460 } 461 last_byte_offset = byte_offset; 462 } 463 464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 465 raw_spin_lock_irqsave(&irq->irq_lock, flags); 466 irq->pending_latch = pendmask & (1U << bit_nr); 467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 468 vgic_put_irq(vcpu->kvm, irq); 469 } 470 471 kfree(intids); 472 473 return ret; 474 } 475 476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 477 struct vgic_its *its, 478 gpa_t addr, unsigned int len) 479 { 480 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 481 u64 reg = GITS_TYPER_PLPIS; 482 483 /* 484 * We use linear CPU numbers for redistributor addressing, 485 * so GITS_TYPER.PTA is 0. 486 * Also we force all PROPBASER registers to be the same, so 487 * CommonLPIAff is 0 as well. 488 * To avoid memory waste in the guest, we keep the number of IDBits and 489 * DevBits low - as least for the time being. 490 */ 491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 494 495 return extract_bytes(reg, addr & 7, len); 496 } 497 498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 499 struct vgic_its *its, 500 gpa_t addr, unsigned int len) 501 { 502 u32 val; 503 504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 506 return val; 507 } 508 509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 510 struct vgic_its *its, 511 gpa_t addr, unsigned int len, 512 unsigned long val) 513 { 514 u32 rev = GITS_IIDR_REV(val); 515 516 if (rev >= NR_ITS_ABIS) 517 return -EINVAL; 518 return vgic_its_set_abi(its, rev); 519 } 520 521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 522 struct vgic_its *its, 523 gpa_t addr, unsigned int len) 524 { 525 switch (addr & 0xffff) { 526 case GITS_PIDR0: 527 return 0x92; /* part number, bits[7:0] */ 528 case GITS_PIDR1: 529 return 0xb4; /* part number, bits[11:8] */ 530 case GITS_PIDR2: 531 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 532 case GITS_PIDR4: 533 return 0x40; /* This is a 64K software visible page */ 534 /* The following are the ID registers for (any) GIC. */ 535 case GITS_CIDR0: 536 return 0x0d; 537 case GITS_CIDR1: 538 return 0xf0; 539 case GITS_CIDR2: 540 return 0x05; 541 case GITS_CIDR3: 542 return 0xb1; 543 } 544 545 return 0; 546 } 547 548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 549 phys_addr_t db, 550 u32 devid, u32 eventid) 551 { 552 struct vgic_translation_cache_entry *cte; 553 554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 555 /* 556 * If we hit a NULL entry, there is nothing after this 557 * point. 558 */ 559 if (!cte->irq) 560 break; 561 562 if (cte->db != db || cte->devid != devid || 563 cte->eventid != eventid) 564 continue; 565 566 /* 567 * Move this entry to the head, as it is the most 568 * recently used. 569 */ 570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 571 list_move(&cte->entry, &dist->lpi_translation_cache); 572 573 return cte->irq; 574 } 575 576 return NULL; 577 } 578 579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 580 u32 devid, u32 eventid) 581 { 582 struct vgic_dist *dist = &kvm->arch.vgic; 583 struct vgic_irq *irq; 584 unsigned long flags; 585 586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 587 588 irq = __vgic_its_check_cache(dist, db, devid, eventid); 589 if (irq) 590 vgic_get_irq_kref(irq); 591 592 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 593 594 return irq; 595 } 596 597 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 598 u32 devid, u32 eventid, 599 struct vgic_irq *irq) 600 { 601 struct vgic_dist *dist = &kvm->arch.vgic; 602 struct vgic_translation_cache_entry *cte; 603 unsigned long flags; 604 phys_addr_t db; 605 606 /* Do not cache a directly injected interrupt */ 607 if (irq->hw) 608 return; 609 610 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 611 612 if (unlikely(list_empty(&dist->lpi_translation_cache))) 613 goto out; 614 615 /* 616 * We could have raced with another CPU caching the same 617 * translation behind our back, so let's check it is not in 618 * already 619 */ 620 db = its->vgic_its_base + GITS_TRANSLATER; 621 if (__vgic_its_check_cache(dist, db, devid, eventid)) 622 goto out; 623 624 /* Always reuse the last entry (LRU policy) */ 625 cte = list_last_entry(&dist->lpi_translation_cache, 626 typeof(*cte), entry); 627 628 /* 629 * Caching the translation implies having an extra reference 630 * to the interrupt, so drop the potential reference on what 631 * was in the cache, and increment it on the new interrupt. 632 */ 633 if (cte->irq) 634 __vgic_put_lpi_locked(kvm, cte->irq); 635 636 vgic_get_irq_kref(irq); 637 638 cte->db = db; 639 cte->devid = devid; 640 cte->eventid = eventid; 641 cte->irq = irq; 642 643 /* Move the new translation to the head of the list */ 644 list_move(&cte->entry, &dist->lpi_translation_cache); 645 646 out: 647 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 648 } 649 650 void vgic_its_invalidate_cache(struct kvm *kvm) 651 { 652 struct vgic_dist *dist = &kvm->arch.vgic; 653 struct vgic_translation_cache_entry *cte; 654 unsigned long flags; 655 656 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 657 658 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 659 /* 660 * If we hit a NULL entry, there is nothing after this 661 * point. 662 */ 663 if (!cte->irq) 664 break; 665 666 __vgic_put_lpi_locked(kvm, cte->irq); 667 cte->irq = NULL; 668 } 669 670 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 671 } 672 673 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 674 u32 devid, u32 eventid, struct vgic_irq **irq) 675 { 676 struct kvm_vcpu *vcpu; 677 struct its_ite *ite; 678 679 if (!its->enabled) 680 return -EBUSY; 681 682 ite = find_ite(its, devid, eventid); 683 if (!ite || !its_is_collection_mapped(ite->collection)) 684 return E_ITS_INT_UNMAPPED_INTERRUPT; 685 686 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 687 if (!vcpu) 688 return E_ITS_INT_UNMAPPED_INTERRUPT; 689 690 if (!vgic_lpis_enabled(vcpu)) 691 return -EBUSY; 692 693 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 694 695 *irq = ite->irq; 696 return 0; 697 } 698 699 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 700 { 701 u64 address; 702 struct kvm_io_device *kvm_io_dev; 703 struct vgic_io_device *iodev; 704 705 if (!vgic_has_its(kvm)) 706 return ERR_PTR(-ENODEV); 707 708 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 709 return ERR_PTR(-EINVAL); 710 711 address = (u64)msi->address_hi << 32 | msi->address_lo; 712 713 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 714 if (!kvm_io_dev) 715 return ERR_PTR(-EINVAL); 716 717 if (kvm_io_dev->ops != &kvm_io_gic_ops) 718 return ERR_PTR(-EINVAL); 719 720 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 721 if (iodev->iodev_type != IODEV_ITS) 722 return ERR_PTR(-EINVAL); 723 724 return iodev->its; 725 } 726 727 /* 728 * Find the target VCPU and the LPI number for a given devid/eventid pair 729 * and make this IRQ pending, possibly injecting it. 730 * Must be called with the its_lock mutex held. 731 * Returns 0 on success, a positive error value for any ITS mapping 732 * related errors and negative error values for generic errors. 733 */ 734 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 735 u32 devid, u32 eventid) 736 { 737 struct vgic_irq *irq = NULL; 738 unsigned long flags; 739 int err; 740 741 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 742 if (err) 743 return err; 744 745 if (irq->hw) 746 return irq_set_irqchip_state(irq->host_irq, 747 IRQCHIP_STATE_PENDING, true); 748 749 raw_spin_lock_irqsave(&irq->irq_lock, flags); 750 irq->pending_latch = true; 751 vgic_queue_irq_unlock(kvm, irq, flags); 752 753 return 0; 754 } 755 756 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 757 { 758 struct vgic_irq *irq; 759 unsigned long flags; 760 phys_addr_t db; 761 762 db = (u64)msi->address_hi << 32 | msi->address_lo; 763 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 764 if (!irq) 765 return -EWOULDBLOCK; 766 767 raw_spin_lock_irqsave(&irq->irq_lock, flags); 768 irq->pending_latch = true; 769 vgic_queue_irq_unlock(kvm, irq, flags); 770 vgic_put_irq(kvm, irq); 771 772 return 0; 773 } 774 775 /* 776 * Queries the KVM IO bus framework to get the ITS pointer from the given 777 * doorbell address. 778 * We then call vgic_its_trigger_msi() with the decoded data. 779 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 780 */ 781 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 782 { 783 struct vgic_its *its; 784 int ret; 785 786 if (!vgic_its_inject_cached_translation(kvm, msi)) 787 return 1; 788 789 its = vgic_msi_to_its(kvm, msi); 790 if (IS_ERR(its)) 791 return PTR_ERR(its); 792 793 mutex_lock(&its->its_lock); 794 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 795 mutex_unlock(&its->its_lock); 796 797 if (ret < 0) 798 return ret; 799 800 /* 801 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 802 * if the guest has blocked the MSI. So we map any LPI mapping 803 * related error to that. 804 */ 805 if (ret) 806 return 0; 807 else 808 return 1; 809 } 810 811 /* Requires the its_lock to be held. */ 812 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 813 { 814 list_del(&ite->ite_list); 815 816 /* This put matches the get in vgic_add_lpi. */ 817 if (ite->irq) { 818 if (ite->irq->hw) 819 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 820 821 vgic_put_irq(kvm, ite->irq); 822 } 823 824 kfree(ite); 825 } 826 827 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 828 { 829 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 830 } 831 832 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 833 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 834 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 835 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 836 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 837 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 838 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 839 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 840 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 841 842 /* 843 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 844 * Must be called with the its_lock mutex held. 845 */ 846 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 847 u64 *its_cmd) 848 { 849 u32 device_id = its_cmd_get_deviceid(its_cmd); 850 u32 event_id = its_cmd_get_id(its_cmd); 851 struct its_ite *ite; 852 853 ite = find_ite(its, device_id, event_id); 854 if (ite && its_is_collection_mapped(ite->collection)) { 855 /* 856 * Though the spec talks about removing the pending state, we 857 * don't bother here since we clear the ITTE anyway and the 858 * pending state is a property of the ITTE struct. 859 */ 860 vgic_its_invalidate_cache(kvm); 861 862 its_free_ite(kvm, ite); 863 return 0; 864 } 865 866 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 867 } 868 869 /* 870 * The MOVI command moves an ITTE to a different collection. 871 * Must be called with the its_lock mutex held. 872 */ 873 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 874 u64 *its_cmd) 875 { 876 u32 device_id = its_cmd_get_deviceid(its_cmd); 877 u32 event_id = its_cmd_get_id(its_cmd); 878 u32 coll_id = its_cmd_get_collection(its_cmd); 879 struct kvm_vcpu *vcpu; 880 struct its_ite *ite; 881 struct its_collection *collection; 882 883 ite = find_ite(its, device_id, event_id); 884 if (!ite) 885 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 886 887 if (!its_is_collection_mapped(ite->collection)) 888 return E_ITS_MOVI_UNMAPPED_COLLECTION; 889 890 collection = find_collection(its, coll_id); 891 if (!its_is_collection_mapped(collection)) 892 return E_ITS_MOVI_UNMAPPED_COLLECTION; 893 894 ite->collection = collection; 895 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 896 897 vgic_its_invalidate_cache(kvm); 898 899 return update_affinity(ite->irq, vcpu); 900 } 901 902 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 903 { 904 gfn_t gfn = gpa >> PAGE_SHIFT; 905 int idx; 906 bool ret; 907 908 idx = srcu_read_lock(&its->dev->kvm->srcu); 909 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 910 srcu_read_unlock(&its->dev->kvm->srcu, idx); 911 return ret; 912 } 913 914 /* 915 * Check whether an ID can be stored into the corresponding guest table. 916 * For a direct table this is pretty easy, but gets a bit nasty for 917 * indirect tables. We check whether the resulting guest physical address 918 * is actually valid (covered by a memslot and guest accessible). 919 * For this we have to read the respective first level entry. 920 */ 921 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 922 gpa_t *eaddr) 923 { 924 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 925 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 926 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 927 int esz = GITS_BASER_ENTRY_SIZE(baser); 928 int index; 929 930 switch (type) { 931 case GITS_BASER_TYPE_DEVICE: 932 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 933 return false; 934 break; 935 case GITS_BASER_TYPE_COLLECTION: 936 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 937 if (id >= BIT_ULL(16)) 938 return false; 939 break; 940 default: 941 return false; 942 } 943 944 if (!(baser & GITS_BASER_INDIRECT)) { 945 phys_addr_t addr; 946 947 if (id >= (l1_tbl_size / esz)) 948 return false; 949 950 addr = base + id * esz; 951 952 if (eaddr) 953 *eaddr = addr; 954 955 return __is_visible_gfn_locked(its, addr); 956 } 957 958 /* calculate and check the index into the 1st level */ 959 index = id / (SZ_64K / esz); 960 if (index >= (l1_tbl_size / sizeof(u64))) 961 return false; 962 963 /* Each 1st level entry is represented by a 64-bit value. */ 964 if (kvm_read_guest_lock(its->dev->kvm, 965 base + index * sizeof(indirect_ptr), 966 &indirect_ptr, sizeof(indirect_ptr))) 967 return false; 968 969 indirect_ptr = le64_to_cpu(indirect_ptr); 970 971 /* check the valid bit of the first level entry */ 972 if (!(indirect_ptr & BIT_ULL(63))) 973 return false; 974 975 /* Mask the guest physical address and calculate the frame number. */ 976 indirect_ptr &= GENMASK_ULL(51, 16); 977 978 /* Find the address of the actual entry */ 979 index = id % (SZ_64K / esz); 980 indirect_ptr += index * esz; 981 982 if (eaddr) 983 *eaddr = indirect_ptr; 984 985 return __is_visible_gfn_locked(its, indirect_ptr); 986 } 987 988 /* 989 * Check whether an event ID can be stored in the corresponding Interrupt 990 * Translation Table, which starts at device->itt_addr. 991 */ 992 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 993 u32 event_id) 994 { 995 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 996 int ite_esz = abi->ite_esz; 997 gpa_t gpa; 998 999 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 1000 if (event_id >= BIT_ULL(device->num_eventid_bits)) 1001 return false; 1002 1003 gpa = device->itt_addr + event_id * ite_esz; 1004 return __is_visible_gfn_locked(its, gpa); 1005 } 1006 1007 /* 1008 * Add a new collection into the ITS collection table. 1009 * Returns 0 on success, and a negative error value for generic errors. 1010 */ 1011 static int vgic_its_alloc_collection(struct vgic_its *its, 1012 struct its_collection **colp, 1013 u32 coll_id) 1014 { 1015 struct its_collection *collection; 1016 1017 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 1018 if (!collection) 1019 return -ENOMEM; 1020 1021 collection->collection_id = coll_id; 1022 collection->target_addr = COLLECTION_NOT_MAPPED; 1023 1024 list_add_tail(&collection->coll_list, &its->collection_list); 1025 *colp = collection; 1026 1027 return 0; 1028 } 1029 1030 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1031 { 1032 struct its_collection *collection; 1033 struct its_device *device; 1034 struct its_ite *ite; 1035 1036 /* 1037 * Clearing the mapping for that collection ID removes the 1038 * entry from the list. If there wasn't any before, we can 1039 * go home early. 1040 */ 1041 collection = find_collection(its, coll_id); 1042 if (!collection) 1043 return; 1044 1045 for_each_lpi_its(device, ite, its) 1046 if (ite->collection && 1047 ite->collection->collection_id == coll_id) 1048 ite->collection = NULL; 1049 1050 list_del(&collection->coll_list); 1051 kfree(collection); 1052 } 1053 1054 /* Must be called with its_lock mutex held */ 1055 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1056 struct its_collection *collection, 1057 u32 event_id) 1058 { 1059 struct its_ite *ite; 1060 1061 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 1062 if (!ite) 1063 return ERR_PTR(-ENOMEM); 1064 1065 ite->event_id = event_id; 1066 ite->collection = collection; 1067 1068 list_add_tail(&ite->ite_list, &device->itt_head); 1069 return ite; 1070 } 1071 1072 /* 1073 * The MAPTI and MAPI commands map LPIs to ITTEs. 1074 * Must be called with its_lock mutex held. 1075 */ 1076 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1077 u64 *its_cmd) 1078 { 1079 u32 device_id = its_cmd_get_deviceid(its_cmd); 1080 u32 event_id = its_cmd_get_id(its_cmd); 1081 u32 coll_id = its_cmd_get_collection(its_cmd); 1082 struct its_ite *ite; 1083 struct kvm_vcpu *vcpu = NULL; 1084 struct its_device *device; 1085 struct its_collection *collection, *new_coll = NULL; 1086 struct vgic_irq *irq; 1087 int lpi_nr; 1088 1089 device = find_its_device(its, device_id); 1090 if (!device) 1091 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1092 1093 if (!vgic_its_check_event_id(its, device, event_id)) 1094 return E_ITS_MAPTI_ID_OOR; 1095 1096 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1097 lpi_nr = its_cmd_get_physical_id(its_cmd); 1098 else 1099 lpi_nr = event_id; 1100 if (lpi_nr < GIC_LPI_OFFSET || 1101 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1102 return E_ITS_MAPTI_PHYSICALID_OOR; 1103 1104 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1105 if (find_ite(its, device_id, event_id)) 1106 return 0; 1107 1108 collection = find_collection(its, coll_id); 1109 if (!collection) { 1110 int ret; 1111 1112 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1113 return E_ITS_MAPC_COLLECTION_OOR; 1114 1115 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1116 if (ret) 1117 return ret; 1118 new_coll = collection; 1119 } 1120 1121 ite = vgic_its_alloc_ite(device, collection, event_id); 1122 if (IS_ERR(ite)) { 1123 if (new_coll) 1124 vgic_its_free_collection(its, coll_id); 1125 return PTR_ERR(ite); 1126 } 1127 1128 if (its_is_collection_mapped(collection)) 1129 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1130 1131 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1132 if (IS_ERR(irq)) { 1133 if (new_coll) 1134 vgic_its_free_collection(its, coll_id); 1135 its_free_ite(kvm, ite); 1136 return PTR_ERR(irq); 1137 } 1138 ite->irq = irq; 1139 1140 return 0; 1141 } 1142 1143 /* Requires the its_lock to be held. */ 1144 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1145 { 1146 struct its_ite *ite, *temp; 1147 1148 /* 1149 * The spec says that unmapping a device with still valid 1150 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1151 * since we cannot leave the memory unreferenced. 1152 */ 1153 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1154 its_free_ite(kvm, ite); 1155 1156 vgic_its_invalidate_cache(kvm); 1157 1158 list_del(&device->dev_list); 1159 kfree(device); 1160 } 1161 1162 /* its lock must be held */ 1163 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1164 { 1165 struct its_device *cur, *temp; 1166 1167 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1168 vgic_its_free_device(kvm, cur); 1169 } 1170 1171 /* its lock must be held */ 1172 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1173 { 1174 struct its_collection *cur, *temp; 1175 1176 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1177 vgic_its_free_collection(its, cur->collection_id); 1178 } 1179 1180 /* Must be called with its_lock mutex held */ 1181 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1182 u32 device_id, gpa_t itt_addr, 1183 u8 num_eventid_bits) 1184 { 1185 struct its_device *device; 1186 1187 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1188 if (!device) 1189 return ERR_PTR(-ENOMEM); 1190 1191 device->device_id = device_id; 1192 device->itt_addr = itt_addr; 1193 device->num_eventid_bits = num_eventid_bits; 1194 INIT_LIST_HEAD(&device->itt_head); 1195 1196 list_add_tail(&device->dev_list, &its->device_list); 1197 return device; 1198 } 1199 1200 /* 1201 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1202 * Must be called with the its_lock mutex held. 1203 */ 1204 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1205 u64 *its_cmd) 1206 { 1207 u32 device_id = its_cmd_get_deviceid(its_cmd); 1208 bool valid = its_cmd_get_validbit(its_cmd); 1209 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1210 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1211 struct its_device *device; 1212 1213 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1214 return E_ITS_MAPD_DEVICE_OOR; 1215 1216 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1217 return E_ITS_MAPD_ITTSIZE_OOR; 1218 1219 device = find_its_device(its, device_id); 1220 1221 /* 1222 * The spec says that calling MAPD on an already mapped device 1223 * invalidates all cached data for this device. We implement this 1224 * by removing the mapping and re-establishing it. 1225 */ 1226 if (device) 1227 vgic_its_free_device(kvm, device); 1228 1229 /* 1230 * The spec does not say whether unmapping a not-mapped device 1231 * is an error, so we are done in any case. 1232 */ 1233 if (!valid) 1234 return 0; 1235 1236 device = vgic_its_alloc_device(its, device_id, itt_addr, 1237 num_eventid_bits); 1238 1239 return PTR_ERR_OR_ZERO(device); 1240 } 1241 1242 /* 1243 * The MAPC command maps collection IDs to redistributors. 1244 * Must be called with the its_lock mutex held. 1245 */ 1246 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1247 u64 *its_cmd) 1248 { 1249 u16 coll_id; 1250 u32 target_addr; 1251 struct its_collection *collection; 1252 bool valid; 1253 1254 valid = its_cmd_get_validbit(its_cmd); 1255 coll_id = its_cmd_get_collection(its_cmd); 1256 target_addr = its_cmd_get_target_addr(its_cmd); 1257 1258 if (target_addr >= atomic_read(&kvm->online_vcpus)) 1259 return E_ITS_MAPC_PROCNUM_OOR; 1260 1261 if (!valid) { 1262 vgic_its_free_collection(its, coll_id); 1263 vgic_its_invalidate_cache(kvm); 1264 } else { 1265 collection = find_collection(its, coll_id); 1266 1267 if (!collection) { 1268 int ret; 1269 1270 if (!vgic_its_check_id(its, its->baser_coll_table, 1271 coll_id, NULL)) 1272 return E_ITS_MAPC_COLLECTION_OOR; 1273 1274 ret = vgic_its_alloc_collection(its, &collection, 1275 coll_id); 1276 if (ret) 1277 return ret; 1278 collection->target_addr = target_addr; 1279 } else { 1280 collection->target_addr = target_addr; 1281 update_affinity_collection(kvm, its, collection); 1282 } 1283 } 1284 1285 return 0; 1286 } 1287 1288 /* 1289 * The CLEAR command removes the pending state for a particular LPI. 1290 * Must be called with the its_lock mutex held. 1291 */ 1292 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1293 u64 *its_cmd) 1294 { 1295 u32 device_id = its_cmd_get_deviceid(its_cmd); 1296 u32 event_id = its_cmd_get_id(its_cmd); 1297 struct its_ite *ite; 1298 1299 1300 ite = find_ite(its, device_id, event_id); 1301 if (!ite) 1302 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1303 1304 ite->irq->pending_latch = false; 1305 1306 if (ite->irq->hw) 1307 return irq_set_irqchip_state(ite->irq->host_irq, 1308 IRQCHIP_STATE_PENDING, false); 1309 1310 return 0; 1311 } 1312 1313 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1314 { 1315 return update_lpi_config(kvm, irq, NULL, true); 1316 } 1317 1318 /* 1319 * The INV command syncs the configuration bits from the memory table. 1320 * Must be called with the its_lock mutex held. 1321 */ 1322 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1323 u64 *its_cmd) 1324 { 1325 u32 device_id = its_cmd_get_deviceid(its_cmd); 1326 u32 event_id = its_cmd_get_id(its_cmd); 1327 struct its_ite *ite; 1328 1329 1330 ite = find_ite(its, device_id, event_id); 1331 if (!ite) 1332 return E_ITS_INV_UNMAPPED_INTERRUPT; 1333 1334 return vgic_its_inv_lpi(kvm, ite->irq); 1335 } 1336 1337 /** 1338 * vgic_its_invall - invalidate all LPIs targetting a given vcpu 1339 * @vcpu: the vcpu for which the RD is targetted by an invalidation 1340 * 1341 * Contrary to the INVALL command, this targets a RD instead of a 1342 * collection, and we don't need to hold the its_lock, since no ITS is 1343 * involved here. 1344 */ 1345 int vgic_its_invall(struct kvm_vcpu *vcpu) 1346 { 1347 struct kvm *kvm = vcpu->kvm; 1348 int irq_count, i = 0; 1349 u32 *intids; 1350 1351 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1352 if (irq_count < 0) 1353 return irq_count; 1354 1355 for (i = 0; i < irq_count; i++) { 1356 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]); 1357 if (!irq) 1358 continue; 1359 update_lpi_config(kvm, irq, vcpu, false); 1360 vgic_put_irq(kvm, irq); 1361 } 1362 1363 kfree(intids); 1364 1365 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1366 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * The INVALL command requests flushing of all IRQ data in this collection. 1373 * Find the VCPU mapped to that collection, then iterate over the VM's list 1374 * of mapped LPIs and update the configuration for each IRQ which targets 1375 * the specified vcpu. The configuration will be read from the in-memory 1376 * configuration table. 1377 * Must be called with the its_lock mutex held. 1378 */ 1379 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1380 u64 *its_cmd) 1381 { 1382 u32 coll_id = its_cmd_get_collection(its_cmd); 1383 struct its_collection *collection; 1384 struct kvm_vcpu *vcpu; 1385 1386 collection = find_collection(its, coll_id); 1387 if (!its_is_collection_mapped(collection)) 1388 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1389 1390 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1391 vgic_its_invall(vcpu); 1392 1393 return 0; 1394 } 1395 1396 /* 1397 * The MOVALL command moves the pending state of all IRQs targeting one 1398 * redistributor to another. We don't hold the pending state in the VCPUs, 1399 * but in the IRQs instead, so there is really not much to do for us here. 1400 * However the spec says that no IRQ must target the old redistributor 1401 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1402 * This command affects all LPIs in the system that target that redistributor. 1403 */ 1404 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1405 u64 *its_cmd) 1406 { 1407 u32 target1_addr = its_cmd_get_target_addr(its_cmd); 1408 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); 1409 struct kvm_vcpu *vcpu1, *vcpu2; 1410 struct vgic_irq *irq; 1411 u32 *intids; 1412 int irq_count, i; 1413 1414 if (target1_addr >= atomic_read(&kvm->online_vcpus) || 1415 target2_addr >= atomic_read(&kvm->online_vcpus)) 1416 return E_ITS_MOVALL_PROCNUM_OOR; 1417 1418 if (target1_addr == target2_addr) 1419 return 0; 1420 1421 vcpu1 = kvm_get_vcpu(kvm, target1_addr); 1422 vcpu2 = kvm_get_vcpu(kvm, target2_addr); 1423 1424 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1425 if (irq_count < 0) 1426 return irq_count; 1427 1428 for (i = 0; i < irq_count; i++) { 1429 irq = vgic_get_irq(kvm, NULL, intids[i]); 1430 1431 update_affinity(irq, vcpu2); 1432 1433 vgic_put_irq(kvm, irq); 1434 } 1435 1436 vgic_its_invalidate_cache(kvm); 1437 1438 kfree(intids); 1439 return 0; 1440 } 1441 1442 /* 1443 * The INT command injects the LPI associated with that DevID/EvID pair. 1444 * Must be called with the its_lock mutex held. 1445 */ 1446 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1447 u64 *its_cmd) 1448 { 1449 u32 msi_data = its_cmd_get_id(its_cmd); 1450 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1451 1452 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1453 } 1454 1455 /* 1456 * This function is called with the its_cmd lock held, but the ITS data 1457 * structure lock dropped. 1458 */ 1459 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1460 u64 *its_cmd) 1461 { 1462 int ret = -ENODEV; 1463 1464 mutex_lock(&its->its_lock); 1465 switch (its_cmd_get_command(its_cmd)) { 1466 case GITS_CMD_MAPD: 1467 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1468 break; 1469 case GITS_CMD_MAPC: 1470 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1471 break; 1472 case GITS_CMD_MAPI: 1473 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1474 break; 1475 case GITS_CMD_MAPTI: 1476 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1477 break; 1478 case GITS_CMD_MOVI: 1479 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1480 break; 1481 case GITS_CMD_DISCARD: 1482 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1483 break; 1484 case GITS_CMD_CLEAR: 1485 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1486 break; 1487 case GITS_CMD_MOVALL: 1488 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1489 break; 1490 case GITS_CMD_INT: 1491 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1492 break; 1493 case GITS_CMD_INV: 1494 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1495 break; 1496 case GITS_CMD_INVALL: 1497 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1498 break; 1499 case GITS_CMD_SYNC: 1500 /* we ignore this command: we are in sync all of the time */ 1501 ret = 0; 1502 break; 1503 } 1504 mutex_unlock(&its->its_lock); 1505 1506 return ret; 1507 } 1508 1509 static u64 vgic_sanitise_its_baser(u64 reg) 1510 { 1511 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1512 GITS_BASER_SHAREABILITY_SHIFT, 1513 vgic_sanitise_shareability); 1514 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1515 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1516 vgic_sanitise_inner_cacheability); 1517 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1518 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1519 vgic_sanitise_outer_cacheability); 1520 1521 /* We support only one (ITS) page size: 64K */ 1522 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1523 1524 return reg; 1525 } 1526 1527 static u64 vgic_sanitise_its_cbaser(u64 reg) 1528 { 1529 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1530 GITS_CBASER_SHAREABILITY_SHIFT, 1531 vgic_sanitise_shareability); 1532 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1533 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1534 vgic_sanitise_inner_cacheability); 1535 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1536 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1537 vgic_sanitise_outer_cacheability); 1538 1539 /* Sanitise the physical address to be 64k aligned. */ 1540 reg &= ~GENMASK_ULL(15, 12); 1541 1542 return reg; 1543 } 1544 1545 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1546 struct vgic_its *its, 1547 gpa_t addr, unsigned int len) 1548 { 1549 return extract_bytes(its->cbaser, addr & 7, len); 1550 } 1551 1552 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1553 gpa_t addr, unsigned int len, 1554 unsigned long val) 1555 { 1556 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1557 if (its->enabled) 1558 return; 1559 1560 mutex_lock(&its->cmd_lock); 1561 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1562 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1563 its->creadr = 0; 1564 /* 1565 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1566 * it to CREADR to make sure we start with an empty command buffer. 1567 */ 1568 its->cwriter = its->creadr; 1569 mutex_unlock(&its->cmd_lock); 1570 } 1571 1572 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1573 #define ITS_CMD_SIZE 32 1574 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1575 1576 /* Must be called with the cmd_lock held. */ 1577 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1578 { 1579 gpa_t cbaser; 1580 u64 cmd_buf[4]; 1581 1582 /* Commands are only processed when the ITS is enabled. */ 1583 if (!its->enabled) 1584 return; 1585 1586 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1587 1588 while (its->cwriter != its->creadr) { 1589 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1590 cmd_buf, ITS_CMD_SIZE); 1591 /* 1592 * If kvm_read_guest() fails, this could be due to the guest 1593 * programming a bogus value in CBASER or something else going 1594 * wrong from which we cannot easily recover. 1595 * According to section 6.3.2 in the GICv3 spec we can just 1596 * ignore that command then. 1597 */ 1598 if (!ret) 1599 vgic_its_handle_command(kvm, its, cmd_buf); 1600 1601 its->creadr += ITS_CMD_SIZE; 1602 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1603 its->creadr = 0; 1604 } 1605 } 1606 1607 /* 1608 * By writing to CWRITER the guest announces new commands to be processed. 1609 * To avoid any races in the first place, we take the its_cmd lock, which 1610 * protects our ring buffer variables, so that there is only one user 1611 * per ITS handling commands at a given time. 1612 */ 1613 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1614 gpa_t addr, unsigned int len, 1615 unsigned long val) 1616 { 1617 u64 reg; 1618 1619 if (!its) 1620 return; 1621 1622 mutex_lock(&its->cmd_lock); 1623 1624 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1625 reg = ITS_CMD_OFFSET(reg); 1626 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1627 mutex_unlock(&its->cmd_lock); 1628 return; 1629 } 1630 its->cwriter = reg; 1631 1632 vgic_its_process_commands(kvm, its); 1633 1634 mutex_unlock(&its->cmd_lock); 1635 } 1636 1637 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1638 struct vgic_its *its, 1639 gpa_t addr, unsigned int len) 1640 { 1641 return extract_bytes(its->cwriter, addr & 0x7, len); 1642 } 1643 1644 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1645 struct vgic_its *its, 1646 gpa_t addr, unsigned int len) 1647 { 1648 return extract_bytes(its->creadr, addr & 0x7, len); 1649 } 1650 1651 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1652 struct vgic_its *its, 1653 gpa_t addr, unsigned int len, 1654 unsigned long val) 1655 { 1656 u32 cmd_offset; 1657 int ret = 0; 1658 1659 mutex_lock(&its->cmd_lock); 1660 1661 if (its->enabled) { 1662 ret = -EBUSY; 1663 goto out; 1664 } 1665 1666 cmd_offset = ITS_CMD_OFFSET(val); 1667 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1668 ret = -EINVAL; 1669 goto out; 1670 } 1671 1672 its->creadr = cmd_offset; 1673 out: 1674 mutex_unlock(&its->cmd_lock); 1675 return ret; 1676 } 1677 1678 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1679 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1680 struct vgic_its *its, 1681 gpa_t addr, unsigned int len) 1682 { 1683 u64 reg; 1684 1685 switch (BASER_INDEX(addr)) { 1686 case 0: 1687 reg = its->baser_device_table; 1688 break; 1689 case 1: 1690 reg = its->baser_coll_table; 1691 break; 1692 default: 1693 reg = 0; 1694 break; 1695 } 1696 1697 return extract_bytes(reg, addr & 7, len); 1698 } 1699 1700 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1701 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1702 struct vgic_its *its, 1703 gpa_t addr, unsigned int len, 1704 unsigned long val) 1705 { 1706 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1707 u64 entry_size, table_type; 1708 u64 reg, *regptr, clearbits = 0; 1709 1710 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1711 if (its->enabled) 1712 return; 1713 1714 switch (BASER_INDEX(addr)) { 1715 case 0: 1716 regptr = &its->baser_device_table; 1717 entry_size = abi->dte_esz; 1718 table_type = GITS_BASER_TYPE_DEVICE; 1719 break; 1720 case 1: 1721 regptr = &its->baser_coll_table; 1722 entry_size = abi->cte_esz; 1723 table_type = GITS_BASER_TYPE_COLLECTION; 1724 clearbits = GITS_BASER_INDIRECT; 1725 break; 1726 default: 1727 return; 1728 } 1729 1730 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1731 reg &= ~GITS_BASER_RO_MASK; 1732 reg &= ~clearbits; 1733 1734 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1735 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1736 reg = vgic_sanitise_its_baser(reg); 1737 1738 *regptr = reg; 1739 1740 if (!(reg & GITS_BASER_VALID)) { 1741 /* Take the its_lock to prevent a race with a save/restore */ 1742 mutex_lock(&its->its_lock); 1743 switch (table_type) { 1744 case GITS_BASER_TYPE_DEVICE: 1745 vgic_its_free_device_list(kvm, its); 1746 break; 1747 case GITS_BASER_TYPE_COLLECTION: 1748 vgic_its_free_collection_list(kvm, its); 1749 break; 1750 } 1751 mutex_unlock(&its->its_lock); 1752 } 1753 } 1754 1755 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1756 struct vgic_its *its, 1757 gpa_t addr, unsigned int len) 1758 { 1759 u32 reg = 0; 1760 1761 mutex_lock(&its->cmd_lock); 1762 if (its->creadr == its->cwriter) 1763 reg |= GITS_CTLR_QUIESCENT; 1764 if (its->enabled) 1765 reg |= GITS_CTLR_ENABLE; 1766 mutex_unlock(&its->cmd_lock); 1767 1768 return reg; 1769 } 1770 1771 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1772 gpa_t addr, unsigned int len, 1773 unsigned long val) 1774 { 1775 mutex_lock(&its->cmd_lock); 1776 1777 /* 1778 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1779 * device/collection BASER are invalid 1780 */ 1781 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1782 (!(its->baser_device_table & GITS_BASER_VALID) || 1783 !(its->baser_coll_table & GITS_BASER_VALID) || 1784 !(its->cbaser & GITS_CBASER_VALID))) 1785 goto out; 1786 1787 its->enabled = !!(val & GITS_CTLR_ENABLE); 1788 if (!its->enabled) 1789 vgic_its_invalidate_cache(kvm); 1790 1791 /* 1792 * Try to process any pending commands. This function bails out early 1793 * if the ITS is disabled or no commands have been queued. 1794 */ 1795 vgic_its_process_commands(kvm, its); 1796 1797 out: 1798 mutex_unlock(&its->cmd_lock); 1799 } 1800 1801 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1802 { \ 1803 .reg_offset = off, \ 1804 .len = length, \ 1805 .access_flags = acc, \ 1806 .its_read = rd, \ 1807 .its_write = wr, \ 1808 } 1809 1810 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1811 { \ 1812 .reg_offset = off, \ 1813 .len = length, \ 1814 .access_flags = acc, \ 1815 .its_read = rd, \ 1816 .its_write = wr, \ 1817 .uaccess_its_write = uwr, \ 1818 } 1819 1820 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1821 gpa_t addr, unsigned int len, unsigned long val) 1822 { 1823 /* Ignore */ 1824 } 1825 1826 static struct vgic_register_region its_registers[] = { 1827 REGISTER_ITS_DESC(GITS_CTLR, 1828 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1829 VGIC_ACCESS_32bit), 1830 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1831 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1832 vgic_mmio_uaccess_write_its_iidr, 4, 1833 VGIC_ACCESS_32bit), 1834 REGISTER_ITS_DESC(GITS_TYPER, 1835 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1836 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1837 REGISTER_ITS_DESC(GITS_CBASER, 1838 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1839 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1840 REGISTER_ITS_DESC(GITS_CWRITER, 1841 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1842 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1843 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1844 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1845 vgic_mmio_uaccess_write_its_creadr, 8, 1846 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1847 REGISTER_ITS_DESC(GITS_BASER, 1848 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1849 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1850 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1851 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1852 VGIC_ACCESS_32bit), 1853 }; 1854 1855 /* This is called on setting the LPI enable bit in the redistributor. */ 1856 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1857 { 1858 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1859 its_sync_lpi_pending_table(vcpu); 1860 } 1861 1862 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1863 u64 addr) 1864 { 1865 struct vgic_io_device *iodev = &its->iodev; 1866 int ret; 1867 1868 mutex_lock(&kvm->slots_lock); 1869 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1870 ret = -EBUSY; 1871 goto out; 1872 } 1873 1874 its->vgic_its_base = addr; 1875 iodev->regions = its_registers; 1876 iodev->nr_regions = ARRAY_SIZE(its_registers); 1877 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1878 1879 iodev->base_addr = its->vgic_its_base; 1880 iodev->iodev_type = IODEV_ITS; 1881 iodev->its = its; 1882 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1883 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1884 out: 1885 mutex_unlock(&kvm->slots_lock); 1886 1887 return ret; 1888 } 1889 1890 /* Default is 16 cached LPIs per vcpu */ 1891 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1892 1893 void vgic_lpi_translation_cache_init(struct kvm *kvm) 1894 { 1895 struct vgic_dist *dist = &kvm->arch.vgic; 1896 unsigned int sz; 1897 int i; 1898 1899 if (!list_empty(&dist->lpi_translation_cache)) 1900 return; 1901 1902 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1903 1904 for (i = 0; i < sz; i++) { 1905 struct vgic_translation_cache_entry *cte; 1906 1907 /* An allocation failure is not fatal */ 1908 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT); 1909 if (WARN_ON(!cte)) 1910 break; 1911 1912 INIT_LIST_HEAD(&cte->entry); 1913 list_add(&cte->entry, &dist->lpi_translation_cache); 1914 } 1915 } 1916 1917 void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1918 { 1919 struct vgic_dist *dist = &kvm->arch.vgic; 1920 struct vgic_translation_cache_entry *cte, *tmp; 1921 1922 vgic_its_invalidate_cache(kvm); 1923 1924 list_for_each_entry_safe(cte, tmp, 1925 &dist->lpi_translation_cache, entry) { 1926 list_del(&cte->entry); 1927 kfree(cte); 1928 } 1929 } 1930 1931 #define INITIAL_BASER_VALUE \ 1932 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1933 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1934 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1935 GITS_BASER_PAGE_SIZE_64K) 1936 1937 #define INITIAL_PROPBASER_VALUE \ 1938 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1939 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1940 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1941 1942 static int vgic_its_create(struct kvm_device *dev, u32 type) 1943 { 1944 int ret; 1945 struct vgic_its *its; 1946 1947 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1948 return -ENODEV; 1949 1950 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1951 if (!its) 1952 return -ENOMEM; 1953 1954 mutex_lock(&dev->kvm->arch.config_lock); 1955 1956 if (vgic_initialized(dev->kvm)) { 1957 ret = vgic_v4_init(dev->kvm); 1958 if (ret < 0) { 1959 mutex_unlock(&dev->kvm->arch.config_lock); 1960 kfree(its); 1961 return ret; 1962 } 1963 1964 vgic_lpi_translation_cache_init(dev->kvm); 1965 } 1966 1967 mutex_init(&its->its_lock); 1968 mutex_init(&its->cmd_lock); 1969 1970 /* Yep, even more trickery for lock ordering... */ 1971 #ifdef CONFIG_LOCKDEP 1972 mutex_lock(&its->cmd_lock); 1973 mutex_lock(&its->its_lock); 1974 mutex_unlock(&its->its_lock); 1975 mutex_unlock(&its->cmd_lock); 1976 #endif 1977 1978 its->vgic_its_base = VGIC_ADDR_UNDEF; 1979 1980 INIT_LIST_HEAD(&its->device_list); 1981 INIT_LIST_HEAD(&its->collection_list); 1982 1983 dev->kvm->arch.vgic.msis_require_devid = true; 1984 dev->kvm->arch.vgic.has_its = true; 1985 its->enabled = false; 1986 its->dev = dev; 1987 1988 its->baser_device_table = INITIAL_BASER_VALUE | 1989 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1990 its->baser_coll_table = INITIAL_BASER_VALUE | 1991 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1992 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1993 1994 dev->private = its; 1995 1996 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1997 1998 mutex_unlock(&dev->kvm->arch.config_lock); 1999 2000 return ret; 2001 } 2002 2003 static void vgic_its_destroy(struct kvm_device *kvm_dev) 2004 { 2005 struct kvm *kvm = kvm_dev->kvm; 2006 struct vgic_its *its = kvm_dev->private; 2007 2008 mutex_lock(&its->its_lock); 2009 2010 vgic_its_free_device_list(kvm, its); 2011 vgic_its_free_collection_list(kvm, its); 2012 2013 mutex_unlock(&its->its_lock); 2014 kfree(its); 2015 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 2016 } 2017 2018 static int vgic_its_has_attr_regs(struct kvm_device *dev, 2019 struct kvm_device_attr *attr) 2020 { 2021 const struct vgic_register_region *region; 2022 gpa_t offset = attr->attr; 2023 int align; 2024 2025 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 2026 2027 if (offset & align) 2028 return -EINVAL; 2029 2030 region = vgic_find_mmio_region(its_registers, 2031 ARRAY_SIZE(its_registers), 2032 offset); 2033 if (!region) 2034 return -ENXIO; 2035 2036 return 0; 2037 } 2038 2039 static int vgic_its_attr_regs_access(struct kvm_device *dev, 2040 struct kvm_device_attr *attr, 2041 u64 *reg, bool is_write) 2042 { 2043 const struct vgic_register_region *region; 2044 struct vgic_its *its; 2045 gpa_t addr, offset; 2046 unsigned int len; 2047 int align, ret = 0; 2048 2049 its = dev->private; 2050 offset = attr->attr; 2051 2052 /* 2053 * Although the spec supports upper/lower 32-bit accesses to 2054 * 64-bit ITS registers, the userspace ABI requires 64-bit 2055 * accesses to all 64-bit wide registers. We therefore only 2056 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 2057 * registers 2058 */ 2059 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 2060 align = 0x3; 2061 else 2062 align = 0x7; 2063 2064 if (offset & align) 2065 return -EINVAL; 2066 2067 mutex_lock(&dev->kvm->lock); 2068 2069 if (!lock_all_vcpus(dev->kvm)) { 2070 mutex_unlock(&dev->kvm->lock); 2071 return -EBUSY; 2072 } 2073 2074 mutex_lock(&dev->kvm->arch.config_lock); 2075 2076 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 2077 ret = -ENXIO; 2078 goto out; 2079 } 2080 2081 region = vgic_find_mmio_region(its_registers, 2082 ARRAY_SIZE(its_registers), 2083 offset); 2084 if (!region) { 2085 ret = -ENXIO; 2086 goto out; 2087 } 2088 2089 addr = its->vgic_its_base + offset; 2090 2091 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2092 2093 if (is_write) { 2094 if (region->uaccess_its_write) 2095 ret = region->uaccess_its_write(dev->kvm, its, addr, 2096 len, *reg); 2097 else 2098 region->its_write(dev->kvm, its, addr, len, *reg); 2099 } else { 2100 *reg = region->its_read(dev->kvm, its, addr, len); 2101 } 2102 out: 2103 mutex_unlock(&dev->kvm->arch.config_lock); 2104 unlock_all_vcpus(dev->kvm); 2105 mutex_unlock(&dev->kvm->lock); 2106 return ret; 2107 } 2108 2109 static u32 compute_next_devid_offset(struct list_head *h, 2110 struct its_device *dev) 2111 { 2112 struct its_device *next; 2113 u32 next_offset; 2114 2115 if (list_is_last(&dev->dev_list, h)) 2116 return 0; 2117 next = list_next_entry(dev, dev_list); 2118 next_offset = next->device_id - dev->device_id; 2119 2120 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2121 } 2122 2123 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2124 { 2125 struct its_ite *next; 2126 u32 next_offset; 2127 2128 if (list_is_last(&ite->ite_list, h)) 2129 return 0; 2130 next = list_next_entry(ite, ite_list); 2131 next_offset = next->event_id - ite->event_id; 2132 2133 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2134 } 2135 2136 /** 2137 * entry_fn_t - Callback called on a table entry restore path 2138 * @its: its handle 2139 * @id: id of the entry 2140 * @entry: pointer to the entry 2141 * @opaque: pointer to an opaque data 2142 * 2143 * Return: < 0 on error, 0 if last element was identified, id offset to next 2144 * element otherwise 2145 */ 2146 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2147 void *opaque); 2148 2149 /** 2150 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2151 * to each entry 2152 * 2153 * @its: its handle 2154 * @base: base gpa of the table 2155 * @size: size of the table in bytes 2156 * @esz: entry size in bytes 2157 * @start_id: the ID of the first entry in the table 2158 * (non zero for 2d level tables) 2159 * @fn: function to apply on each entry 2160 * 2161 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2162 * (the last element may not be found on second level tables) 2163 */ 2164 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2165 int start_id, entry_fn_t fn, void *opaque) 2166 { 2167 struct kvm *kvm = its->dev->kvm; 2168 unsigned long len = size; 2169 int id = start_id; 2170 gpa_t gpa = base; 2171 char entry[ESZ_MAX]; 2172 int ret; 2173 2174 memset(entry, 0, esz); 2175 2176 while (true) { 2177 int next_offset; 2178 size_t byte_offset; 2179 2180 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2181 if (ret) 2182 return ret; 2183 2184 next_offset = fn(its, id, entry, opaque); 2185 if (next_offset <= 0) 2186 return next_offset; 2187 2188 byte_offset = next_offset * esz; 2189 if (byte_offset >= len) 2190 break; 2191 2192 id += next_offset; 2193 gpa += byte_offset; 2194 len -= byte_offset; 2195 } 2196 return 1; 2197 } 2198 2199 /** 2200 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2201 */ 2202 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2203 struct its_ite *ite, gpa_t gpa, int ite_esz) 2204 { 2205 struct kvm *kvm = its->dev->kvm; 2206 u32 next_offset; 2207 u64 val; 2208 2209 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2210 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2211 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2212 ite->collection->collection_id; 2213 val = cpu_to_le64(val); 2214 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz); 2215 } 2216 2217 /** 2218 * vgic_its_restore_ite - restore an interrupt translation entry 2219 * @event_id: id used for indexing 2220 * @ptr: pointer to the ITE entry 2221 * @opaque: pointer to the its_device 2222 */ 2223 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2224 void *ptr, void *opaque) 2225 { 2226 struct its_device *dev = opaque; 2227 struct its_collection *collection; 2228 struct kvm *kvm = its->dev->kvm; 2229 struct kvm_vcpu *vcpu = NULL; 2230 u64 val; 2231 u64 *p = (u64 *)ptr; 2232 struct vgic_irq *irq; 2233 u32 coll_id, lpi_id; 2234 struct its_ite *ite; 2235 u32 offset; 2236 2237 val = *p; 2238 2239 val = le64_to_cpu(val); 2240 2241 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2242 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2243 2244 if (!lpi_id) 2245 return 1; /* invalid entry, no choice but to scan next entry */ 2246 2247 if (lpi_id < VGIC_MIN_LPI) 2248 return -EINVAL; 2249 2250 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2251 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2252 return -EINVAL; 2253 2254 collection = find_collection(its, coll_id); 2255 if (!collection) 2256 return -EINVAL; 2257 2258 if (!vgic_its_check_event_id(its, dev, event_id)) 2259 return -EINVAL; 2260 2261 ite = vgic_its_alloc_ite(dev, collection, event_id); 2262 if (IS_ERR(ite)) 2263 return PTR_ERR(ite); 2264 2265 if (its_is_collection_mapped(collection)) 2266 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 2267 2268 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2269 if (IS_ERR(irq)) { 2270 its_free_ite(kvm, ite); 2271 return PTR_ERR(irq); 2272 } 2273 ite->irq = irq; 2274 2275 return offset; 2276 } 2277 2278 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2279 const struct list_head *b) 2280 { 2281 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2282 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2283 2284 if (itea->event_id < iteb->event_id) 2285 return -1; 2286 else 2287 return 1; 2288 } 2289 2290 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2291 { 2292 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2293 gpa_t base = device->itt_addr; 2294 struct its_ite *ite; 2295 int ret; 2296 int ite_esz = abi->ite_esz; 2297 2298 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2299 2300 list_for_each_entry(ite, &device->itt_head, ite_list) { 2301 gpa_t gpa = base + ite->event_id * ite_esz; 2302 2303 /* 2304 * If an LPI carries the HW bit, this means that this 2305 * interrupt is controlled by GICv4, and we do not 2306 * have direct access to that state without GICv4.1. 2307 * Let's simply fail the save operation... 2308 */ 2309 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2310 return -EACCES; 2311 2312 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2313 if (ret) 2314 return ret; 2315 } 2316 return 0; 2317 } 2318 2319 /** 2320 * vgic_its_restore_itt - restore the ITT of a device 2321 * 2322 * @its: its handle 2323 * @dev: device handle 2324 * 2325 * Return 0 on success, < 0 on error 2326 */ 2327 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2328 { 2329 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2330 gpa_t base = dev->itt_addr; 2331 int ret; 2332 int ite_esz = abi->ite_esz; 2333 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2334 2335 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2336 vgic_its_restore_ite, dev); 2337 2338 /* scan_its_table returns +1 if all ITEs are invalid */ 2339 if (ret > 0) 2340 ret = 0; 2341 2342 return ret; 2343 } 2344 2345 /** 2346 * vgic_its_save_dte - Save a device table entry at a given GPA 2347 * 2348 * @its: ITS handle 2349 * @dev: ITS device 2350 * @ptr: GPA 2351 */ 2352 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2353 gpa_t ptr, int dte_esz) 2354 { 2355 struct kvm *kvm = its->dev->kvm; 2356 u64 val, itt_addr_field; 2357 u32 next_offset; 2358 2359 itt_addr_field = dev->itt_addr >> 8; 2360 next_offset = compute_next_devid_offset(&its->device_list, dev); 2361 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2362 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2363 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2364 (dev->num_eventid_bits - 1)); 2365 val = cpu_to_le64(val); 2366 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz); 2367 } 2368 2369 /** 2370 * vgic_its_restore_dte - restore a device table entry 2371 * 2372 * @its: its handle 2373 * @id: device id the DTE corresponds to 2374 * @ptr: kernel VA where the 8 byte DTE is located 2375 * @opaque: unused 2376 * 2377 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2378 * next dte otherwise 2379 */ 2380 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2381 void *ptr, void *opaque) 2382 { 2383 struct its_device *dev; 2384 u64 baser = its->baser_device_table; 2385 gpa_t itt_addr; 2386 u8 num_eventid_bits; 2387 u64 entry = *(u64 *)ptr; 2388 bool valid; 2389 u32 offset; 2390 int ret; 2391 2392 entry = le64_to_cpu(entry); 2393 2394 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2395 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2396 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2397 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2398 2399 if (!valid) 2400 return 1; 2401 2402 /* dte entry is valid */ 2403 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2404 2405 if (!vgic_its_check_id(its, baser, id, NULL)) 2406 return -EINVAL; 2407 2408 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2409 if (IS_ERR(dev)) 2410 return PTR_ERR(dev); 2411 2412 ret = vgic_its_restore_itt(its, dev); 2413 if (ret) { 2414 vgic_its_free_device(its->dev->kvm, dev); 2415 return ret; 2416 } 2417 2418 return offset; 2419 } 2420 2421 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2422 const struct list_head *b) 2423 { 2424 struct its_device *deva = container_of(a, struct its_device, dev_list); 2425 struct its_device *devb = container_of(b, struct its_device, dev_list); 2426 2427 if (deva->device_id < devb->device_id) 2428 return -1; 2429 else 2430 return 1; 2431 } 2432 2433 /** 2434 * vgic_its_save_device_tables - Save the device table and all ITT 2435 * into guest RAM 2436 * 2437 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2438 * returns the GPA of the device entry 2439 */ 2440 static int vgic_its_save_device_tables(struct vgic_its *its) 2441 { 2442 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2443 u64 baser = its->baser_device_table; 2444 struct its_device *dev; 2445 int dte_esz = abi->dte_esz; 2446 2447 if (!(baser & GITS_BASER_VALID)) 2448 return 0; 2449 2450 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2451 2452 list_for_each_entry(dev, &its->device_list, dev_list) { 2453 int ret; 2454 gpa_t eaddr; 2455 2456 if (!vgic_its_check_id(its, baser, 2457 dev->device_id, &eaddr)) 2458 return -EINVAL; 2459 2460 ret = vgic_its_save_itt(its, dev); 2461 if (ret) 2462 return ret; 2463 2464 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2465 if (ret) 2466 return ret; 2467 } 2468 return 0; 2469 } 2470 2471 /** 2472 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2473 * 2474 * @its: its handle 2475 * @id: index of the entry in the L1 table 2476 * @addr: kernel VA 2477 * @opaque: unused 2478 * 2479 * L1 table entries are scanned by steps of 1 entry 2480 * Return < 0 if error, 0 if last dte was found when scanning the L2 2481 * table, +1 otherwise (meaning next L1 entry must be scanned) 2482 */ 2483 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2484 void *opaque) 2485 { 2486 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2487 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2488 u64 entry = *(u64 *)addr; 2489 int dte_esz = abi->dte_esz; 2490 gpa_t gpa; 2491 int ret; 2492 2493 entry = le64_to_cpu(entry); 2494 2495 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2496 return 1; 2497 2498 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2499 2500 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2501 l2_start_id, vgic_its_restore_dte, NULL); 2502 2503 return ret; 2504 } 2505 2506 /** 2507 * vgic_its_restore_device_tables - Restore the device table and all ITT 2508 * from guest RAM to internal data structs 2509 */ 2510 static int vgic_its_restore_device_tables(struct vgic_its *its) 2511 { 2512 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2513 u64 baser = its->baser_device_table; 2514 int l1_esz, ret; 2515 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2516 gpa_t l1_gpa; 2517 2518 if (!(baser & GITS_BASER_VALID)) 2519 return 0; 2520 2521 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2522 2523 if (baser & GITS_BASER_INDIRECT) { 2524 l1_esz = GITS_LVL1_ENTRY_SIZE; 2525 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2526 handle_l1_dte, NULL); 2527 } else { 2528 l1_esz = abi->dte_esz; 2529 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2530 vgic_its_restore_dte, NULL); 2531 } 2532 2533 /* scan_its_table returns +1 if all entries are invalid */ 2534 if (ret > 0) 2535 ret = 0; 2536 2537 if (ret < 0) 2538 vgic_its_free_device_list(its->dev->kvm, its); 2539 2540 return ret; 2541 } 2542 2543 static int vgic_its_save_cte(struct vgic_its *its, 2544 struct its_collection *collection, 2545 gpa_t gpa, int esz) 2546 { 2547 u64 val; 2548 2549 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2550 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2551 collection->collection_id); 2552 val = cpu_to_le64(val); 2553 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2554 } 2555 2556 /* 2557 * Restore a collection entry into the ITS collection table. 2558 * Return +1 on success, 0 if the entry was invalid (which should be 2559 * interpreted as end-of-table), and a negative error value for generic errors. 2560 */ 2561 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2562 { 2563 struct its_collection *collection; 2564 struct kvm *kvm = its->dev->kvm; 2565 u32 target_addr, coll_id; 2566 u64 val; 2567 int ret; 2568 2569 BUG_ON(esz > sizeof(val)); 2570 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2571 if (ret) 2572 return ret; 2573 val = le64_to_cpu(val); 2574 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2575 return 0; 2576 2577 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2578 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2579 2580 if (target_addr != COLLECTION_NOT_MAPPED && 2581 target_addr >= atomic_read(&kvm->online_vcpus)) 2582 return -EINVAL; 2583 2584 collection = find_collection(its, coll_id); 2585 if (collection) 2586 return -EEXIST; 2587 2588 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2589 return -EINVAL; 2590 2591 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2592 if (ret) 2593 return ret; 2594 collection->target_addr = target_addr; 2595 return 1; 2596 } 2597 2598 /** 2599 * vgic_its_save_collection_table - Save the collection table into 2600 * guest RAM 2601 */ 2602 static int vgic_its_save_collection_table(struct vgic_its *its) 2603 { 2604 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2605 u64 baser = its->baser_coll_table; 2606 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2607 struct its_collection *collection; 2608 u64 val; 2609 size_t max_size, filled = 0; 2610 int ret, cte_esz = abi->cte_esz; 2611 2612 if (!(baser & GITS_BASER_VALID)) 2613 return 0; 2614 2615 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2616 2617 list_for_each_entry(collection, &its->collection_list, coll_list) { 2618 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2619 if (ret) 2620 return ret; 2621 gpa += cte_esz; 2622 filled += cte_esz; 2623 } 2624 2625 if (filled == max_size) 2626 return 0; 2627 2628 /* 2629 * table is not fully filled, add a last dummy element 2630 * with valid bit unset 2631 */ 2632 val = 0; 2633 BUG_ON(cte_esz > sizeof(val)); 2634 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2635 return ret; 2636 } 2637 2638 /** 2639 * vgic_its_restore_collection_table - reads the collection table 2640 * in guest memory and restores the ITS internal state. Requires the 2641 * BASER registers to be restored before. 2642 */ 2643 static int vgic_its_restore_collection_table(struct vgic_its *its) 2644 { 2645 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2646 u64 baser = its->baser_coll_table; 2647 int cte_esz = abi->cte_esz; 2648 size_t max_size, read = 0; 2649 gpa_t gpa; 2650 int ret; 2651 2652 if (!(baser & GITS_BASER_VALID)) 2653 return 0; 2654 2655 gpa = GITS_BASER_ADDR_48_to_52(baser); 2656 2657 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2658 2659 while (read < max_size) { 2660 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2661 if (ret <= 0) 2662 break; 2663 gpa += cte_esz; 2664 read += cte_esz; 2665 } 2666 2667 if (ret > 0) 2668 return 0; 2669 2670 if (ret < 0) 2671 vgic_its_free_collection_list(its->dev->kvm, its); 2672 2673 return ret; 2674 } 2675 2676 /** 2677 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2678 * according to v0 ABI 2679 */ 2680 static int vgic_its_save_tables_v0(struct vgic_its *its) 2681 { 2682 int ret; 2683 2684 ret = vgic_its_save_device_tables(its); 2685 if (ret) 2686 return ret; 2687 2688 return vgic_its_save_collection_table(its); 2689 } 2690 2691 /** 2692 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2693 * to internal data structs according to V0 ABI 2694 * 2695 */ 2696 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2697 { 2698 int ret; 2699 2700 ret = vgic_its_restore_collection_table(its); 2701 if (ret) 2702 return ret; 2703 2704 ret = vgic_its_restore_device_tables(its); 2705 if (ret) 2706 vgic_its_free_collection_list(its->dev->kvm, its); 2707 return ret; 2708 } 2709 2710 static int vgic_its_commit_v0(struct vgic_its *its) 2711 { 2712 const struct vgic_its_abi *abi; 2713 2714 abi = vgic_its_get_abi(its); 2715 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2716 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2717 2718 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2719 << GITS_BASER_ENTRY_SIZE_SHIFT); 2720 2721 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2722 << GITS_BASER_ENTRY_SIZE_SHIFT); 2723 return 0; 2724 } 2725 2726 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2727 { 2728 /* We need to keep the ABI specific field values */ 2729 its->baser_coll_table &= ~GITS_BASER_VALID; 2730 its->baser_device_table &= ~GITS_BASER_VALID; 2731 its->cbaser = 0; 2732 its->creadr = 0; 2733 its->cwriter = 0; 2734 its->enabled = 0; 2735 vgic_its_free_device_list(kvm, its); 2736 vgic_its_free_collection_list(kvm, its); 2737 } 2738 2739 static int vgic_its_has_attr(struct kvm_device *dev, 2740 struct kvm_device_attr *attr) 2741 { 2742 switch (attr->group) { 2743 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2744 switch (attr->attr) { 2745 case KVM_VGIC_ITS_ADDR_TYPE: 2746 return 0; 2747 } 2748 break; 2749 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2750 switch (attr->attr) { 2751 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2752 return 0; 2753 case KVM_DEV_ARM_ITS_CTRL_RESET: 2754 return 0; 2755 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2756 return 0; 2757 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2758 return 0; 2759 } 2760 break; 2761 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2762 return vgic_its_has_attr_regs(dev, attr); 2763 } 2764 return -ENXIO; 2765 } 2766 2767 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2768 { 2769 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2770 int ret = 0; 2771 2772 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2773 return 0; 2774 2775 mutex_lock(&kvm->lock); 2776 2777 if (!lock_all_vcpus(kvm)) { 2778 mutex_unlock(&kvm->lock); 2779 return -EBUSY; 2780 } 2781 2782 mutex_lock(&kvm->arch.config_lock); 2783 mutex_lock(&its->its_lock); 2784 2785 switch (attr) { 2786 case KVM_DEV_ARM_ITS_CTRL_RESET: 2787 vgic_its_reset(kvm, its); 2788 break; 2789 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2790 ret = abi->save_tables(its); 2791 break; 2792 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2793 ret = abi->restore_tables(its); 2794 break; 2795 } 2796 2797 mutex_unlock(&its->its_lock); 2798 mutex_unlock(&kvm->arch.config_lock); 2799 unlock_all_vcpus(kvm); 2800 mutex_unlock(&kvm->lock); 2801 return ret; 2802 } 2803 2804 /* 2805 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2806 * without the running VCPU when dirty ring is enabled. 2807 * 2808 * The running VCPU is required to track dirty guest pages when dirty ring 2809 * is enabled. Otherwise, the backup bitmap should be used to track the 2810 * dirty guest pages. When vgic/its tables are being saved, the backup 2811 * bitmap is used to track the dirty guest pages due to the missed running 2812 * VCPU in the period. 2813 */ 2814 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2815 { 2816 struct vgic_dist *dist = &kvm->arch.vgic; 2817 2818 return dist->table_write_in_progress; 2819 } 2820 2821 static int vgic_its_set_attr(struct kvm_device *dev, 2822 struct kvm_device_attr *attr) 2823 { 2824 struct vgic_its *its = dev->private; 2825 int ret; 2826 2827 switch (attr->group) { 2828 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2829 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2830 unsigned long type = (unsigned long)attr->attr; 2831 u64 addr; 2832 2833 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2834 return -ENODEV; 2835 2836 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2837 return -EFAULT; 2838 2839 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2840 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2841 if (ret) 2842 return ret; 2843 2844 return vgic_register_its_iodev(dev->kvm, its, addr); 2845 } 2846 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2847 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2848 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2849 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2850 u64 reg; 2851 2852 if (get_user(reg, uaddr)) 2853 return -EFAULT; 2854 2855 return vgic_its_attr_regs_access(dev, attr, ®, true); 2856 } 2857 } 2858 return -ENXIO; 2859 } 2860 2861 static int vgic_its_get_attr(struct kvm_device *dev, 2862 struct kvm_device_attr *attr) 2863 { 2864 switch (attr->group) { 2865 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2866 struct vgic_its *its = dev->private; 2867 u64 addr = its->vgic_its_base; 2868 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2869 unsigned long type = (unsigned long)attr->attr; 2870 2871 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2872 return -ENODEV; 2873 2874 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2875 return -EFAULT; 2876 break; 2877 } 2878 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2879 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2880 u64 reg; 2881 int ret; 2882 2883 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2884 if (ret) 2885 return ret; 2886 return put_user(reg, uaddr); 2887 } 2888 default: 2889 return -ENXIO; 2890 } 2891 2892 return 0; 2893 } 2894 2895 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2896 .name = "kvm-arm-vgic-its", 2897 .create = vgic_its_create, 2898 .destroy = vgic_its_destroy, 2899 .set_attr = vgic_its_set_attr, 2900 .get_attr = vgic_its_get_attr, 2901 .has_attr = vgic_its_has_attr, 2902 }; 2903 2904 int kvm_vgic_register_its_device(void) 2905 { 2906 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2907 KVM_DEV_TYPE_ARM_VGIC_ITS); 2908 } 2909