1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static int vgic_its_save_tables_v0(struct vgic_its *its); 27 static int vgic_its_restore_tables_v0(struct vgic_its *its); 28 static int vgic_its_commit_v0(struct vgic_its *its); 29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32 /* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41 { 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92 out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116 } 117 118 struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126 }; 127 128 #define COLLECTION_NOT_MAPPED ((u32)~0) 129 130 struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135 }; 136 137 #define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140 struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146 }; 147 148 struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154 }; 155 156 /** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167 struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174 }; 175 176 #define ABI_0_ESZ 8 177 #define ESZ_MAX ABI_0_ESZ 178 179 static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188 }; 189 190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193 { 194 return &its_table_abi_versions[its->abi_rev]; 195 } 196 197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198 { 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204 } 205 206 /* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211 { 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219 } 220 221 /* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228 { 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241 } 242 243 /* To be used as an iterator this macro misses the enclosing parentheses */ 244 #define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248 #define GIC_LPI_OFFSET 8192 249 250 #define VITS_TYPER_IDBITS 16 251 #define VITS_TYPER_DEVBITS 16 252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255 /* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260 { 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269 } 270 271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274 /* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282 { 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312 } 313 314 /* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320 { 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352 } 353 354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355 { 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379 } 380 381 /* 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 383 * is targeting) to the VGIC's view, which deals with target VCPUs. 384 * Needs to be called whenever either the collection for a LPIs has 385 * changed or the collection itself got retargeted. 386 */ 387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 388 { 389 struct kvm_vcpu *vcpu; 390 391 if (!its_is_collection_mapped(ite->collection)) 392 return; 393 394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 395 update_affinity(ite->irq, vcpu); 396 } 397 398 /* 399 * Updates the target VCPU for every LPI targeting this collection. 400 * Must be called with the its_lock mutex held. 401 */ 402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 403 struct its_collection *coll) 404 { 405 struct its_device *device; 406 struct its_ite *ite; 407 408 for_each_lpi_its(device, ite, its) { 409 if (ite->collection != coll) 410 continue; 411 412 update_affinity_ite(kvm, ite); 413 } 414 } 415 416 static u32 max_lpis_propbaser(u64 propbaser) 417 { 418 int nr_idbits = (propbaser & 0x1f) + 1; 419 420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 421 } 422 423 /* 424 * Sync the pending table pending bit of LPIs targeting @vcpu 425 * with our own data structures. This relies on the LPI being 426 * mapped before. 427 */ 428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 429 { 430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 431 struct vgic_irq *irq; 432 int last_byte_offset = -1; 433 int ret = 0; 434 u32 *intids; 435 int nr_irqs, i; 436 unsigned long flags; 437 u8 pendmask; 438 439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 440 if (nr_irqs < 0) 441 return nr_irqs; 442 443 for (i = 0; i < nr_irqs; i++) { 444 int byte_offset, bit_nr; 445 446 byte_offset = intids[i] / BITS_PER_BYTE; 447 bit_nr = intids[i] % BITS_PER_BYTE; 448 449 /* 450 * For contiguously allocated LPIs chances are we just read 451 * this very same byte in the last iteration. Reuse that. 452 */ 453 if (byte_offset != last_byte_offset) { 454 ret = kvm_read_guest_lock(vcpu->kvm, 455 pendbase + byte_offset, 456 &pendmask, 1); 457 if (ret) { 458 kfree(intids); 459 return ret; 460 } 461 last_byte_offset = byte_offset; 462 } 463 464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 465 raw_spin_lock_irqsave(&irq->irq_lock, flags); 466 irq->pending_latch = pendmask & (1U << bit_nr); 467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 468 vgic_put_irq(vcpu->kvm, irq); 469 } 470 471 kfree(intids); 472 473 return ret; 474 } 475 476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 477 struct vgic_its *its, 478 gpa_t addr, unsigned int len) 479 { 480 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 481 u64 reg = GITS_TYPER_PLPIS; 482 483 /* 484 * We use linear CPU numbers for redistributor addressing, 485 * so GITS_TYPER.PTA is 0. 486 * Also we force all PROPBASER registers to be the same, so 487 * CommonLPIAff is 0 as well. 488 * To avoid memory waste in the guest, we keep the number of IDBits and 489 * DevBits low - as least for the time being. 490 */ 491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 494 495 return extract_bytes(reg, addr & 7, len); 496 } 497 498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 499 struct vgic_its *its, 500 gpa_t addr, unsigned int len) 501 { 502 u32 val; 503 504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 506 return val; 507 } 508 509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 510 struct vgic_its *its, 511 gpa_t addr, unsigned int len, 512 unsigned long val) 513 { 514 u32 rev = GITS_IIDR_REV(val); 515 516 if (rev >= NR_ITS_ABIS) 517 return -EINVAL; 518 return vgic_its_set_abi(its, rev); 519 } 520 521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 522 struct vgic_its *its, 523 gpa_t addr, unsigned int len) 524 { 525 switch (addr & 0xffff) { 526 case GITS_PIDR0: 527 return 0x92; /* part number, bits[7:0] */ 528 case GITS_PIDR1: 529 return 0xb4; /* part number, bits[11:8] */ 530 case GITS_PIDR2: 531 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 532 case GITS_PIDR4: 533 return 0x40; /* This is a 64K software visible page */ 534 /* The following are the ID registers for (any) GIC. */ 535 case GITS_CIDR0: 536 return 0x0d; 537 case GITS_CIDR1: 538 return 0xf0; 539 case GITS_CIDR2: 540 return 0x05; 541 case GITS_CIDR3: 542 return 0xb1; 543 } 544 545 return 0; 546 } 547 548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 549 phys_addr_t db, 550 u32 devid, u32 eventid) 551 { 552 struct vgic_translation_cache_entry *cte; 553 554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 555 /* 556 * If we hit a NULL entry, there is nothing after this 557 * point. 558 */ 559 if (!cte->irq) 560 break; 561 562 if (cte->db != db || cte->devid != devid || 563 cte->eventid != eventid) 564 continue; 565 566 /* 567 * Move this entry to the head, as it is the most 568 * recently used. 569 */ 570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 571 list_move(&cte->entry, &dist->lpi_translation_cache); 572 573 return cte->irq; 574 } 575 576 return NULL; 577 } 578 579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 580 u32 devid, u32 eventid) 581 { 582 struct vgic_dist *dist = &kvm->arch.vgic; 583 struct vgic_irq *irq; 584 unsigned long flags; 585 586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 587 irq = __vgic_its_check_cache(dist, db, devid, eventid); 588 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 589 590 return irq; 591 } 592 593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 594 u32 devid, u32 eventid, 595 struct vgic_irq *irq) 596 { 597 struct vgic_dist *dist = &kvm->arch.vgic; 598 struct vgic_translation_cache_entry *cte; 599 unsigned long flags; 600 phys_addr_t db; 601 602 /* Do not cache a directly injected interrupt */ 603 if (irq->hw) 604 return; 605 606 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 607 608 if (unlikely(list_empty(&dist->lpi_translation_cache))) 609 goto out; 610 611 /* 612 * We could have raced with another CPU caching the same 613 * translation behind our back, so let's check it is not in 614 * already 615 */ 616 db = its->vgic_its_base + GITS_TRANSLATER; 617 if (__vgic_its_check_cache(dist, db, devid, eventid)) 618 goto out; 619 620 /* Always reuse the last entry (LRU policy) */ 621 cte = list_last_entry(&dist->lpi_translation_cache, 622 typeof(*cte), entry); 623 624 /* 625 * Caching the translation implies having an extra reference 626 * to the interrupt, so drop the potential reference on what 627 * was in the cache, and increment it on the new interrupt. 628 */ 629 if (cte->irq) 630 __vgic_put_lpi_locked(kvm, cte->irq); 631 632 vgic_get_irq_kref(irq); 633 634 cte->db = db; 635 cte->devid = devid; 636 cte->eventid = eventid; 637 cte->irq = irq; 638 639 /* Move the new translation to the head of the list */ 640 list_move(&cte->entry, &dist->lpi_translation_cache); 641 642 out: 643 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 644 } 645 646 void vgic_its_invalidate_cache(struct kvm *kvm) 647 { 648 struct vgic_dist *dist = &kvm->arch.vgic; 649 struct vgic_translation_cache_entry *cte; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 653 654 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 655 /* 656 * If we hit a NULL entry, there is nothing after this 657 * point. 658 */ 659 if (!cte->irq) 660 break; 661 662 __vgic_put_lpi_locked(kvm, cte->irq); 663 cte->irq = NULL; 664 } 665 666 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 667 } 668 669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 670 u32 devid, u32 eventid, struct vgic_irq **irq) 671 { 672 struct kvm_vcpu *vcpu; 673 struct its_ite *ite; 674 675 if (!its->enabled) 676 return -EBUSY; 677 678 ite = find_ite(its, devid, eventid); 679 if (!ite || !its_is_collection_mapped(ite->collection)) 680 return E_ITS_INT_UNMAPPED_INTERRUPT; 681 682 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 683 if (!vcpu) 684 return E_ITS_INT_UNMAPPED_INTERRUPT; 685 686 if (!vgic_lpis_enabled(vcpu)) 687 return -EBUSY; 688 689 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 690 691 *irq = ite->irq; 692 return 0; 693 } 694 695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 696 { 697 u64 address; 698 struct kvm_io_device *kvm_io_dev; 699 struct vgic_io_device *iodev; 700 701 if (!vgic_has_its(kvm)) 702 return ERR_PTR(-ENODEV); 703 704 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 705 return ERR_PTR(-EINVAL); 706 707 address = (u64)msi->address_hi << 32 | msi->address_lo; 708 709 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 710 if (!kvm_io_dev) 711 return ERR_PTR(-EINVAL); 712 713 if (kvm_io_dev->ops != &kvm_io_gic_ops) 714 return ERR_PTR(-EINVAL); 715 716 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 717 if (iodev->iodev_type != IODEV_ITS) 718 return ERR_PTR(-EINVAL); 719 720 return iodev->its; 721 } 722 723 /* 724 * Find the target VCPU and the LPI number for a given devid/eventid pair 725 * and make this IRQ pending, possibly injecting it. 726 * Must be called with the its_lock mutex held. 727 * Returns 0 on success, a positive error value for any ITS mapping 728 * related errors and negative error values for generic errors. 729 */ 730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 731 u32 devid, u32 eventid) 732 { 733 struct vgic_irq *irq = NULL; 734 unsigned long flags; 735 int err; 736 737 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 738 if (err) 739 return err; 740 741 if (irq->hw) 742 return irq_set_irqchip_state(irq->host_irq, 743 IRQCHIP_STATE_PENDING, true); 744 745 raw_spin_lock_irqsave(&irq->irq_lock, flags); 746 irq->pending_latch = true; 747 vgic_queue_irq_unlock(kvm, irq, flags); 748 749 return 0; 750 } 751 752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 753 { 754 struct vgic_irq *irq; 755 unsigned long flags; 756 phys_addr_t db; 757 758 db = (u64)msi->address_hi << 32 | msi->address_lo; 759 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 760 if (!irq) 761 return -EWOULDBLOCK; 762 763 raw_spin_lock_irqsave(&irq->irq_lock, flags); 764 irq->pending_latch = true; 765 vgic_queue_irq_unlock(kvm, irq, flags); 766 767 return 0; 768 } 769 770 /* 771 * Queries the KVM IO bus framework to get the ITS pointer from the given 772 * doorbell address. 773 * We then call vgic_its_trigger_msi() with the decoded data. 774 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 775 */ 776 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 777 { 778 struct vgic_its *its; 779 int ret; 780 781 if (!vgic_its_inject_cached_translation(kvm, msi)) 782 return 1; 783 784 its = vgic_msi_to_its(kvm, msi); 785 if (IS_ERR(its)) 786 return PTR_ERR(its); 787 788 mutex_lock(&its->its_lock); 789 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 790 mutex_unlock(&its->its_lock); 791 792 if (ret < 0) 793 return ret; 794 795 /* 796 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 797 * if the guest has blocked the MSI. So we map any LPI mapping 798 * related error to that. 799 */ 800 if (ret) 801 return 0; 802 else 803 return 1; 804 } 805 806 /* Requires the its_lock to be held. */ 807 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 808 { 809 list_del(&ite->ite_list); 810 811 /* This put matches the get in vgic_add_lpi. */ 812 if (ite->irq) { 813 if (ite->irq->hw) 814 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 815 816 vgic_put_irq(kvm, ite->irq); 817 } 818 819 kfree(ite); 820 } 821 822 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 823 { 824 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 825 } 826 827 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 828 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 829 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 830 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 831 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 832 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 833 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 834 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 835 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 836 837 /* 838 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 839 * Must be called with the its_lock mutex held. 840 */ 841 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 842 u64 *its_cmd) 843 { 844 u32 device_id = its_cmd_get_deviceid(its_cmd); 845 u32 event_id = its_cmd_get_id(its_cmd); 846 struct its_ite *ite; 847 848 ite = find_ite(its, device_id, event_id); 849 if (ite && its_is_collection_mapped(ite->collection)) { 850 /* 851 * Though the spec talks about removing the pending state, we 852 * don't bother here since we clear the ITTE anyway and the 853 * pending state is a property of the ITTE struct. 854 */ 855 vgic_its_invalidate_cache(kvm); 856 857 its_free_ite(kvm, ite); 858 return 0; 859 } 860 861 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 862 } 863 864 /* 865 * The MOVI command moves an ITTE to a different collection. 866 * Must be called with the its_lock mutex held. 867 */ 868 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 869 u64 *its_cmd) 870 { 871 u32 device_id = its_cmd_get_deviceid(its_cmd); 872 u32 event_id = its_cmd_get_id(its_cmd); 873 u32 coll_id = its_cmd_get_collection(its_cmd); 874 struct kvm_vcpu *vcpu; 875 struct its_ite *ite; 876 struct its_collection *collection; 877 878 ite = find_ite(its, device_id, event_id); 879 if (!ite) 880 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 881 882 if (!its_is_collection_mapped(ite->collection)) 883 return E_ITS_MOVI_UNMAPPED_COLLECTION; 884 885 collection = find_collection(its, coll_id); 886 if (!its_is_collection_mapped(collection)) 887 return E_ITS_MOVI_UNMAPPED_COLLECTION; 888 889 ite->collection = collection; 890 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 891 892 vgic_its_invalidate_cache(kvm); 893 894 return update_affinity(ite->irq, vcpu); 895 } 896 897 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 898 { 899 gfn_t gfn = gpa >> PAGE_SHIFT; 900 int idx; 901 bool ret; 902 903 idx = srcu_read_lock(&its->dev->kvm->srcu); 904 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 905 srcu_read_unlock(&its->dev->kvm->srcu, idx); 906 return ret; 907 } 908 909 /* 910 * Check whether an ID can be stored into the corresponding guest table. 911 * For a direct table this is pretty easy, but gets a bit nasty for 912 * indirect tables. We check whether the resulting guest physical address 913 * is actually valid (covered by a memslot and guest accessible). 914 * For this we have to read the respective first level entry. 915 */ 916 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 917 gpa_t *eaddr) 918 { 919 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 920 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 921 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 922 int esz = GITS_BASER_ENTRY_SIZE(baser); 923 int index; 924 925 switch (type) { 926 case GITS_BASER_TYPE_DEVICE: 927 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 928 return false; 929 break; 930 case GITS_BASER_TYPE_COLLECTION: 931 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 932 if (id >= BIT_ULL(16)) 933 return false; 934 break; 935 default: 936 return false; 937 } 938 939 if (!(baser & GITS_BASER_INDIRECT)) { 940 phys_addr_t addr; 941 942 if (id >= (l1_tbl_size / esz)) 943 return false; 944 945 addr = base + id * esz; 946 947 if (eaddr) 948 *eaddr = addr; 949 950 return __is_visible_gfn_locked(its, addr); 951 } 952 953 /* calculate and check the index into the 1st level */ 954 index = id / (SZ_64K / esz); 955 if (index >= (l1_tbl_size / sizeof(u64))) 956 return false; 957 958 /* Each 1st level entry is represented by a 64-bit value. */ 959 if (kvm_read_guest_lock(its->dev->kvm, 960 base + index * sizeof(indirect_ptr), 961 &indirect_ptr, sizeof(indirect_ptr))) 962 return false; 963 964 indirect_ptr = le64_to_cpu(indirect_ptr); 965 966 /* check the valid bit of the first level entry */ 967 if (!(indirect_ptr & BIT_ULL(63))) 968 return false; 969 970 /* Mask the guest physical address and calculate the frame number. */ 971 indirect_ptr &= GENMASK_ULL(51, 16); 972 973 /* Find the address of the actual entry */ 974 index = id % (SZ_64K / esz); 975 indirect_ptr += index * esz; 976 977 if (eaddr) 978 *eaddr = indirect_ptr; 979 980 return __is_visible_gfn_locked(its, indirect_ptr); 981 } 982 983 /* 984 * Check whether an event ID can be stored in the corresponding Interrupt 985 * Translation Table, which starts at device->itt_addr. 986 */ 987 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 988 u32 event_id) 989 { 990 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 991 int ite_esz = abi->ite_esz; 992 gpa_t gpa; 993 994 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 995 if (event_id >= BIT_ULL(device->num_eventid_bits)) 996 return false; 997 998 gpa = device->itt_addr + event_id * ite_esz; 999 return __is_visible_gfn_locked(its, gpa); 1000 } 1001 1002 /* 1003 * Add a new collection into the ITS collection table. 1004 * Returns 0 on success, and a negative error value for generic errors. 1005 */ 1006 static int vgic_its_alloc_collection(struct vgic_its *its, 1007 struct its_collection **colp, 1008 u32 coll_id) 1009 { 1010 struct its_collection *collection; 1011 1012 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 1013 if (!collection) 1014 return -ENOMEM; 1015 1016 collection->collection_id = coll_id; 1017 collection->target_addr = COLLECTION_NOT_MAPPED; 1018 1019 list_add_tail(&collection->coll_list, &its->collection_list); 1020 *colp = collection; 1021 1022 return 0; 1023 } 1024 1025 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1026 { 1027 struct its_collection *collection; 1028 struct its_device *device; 1029 struct its_ite *ite; 1030 1031 /* 1032 * Clearing the mapping for that collection ID removes the 1033 * entry from the list. If there wasn't any before, we can 1034 * go home early. 1035 */ 1036 collection = find_collection(its, coll_id); 1037 if (!collection) 1038 return; 1039 1040 for_each_lpi_its(device, ite, its) 1041 if (ite->collection && 1042 ite->collection->collection_id == coll_id) 1043 ite->collection = NULL; 1044 1045 list_del(&collection->coll_list); 1046 kfree(collection); 1047 } 1048 1049 /* Must be called with its_lock mutex held */ 1050 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1051 struct its_collection *collection, 1052 u32 event_id) 1053 { 1054 struct its_ite *ite; 1055 1056 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 1057 if (!ite) 1058 return ERR_PTR(-ENOMEM); 1059 1060 ite->event_id = event_id; 1061 ite->collection = collection; 1062 1063 list_add_tail(&ite->ite_list, &device->itt_head); 1064 return ite; 1065 } 1066 1067 /* 1068 * The MAPTI and MAPI commands map LPIs to ITTEs. 1069 * Must be called with its_lock mutex held. 1070 */ 1071 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1072 u64 *its_cmd) 1073 { 1074 u32 device_id = its_cmd_get_deviceid(its_cmd); 1075 u32 event_id = its_cmd_get_id(its_cmd); 1076 u32 coll_id = its_cmd_get_collection(its_cmd); 1077 struct its_ite *ite; 1078 struct kvm_vcpu *vcpu = NULL; 1079 struct its_device *device; 1080 struct its_collection *collection, *new_coll = NULL; 1081 struct vgic_irq *irq; 1082 int lpi_nr; 1083 1084 device = find_its_device(its, device_id); 1085 if (!device) 1086 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1087 1088 if (!vgic_its_check_event_id(its, device, event_id)) 1089 return E_ITS_MAPTI_ID_OOR; 1090 1091 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1092 lpi_nr = its_cmd_get_physical_id(its_cmd); 1093 else 1094 lpi_nr = event_id; 1095 if (lpi_nr < GIC_LPI_OFFSET || 1096 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1097 return E_ITS_MAPTI_PHYSICALID_OOR; 1098 1099 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1100 if (find_ite(its, device_id, event_id)) 1101 return 0; 1102 1103 collection = find_collection(its, coll_id); 1104 if (!collection) { 1105 int ret; 1106 1107 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1108 return E_ITS_MAPC_COLLECTION_OOR; 1109 1110 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1111 if (ret) 1112 return ret; 1113 new_coll = collection; 1114 } 1115 1116 ite = vgic_its_alloc_ite(device, collection, event_id); 1117 if (IS_ERR(ite)) { 1118 if (new_coll) 1119 vgic_its_free_collection(its, coll_id); 1120 return PTR_ERR(ite); 1121 } 1122 1123 if (its_is_collection_mapped(collection)) 1124 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1125 1126 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1127 if (IS_ERR(irq)) { 1128 if (new_coll) 1129 vgic_its_free_collection(its, coll_id); 1130 its_free_ite(kvm, ite); 1131 return PTR_ERR(irq); 1132 } 1133 ite->irq = irq; 1134 1135 return 0; 1136 } 1137 1138 /* Requires the its_lock to be held. */ 1139 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1140 { 1141 struct its_ite *ite, *temp; 1142 1143 /* 1144 * The spec says that unmapping a device with still valid 1145 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1146 * since we cannot leave the memory unreferenced. 1147 */ 1148 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1149 its_free_ite(kvm, ite); 1150 1151 vgic_its_invalidate_cache(kvm); 1152 1153 list_del(&device->dev_list); 1154 kfree(device); 1155 } 1156 1157 /* its lock must be held */ 1158 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1159 { 1160 struct its_device *cur, *temp; 1161 1162 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1163 vgic_its_free_device(kvm, cur); 1164 } 1165 1166 /* its lock must be held */ 1167 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1168 { 1169 struct its_collection *cur, *temp; 1170 1171 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1172 vgic_its_free_collection(its, cur->collection_id); 1173 } 1174 1175 /* Must be called with its_lock mutex held */ 1176 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1177 u32 device_id, gpa_t itt_addr, 1178 u8 num_eventid_bits) 1179 { 1180 struct its_device *device; 1181 1182 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1183 if (!device) 1184 return ERR_PTR(-ENOMEM); 1185 1186 device->device_id = device_id; 1187 device->itt_addr = itt_addr; 1188 device->num_eventid_bits = num_eventid_bits; 1189 INIT_LIST_HEAD(&device->itt_head); 1190 1191 list_add_tail(&device->dev_list, &its->device_list); 1192 return device; 1193 } 1194 1195 /* 1196 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1197 * Must be called with the its_lock mutex held. 1198 */ 1199 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1200 u64 *its_cmd) 1201 { 1202 u32 device_id = its_cmd_get_deviceid(its_cmd); 1203 bool valid = its_cmd_get_validbit(its_cmd); 1204 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1205 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1206 struct its_device *device; 1207 1208 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1209 return E_ITS_MAPD_DEVICE_OOR; 1210 1211 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1212 return E_ITS_MAPD_ITTSIZE_OOR; 1213 1214 device = find_its_device(its, device_id); 1215 1216 /* 1217 * The spec says that calling MAPD on an already mapped device 1218 * invalidates all cached data for this device. We implement this 1219 * by removing the mapping and re-establishing it. 1220 */ 1221 if (device) 1222 vgic_its_free_device(kvm, device); 1223 1224 /* 1225 * The spec does not say whether unmapping a not-mapped device 1226 * is an error, so we are done in any case. 1227 */ 1228 if (!valid) 1229 return 0; 1230 1231 device = vgic_its_alloc_device(its, device_id, itt_addr, 1232 num_eventid_bits); 1233 1234 return PTR_ERR_OR_ZERO(device); 1235 } 1236 1237 /* 1238 * The MAPC command maps collection IDs to redistributors. 1239 * Must be called with the its_lock mutex held. 1240 */ 1241 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1242 u64 *its_cmd) 1243 { 1244 u16 coll_id; 1245 u32 target_addr; 1246 struct its_collection *collection; 1247 bool valid; 1248 1249 valid = its_cmd_get_validbit(its_cmd); 1250 coll_id = its_cmd_get_collection(its_cmd); 1251 target_addr = its_cmd_get_target_addr(its_cmd); 1252 1253 if (target_addr >= atomic_read(&kvm->online_vcpus)) 1254 return E_ITS_MAPC_PROCNUM_OOR; 1255 1256 if (!valid) { 1257 vgic_its_free_collection(its, coll_id); 1258 vgic_its_invalidate_cache(kvm); 1259 } else { 1260 collection = find_collection(its, coll_id); 1261 1262 if (!collection) { 1263 int ret; 1264 1265 if (!vgic_its_check_id(its, its->baser_coll_table, 1266 coll_id, NULL)) 1267 return E_ITS_MAPC_COLLECTION_OOR; 1268 1269 ret = vgic_its_alloc_collection(its, &collection, 1270 coll_id); 1271 if (ret) 1272 return ret; 1273 collection->target_addr = target_addr; 1274 } else { 1275 collection->target_addr = target_addr; 1276 update_affinity_collection(kvm, its, collection); 1277 } 1278 } 1279 1280 return 0; 1281 } 1282 1283 /* 1284 * The CLEAR command removes the pending state for a particular LPI. 1285 * Must be called with the its_lock mutex held. 1286 */ 1287 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1288 u64 *its_cmd) 1289 { 1290 u32 device_id = its_cmd_get_deviceid(its_cmd); 1291 u32 event_id = its_cmd_get_id(its_cmd); 1292 struct its_ite *ite; 1293 1294 1295 ite = find_ite(its, device_id, event_id); 1296 if (!ite) 1297 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1298 1299 ite->irq->pending_latch = false; 1300 1301 if (ite->irq->hw) 1302 return irq_set_irqchip_state(ite->irq->host_irq, 1303 IRQCHIP_STATE_PENDING, false); 1304 1305 return 0; 1306 } 1307 1308 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1309 { 1310 return update_lpi_config(kvm, irq, NULL, true); 1311 } 1312 1313 /* 1314 * The INV command syncs the configuration bits from the memory table. 1315 * Must be called with the its_lock mutex held. 1316 */ 1317 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1318 u64 *its_cmd) 1319 { 1320 u32 device_id = its_cmd_get_deviceid(its_cmd); 1321 u32 event_id = its_cmd_get_id(its_cmd); 1322 struct its_ite *ite; 1323 1324 1325 ite = find_ite(its, device_id, event_id); 1326 if (!ite) 1327 return E_ITS_INV_UNMAPPED_INTERRUPT; 1328 1329 return vgic_its_inv_lpi(kvm, ite->irq); 1330 } 1331 1332 /** 1333 * vgic_its_invall - invalidate all LPIs targetting a given vcpu 1334 * @vcpu: the vcpu for which the RD is targetted by an invalidation 1335 * 1336 * Contrary to the INVALL command, this targets a RD instead of a 1337 * collection, and we don't need to hold the its_lock, since no ITS is 1338 * involved here. 1339 */ 1340 int vgic_its_invall(struct kvm_vcpu *vcpu) 1341 { 1342 struct kvm *kvm = vcpu->kvm; 1343 int irq_count, i = 0; 1344 u32 *intids; 1345 1346 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1347 if (irq_count < 0) 1348 return irq_count; 1349 1350 for (i = 0; i < irq_count; i++) { 1351 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]); 1352 if (!irq) 1353 continue; 1354 update_lpi_config(kvm, irq, vcpu, false); 1355 vgic_put_irq(kvm, irq); 1356 } 1357 1358 kfree(intids); 1359 1360 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1361 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1362 1363 return 0; 1364 } 1365 1366 /* 1367 * The INVALL command requests flushing of all IRQ data in this collection. 1368 * Find the VCPU mapped to that collection, then iterate over the VM's list 1369 * of mapped LPIs and update the configuration for each IRQ which targets 1370 * the specified vcpu. The configuration will be read from the in-memory 1371 * configuration table. 1372 * Must be called with the its_lock mutex held. 1373 */ 1374 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1375 u64 *its_cmd) 1376 { 1377 u32 coll_id = its_cmd_get_collection(its_cmd); 1378 struct its_collection *collection; 1379 struct kvm_vcpu *vcpu; 1380 1381 collection = find_collection(its, coll_id); 1382 if (!its_is_collection_mapped(collection)) 1383 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1384 1385 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1386 vgic_its_invall(vcpu); 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * The MOVALL command moves the pending state of all IRQs targeting one 1393 * redistributor to another. We don't hold the pending state in the VCPUs, 1394 * but in the IRQs instead, so there is really not much to do for us here. 1395 * However the spec says that no IRQ must target the old redistributor 1396 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1397 * This command affects all LPIs in the system that target that redistributor. 1398 */ 1399 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1400 u64 *its_cmd) 1401 { 1402 u32 target1_addr = its_cmd_get_target_addr(its_cmd); 1403 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); 1404 struct kvm_vcpu *vcpu1, *vcpu2; 1405 struct vgic_irq *irq; 1406 u32 *intids; 1407 int irq_count, i; 1408 1409 if (target1_addr >= atomic_read(&kvm->online_vcpus) || 1410 target2_addr >= atomic_read(&kvm->online_vcpus)) 1411 return E_ITS_MOVALL_PROCNUM_OOR; 1412 1413 if (target1_addr == target2_addr) 1414 return 0; 1415 1416 vcpu1 = kvm_get_vcpu(kvm, target1_addr); 1417 vcpu2 = kvm_get_vcpu(kvm, target2_addr); 1418 1419 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1420 if (irq_count < 0) 1421 return irq_count; 1422 1423 for (i = 0; i < irq_count; i++) { 1424 irq = vgic_get_irq(kvm, NULL, intids[i]); 1425 1426 update_affinity(irq, vcpu2); 1427 1428 vgic_put_irq(kvm, irq); 1429 } 1430 1431 vgic_its_invalidate_cache(kvm); 1432 1433 kfree(intids); 1434 return 0; 1435 } 1436 1437 /* 1438 * The INT command injects the LPI associated with that DevID/EvID pair. 1439 * Must be called with the its_lock mutex held. 1440 */ 1441 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1442 u64 *its_cmd) 1443 { 1444 u32 msi_data = its_cmd_get_id(its_cmd); 1445 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1446 1447 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1448 } 1449 1450 /* 1451 * This function is called with the its_cmd lock held, but the ITS data 1452 * structure lock dropped. 1453 */ 1454 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1455 u64 *its_cmd) 1456 { 1457 int ret = -ENODEV; 1458 1459 mutex_lock(&its->its_lock); 1460 switch (its_cmd_get_command(its_cmd)) { 1461 case GITS_CMD_MAPD: 1462 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1463 break; 1464 case GITS_CMD_MAPC: 1465 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1466 break; 1467 case GITS_CMD_MAPI: 1468 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1469 break; 1470 case GITS_CMD_MAPTI: 1471 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1472 break; 1473 case GITS_CMD_MOVI: 1474 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1475 break; 1476 case GITS_CMD_DISCARD: 1477 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1478 break; 1479 case GITS_CMD_CLEAR: 1480 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1481 break; 1482 case GITS_CMD_MOVALL: 1483 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1484 break; 1485 case GITS_CMD_INT: 1486 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1487 break; 1488 case GITS_CMD_INV: 1489 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1490 break; 1491 case GITS_CMD_INVALL: 1492 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1493 break; 1494 case GITS_CMD_SYNC: 1495 /* we ignore this command: we are in sync all of the time */ 1496 ret = 0; 1497 break; 1498 } 1499 mutex_unlock(&its->its_lock); 1500 1501 return ret; 1502 } 1503 1504 static u64 vgic_sanitise_its_baser(u64 reg) 1505 { 1506 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1507 GITS_BASER_SHAREABILITY_SHIFT, 1508 vgic_sanitise_shareability); 1509 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1510 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1511 vgic_sanitise_inner_cacheability); 1512 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1513 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1514 vgic_sanitise_outer_cacheability); 1515 1516 /* We support only one (ITS) page size: 64K */ 1517 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1518 1519 return reg; 1520 } 1521 1522 static u64 vgic_sanitise_its_cbaser(u64 reg) 1523 { 1524 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1525 GITS_CBASER_SHAREABILITY_SHIFT, 1526 vgic_sanitise_shareability); 1527 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1528 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1529 vgic_sanitise_inner_cacheability); 1530 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1531 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1532 vgic_sanitise_outer_cacheability); 1533 1534 /* Sanitise the physical address to be 64k aligned. */ 1535 reg &= ~GENMASK_ULL(15, 12); 1536 1537 return reg; 1538 } 1539 1540 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1541 struct vgic_its *its, 1542 gpa_t addr, unsigned int len) 1543 { 1544 return extract_bytes(its->cbaser, addr & 7, len); 1545 } 1546 1547 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1548 gpa_t addr, unsigned int len, 1549 unsigned long val) 1550 { 1551 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1552 if (its->enabled) 1553 return; 1554 1555 mutex_lock(&its->cmd_lock); 1556 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1557 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1558 its->creadr = 0; 1559 /* 1560 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1561 * it to CREADR to make sure we start with an empty command buffer. 1562 */ 1563 its->cwriter = its->creadr; 1564 mutex_unlock(&its->cmd_lock); 1565 } 1566 1567 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1568 #define ITS_CMD_SIZE 32 1569 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1570 1571 /* Must be called with the cmd_lock held. */ 1572 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1573 { 1574 gpa_t cbaser; 1575 u64 cmd_buf[4]; 1576 1577 /* Commands are only processed when the ITS is enabled. */ 1578 if (!its->enabled) 1579 return; 1580 1581 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1582 1583 while (its->cwriter != its->creadr) { 1584 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1585 cmd_buf, ITS_CMD_SIZE); 1586 /* 1587 * If kvm_read_guest() fails, this could be due to the guest 1588 * programming a bogus value in CBASER or something else going 1589 * wrong from which we cannot easily recover. 1590 * According to section 6.3.2 in the GICv3 spec we can just 1591 * ignore that command then. 1592 */ 1593 if (!ret) 1594 vgic_its_handle_command(kvm, its, cmd_buf); 1595 1596 its->creadr += ITS_CMD_SIZE; 1597 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1598 its->creadr = 0; 1599 } 1600 } 1601 1602 /* 1603 * By writing to CWRITER the guest announces new commands to be processed. 1604 * To avoid any races in the first place, we take the its_cmd lock, which 1605 * protects our ring buffer variables, so that there is only one user 1606 * per ITS handling commands at a given time. 1607 */ 1608 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1609 gpa_t addr, unsigned int len, 1610 unsigned long val) 1611 { 1612 u64 reg; 1613 1614 if (!its) 1615 return; 1616 1617 mutex_lock(&its->cmd_lock); 1618 1619 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1620 reg = ITS_CMD_OFFSET(reg); 1621 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1622 mutex_unlock(&its->cmd_lock); 1623 return; 1624 } 1625 its->cwriter = reg; 1626 1627 vgic_its_process_commands(kvm, its); 1628 1629 mutex_unlock(&its->cmd_lock); 1630 } 1631 1632 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1633 struct vgic_its *its, 1634 gpa_t addr, unsigned int len) 1635 { 1636 return extract_bytes(its->cwriter, addr & 0x7, len); 1637 } 1638 1639 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1640 struct vgic_its *its, 1641 gpa_t addr, unsigned int len) 1642 { 1643 return extract_bytes(its->creadr, addr & 0x7, len); 1644 } 1645 1646 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1647 struct vgic_its *its, 1648 gpa_t addr, unsigned int len, 1649 unsigned long val) 1650 { 1651 u32 cmd_offset; 1652 int ret = 0; 1653 1654 mutex_lock(&its->cmd_lock); 1655 1656 if (its->enabled) { 1657 ret = -EBUSY; 1658 goto out; 1659 } 1660 1661 cmd_offset = ITS_CMD_OFFSET(val); 1662 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1663 ret = -EINVAL; 1664 goto out; 1665 } 1666 1667 its->creadr = cmd_offset; 1668 out: 1669 mutex_unlock(&its->cmd_lock); 1670 return ret; 1671 } 1672 1673 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1674 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1675 struct vgic_its *its, 1676 gpa_t addr, unsigned int len) 1677 { 1678 u64 reg; 1679 1680 switch (BASER_INDEX(addr)) { 1681 case 0: 1682 reg = its->baser_device_table; 1683 break; 1684 case 1: 1685 reg = its->baser_coll_table; 1686 break; 1687 default: 1688 reg = 0; 1689 break; 1690 } 1691 1692 return extract_bytes(reg, addr & 7, len); 1693 } 1694 1695 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1696 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1697 struct vgic_its *its, 1698 gpa_t addr, unsigned int len, 1699 unsigned long val) 1700 { 1701 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1702 u64 entry_size, table_type; 1703 u64 reg, *regptr, clearbits = 0; 1704 1705 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1706 if (its->enabled) 1707 return; 1708 1709 switch (BASER_INDEX(addr)) { 1710 case 0: 1711 regptr = &its->baser_device_table; 1712 entry_size = abi->dte_esz; 1713 table_type = GITS_BASER_TYPE_DEVICE; 1714 break; 1715 case 1: 1716 regptr = &its->baser_coll_table; 1717 entry_size = abi->cte_esz; 1718 table_type = GITS_BASER_TYPE_COLLECTION; 1719 clearbits = GITS_BASER_INDIRECT; 1720 break; 1721 default: 1722 return; 1723 } 1724 1725 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1726 reg &= ~GITS_BASER_RO_MASK; 1727 reg &= ~clearbits; 1728 1729 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1730 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1731 reg = vgic_sanitise_its_baser(reg); 1732 1733 *regptr = reg; 1734 1735 if (!(reg & GITS_BASER_VALID)) { 1736 /* Take the its_lock to prevent a race with a save/restore */ 1737 mutex_lock(&its->its_lock); 1738 switch (table_type) { 1739 case GITS_BASER_TYPE_DEVICE: 1740 vgic_its_free_device_list(kvm, its); 1741 break; 1742 case GITS_BASER_TYPE_COLLECTION: 1743 vgic_its_free_collection_list(kvm, its); 1744 break; 1745 } 1746 mutex_unlock(&its->its_lock); 1747 } 1748 } 1749 1750 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1751 struct vgic_its *its, 1752 gpa_t addr, unsigned int len) 1753 { 1754 u32 reg = 0; 1755 1756 mutex_lock(&its->cmd_lock); 1757 if (its->creadr == its->cwriter) 1758 reg |= GITS_CTLR_QUIESCENT; 1759 if (its->enabled) 1760 reg |= GITS_CTLR_ENABLE; 1761 mutex_unlock(&its->cmd_lock); 1762 1763 return reg; 1764 } 1765 1766 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1767 gpa_t addr, unsigned int len, 1768 unsigned long val) 1769 { 1770 mutex_lock(&its->cmd_lock); 1771 1772 /* 1773 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1774 * device/collection BASER are invalid 1775 */ 1776 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1777 (!(its->baser_device_table & GITS_BASER_VALID) || 1778 !(its->baser_coll_table & GITS_BASER_VALID) || 1779 !(its->cbaser & GITS_CBASER_VALID))) 1780 goto out; 1781 1782 its->enabled = !!(val & GITS_CTLR_ENABLE); 1783 if (!its->enabled) 1784 vgic_its_invalidate_cache(kvm); 1785 1786 /* 1787 * Try to process any pending commands. This function bails out early 1788 * if the ITS is disabled or no commands have been queued. 1789 */ 1790 vgic_its_process_commands(kvm, its); 1791 1792 out: 1793 mutex_unlock(&its->cmd_lock); 1794 } 1795 1796 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1797 { \ 1798 .reg_offset = off, \ 1799 .len = length, \ 1800 .access_flags = acc, \ 1801 .its_read = rd, \ 1802 .its_write = wr, \ 1803 } 1804 1805 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1806 { \ 1807 .reg_offset = off, \ 1808 .len = length, \ 1809 .access_flags = acc, \ 1810 .its_read = rd, \ 1811 .its_write = wr, \ 1812 .uaccess_its_write = uwr, \ 1813 } 1814 1815 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1816 gpa_t addr, unsigned int len, unsigned long val) 1817 { 1818 /* Ignore */ 1819 } 1820 1821 static struct vgic_register_region its_registers[] = { 1822 REGISTER_ITS_DESC(GITS_CTLR, 1823 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1824 VGIC_ACCESS_32bit), 1825 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1826 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1827 vgic_mmio_uaccess_write_its_iidr, 4, 1828 VGIC_ACCESS_32bit), 1829 REGISTER_ITS_DESC(GITS_TYPER, 1830 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1831 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1832 REGISTER_ITS_DESC(GITS_CBASER, 1833 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1834 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1835 REGISTER_ITS_DESC(GITS_CWRITER, 1836 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1837 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1838 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1839 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1840 vgic_mmio_uaccess_write_its_creadr, 8, 1841 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1842 REGISTER_ITS_DESC(GITS_BASER, 1843 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1844 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1845 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1846 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1847 VGIC_ACCESS_32bit), 1848 }; 1849 1850 /* This is called on setting the LPI enable bit in the redistributor. */ 1851 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1852 { 1853 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1854 its_sync_lpi_pending_table(vcpu); 1855 } 1856 1857 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1858 u64 addr) 1859 { 1860 struct vgic_io_device *iodev = &its->iodev; 1861 int ret; 1862 1863 mutex_lock(&kvm->slots_lock); 1864 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1865 ret = -EBUSY; 1866 goto out; 1867 } 1868 1869 its->vgic_its_base = addr; 1870 iodev->regions = its_registers; 1871 iodev->nr_regions = ARRAY_SIZE(its_registers); 1872 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1873 1874 iodev->base_addr = its->vgic_its_base; 1875 iodev->iodev_type = IODEV_ITS; 1876 iodev->its = its; 1877 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1878 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1879 out: 1880 mutex_unlock(&kvm->slots_lock); 1881 1882 return ret; 1883 } 1884 1885 /* Default is 16 cached LPIs per vcpu */ 1886 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1887 1888 void vgic_lpi_translation_cache_init(struct kvm *kvm) 1889 { 1890 struct vgic_dist *dist = &kvm->arch.vgic; 1891 unsigned int sz; 1892 int i; 1893 1894 if (!list_empty(&dist->lpi_translation_cache)) 1895 return; 1896 1897 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1898 1899 for (i = 0; i < sz; i++) { 1900 struct vgic_translation_cache_entry *cte; 1901 1902 /* An allocation failure is not fatal */ 1903 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT); 1904 if (WARN_ON(!cte)) 1905 break; 1906 1907 INIT_LIST_HEAD(&cte->entry); 1908 list_add(&cte->entry, &dist->lpi_translation_cache); 1909 } 1910 } 1911 1912 void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1913 { 1914 struct vgic_dist *dist = &kvm->arch.vgic; 1915 struct vgic_translation_cache_entry *cte, *tmp; 1916 1917 vgic_its_invalidate_cache(kvm); 1918 1919 list_for_each_entry_safe(cte, tmp, 1920 &dist->lpi_translation_cache, entry) { 1921 list_del(&cte->entry); 1922 kfree(cte); 1923 } 1924 } 1925 1926 #define INITIAL_BASER_VALUE \ 1927 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1928 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1929 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1930 GITS_BASER_PAGE_SIZE_64K) 1931 1932 #define INITIAL_PROPBASER_VALUE \ 1933 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1934 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1935 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1936 1937 static int vgic_its_create(struct kvm_device *dev, u32 type) 1938 { 1939 struct vgic_its *its; 1940 1941 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1942 return -ENODEV; 1943 1944 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1945 if (!its) 1946 return -ENOMEM; 1947 1948 if (vgic_initialized(dev->kvm)) { 1949 int ret = vgic_v4_init(dev->kvm); 1950 if (ret < 0) { 1951 kfree(its); 1952 return ret; 1953 } 1954 1955 vgic_lpi_translation_cache_init(dev->kvm); 1956 } 1957 1958 mutex_init(&its->its_lock); 1959 mutex_init(&its->cmd_lock); 1960 1961 /* Yep, even more trickery for lock ordering... */ 1962 #ifdef CONFIG_LOCKDEP 1963 mutex_lock(&dev->kvm->arch.config_lock); 1964 mutex_lock(&its->cmd_lock); 1965 mutex_lock(&its->its_lock); 1966 mutex_unlock(&its->its_lock); 1967 mutex_unlock(&its->cmd_lock); 1968 mutex_unlock(&dev->kvm->arch.config_lock); 1969 #endif 1970 1971 its->vgic_its_base = VGIC_ADDR_UNDEF; 1972 1973 INIT_LIST_HEAD(&its->device_list); 1974 INIT_LIST_HEAD(&its->collection_list); 1975 1976 dev->kvm->arch.vgic.msis_require_devid = true; 1977 dev->kvm->arch.vgic.has_its = true; 1978 its->enabled = false; 1979 its->dev = dev; 1980 1981 its->baser_device_table = INITIAL_BASER_VALUE | 1982 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1983 its->baser_coll_table = INITIAL_BASER_VALUE | 1984 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1985 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1986 1987 dev->private = its; 1988 1989 return vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1990 } 1991 1992 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1993 { 1994 struct kvm *kvm = kvm_dev->kvm; 1995 struct vgic_its *its = kvm_dev->private; 1996 1997 mutex_lock(&its->its_lock); 1998 1999 vgic_its_free_device_list(kvm, its); 2000 vgic_its_free_collection_list(kvm, its); 2001 2002 mutex_unlock(&its->its_lock); 2003 kfree(its); 2004 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 2005 } 2006 2007 static int vgic_its_has_attr_regs(struct kvm_device *dev, 2008 struct kvm_device_attr *attr) 2009 { 2010 const struct vgic_register_region *region; 2011 gpa_t offset = attr->attr; 2012 int align; 2013 2014 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 2015 2016 if (offset & align) 2017 return -EINVAL; 2018 2019 region = vgic_find_mmio_region(its_registers, 2020 ARRAY_SIZE(its_registers), 2021 offset); 2022 if (!region) 2023 return -ENXIO; 2024 2025 return 0; 2026 } 2027 2028 static int vgic_its_attr_regs_access(struct kvm_device *dev, 2029 struct kvm_device_attr *attr, 2030 u64 *reg, bool is_write) 2031 { 2032 const struct vgic_register_region *region; 2033 struct vgic_its *its; 2034 gpa_t addr, offset; 2035 unsigned int len; 2036 int align, ret = 0; 2037 2038 its = dev->private; 2039 offset = attr->attr; 2040 2041 /* 2042 * Although the spec supports upper/lower 32-bit accesses to 2043 * 64-bit ITS registers, the userspace ABI requires 64-bit 2044 * accesses to all 64-bit wide registers. We therefore only 2045 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 2046 * registers 2047 */ 2048 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 2049 align = 0x3; 2050 else 2051 align = 0x7; 2052 2053 if (offset & align) 2054 return -EINVAL; 2055 2056 mutex_lock(&dev->kvm->lock); 2057 2058 if (!lock_all_vcpus(dev->kvm)) { 2059 mutex_unlock(&dev->kvm->lock); 2060 return -EBUSY; 2061 } 2062 2063 mutex_lock(&dev->kvm->arch.config_lock); 2064 2065 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 2066 ret = -ENXIO; 2067 goto out; 2068 } 2069 2070 region = vgic_find_mmio_region(its_registers, 2071 ARRAY_SIZE(its_registers), 2072 offset); 2073 if (!region) { 2074 ret = -ENXIO; 2075 goto out; 2076 } 2077 2078 addr = its->vgic_its_base + offset; 2079 2080 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2081 2082 if (is_write) { 2083 if (region->uaccess_its_write) 2084 ret = region->uaccess_its_write(dev->kvm, its, addr, 2085 len, *reg); 2086 else 2087 region->its_write(dev->kvm, its, addr, len, *reg); 2088 } else { 2089 *reg = region->its_read(dev->kvm, its, addr, len); 2090 } 2091 out: 2092 mutex_unlock(&dev->kvm->arch.config_lock); 2093 unlock_all_vcpus(dev->kvm); 2094 mutex_unlock(&dev->kvm->lock); 2095 return ret; 2096 } 2097 2098 static u32 compute_next_devid_offset(struct list_head *h, 2099 struct its_device *dev) 2100 { 2101 struct its_device *next; 2102 u32 next_offset; 2103 2104 if (list_is_last(&dev->dev_list, h)) 2105 return 0; 2106 next = list_next_entry(dev, dev_list); 2107 next_offset = next->device_id - dev->device_id; 2108 2109 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2110 } 2111 2112 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2113 { 2114 struct its_ite *next; 2115 u32 next_offset; 2116 2117 if (list_is_last(&ite->ite_list, h)) 2118 return 0; 2119 next = list_next_entry(ite, ite_list); 2120 next_offset = next->event_id - ite->event_id; 2121 2122 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2123 } 2124 2125 /** 2126 * entry_fn_t - Callback called on a table entry restore path 2127 * @its: its handle 2128 * @id: id of the entry 2129 * @entry: pointer to the entry 2130 * @opaque: pointer to an opaque data 2131 * 2132 * Return: < 0 on error, 0 if last element was identified, id offset to next 2133 * element otherwise 2134 */ 2135 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2136 void *opaque); 2137 2138 /** 2139 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2140 * to each entry 2141 * 2142 * @its: its handle 2143 * @base: base gpa of the table 2144 * @size: size of the table in bytes 2145 * @esz: entry size in bytes 2146 * @start_id: the ID of the first entry in the table 2147 * (non zero for 2d level tables) 2148 * @fn: function to apply on each entry 2149 * 2150 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2151 * (the last element may not be found on second level tables) 2152 */ 2153 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2154 int start_id, entry_fn_t fn, void *opaque) 2155 { 2156 struct kvm *kvm = its->dev->kvm; 2157 unsigned long len = size; 2158 int id = start_id; 2159 gpa_t gpa = base; 2160 char entry[ESZ_MAX]; 2161 int ret; 2162 2163 memset(entry, 0, esz); 2164 2165 while (true) { 2166 int next_offset; 2167 size_t byte_offset; 2168 2169 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2170 if (ret) 2171 return ret; 2172 2173 next_offset = fn(its, id, entry, opaque); 2174 if (next_offset <= 0) 2175 return next_offset; 2176 2177 byte_offset = next_offset * esz; 2178 if (byte_offset >= len) 2179 break; 2180 2181 id += next_offset; 2182 gpa += byte_offset; 2183 len -= byte_offset; 2184 } 2185 return 1; 2186 } 2187 2188 /** 2189 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2190 */ 2191 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2192 struct its_ite *ite, gpa_t gpa, int ite_esz) 2193 { 2194 struct kvm *kvm = its->dev->kvm; 2195 u32 next_offset; 2196 u64 val; 2197 2198 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2199 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2200 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2201 ite->collection->collection_id; 2202 val = cpu_to_le64(val); 2203 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz); 2204 } 2205 2206 /** 2207 * vgic_its_restore_ite - restore an interrupt translation entry 2208 * @event_id: id used for indexing 2209 * @ptr: pointer to the ITE entry 2210 * @opaque: pointer to the its_device 2211 */ 2212 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2213 void *ptr, void *opaque) 2214 { 2215 struct its_device *dev = opaque; 2216 struct its_collection *collection; 2217 struct kvm *kvm = its->dev->kvm; 2218 struct kvm_vcpu *vcpu = NULL; 2219 u64 val; 2220 u64 *p = (u64 *)ptr; 2221 struct vgic_irq *irq; 2222 u32 coll_id, lpi_id; 2223 struct its_ite *ite; 2224 u32 offset; 2225 2226 val = *p; 2227 2228 val = le64_to_cpu(val); 2229 2230 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2231 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2232 2233 if (!lpi_id) 2234 return 1; /* invalid entry, no choice but to scan next entry */ 2235 2236 if (lpi_id < VGIC_MIN_LPI) 2237 return -EINVAL; 2238 2239 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2240 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2241 return -EINVAL; 2242 2243 collection = find_collection(its, coll_id); 2244 if (!collection) 2245 return -EINVAL; 2246 2247 if (!vgic_its_check_event_id(its, dev, event_id)) 2248 return -EINVAL; 2249 2250 ite = vgic_its_alloc_ite(dev, collection, event_id); 2251 if (IS_ERR(ite)) 2252 return PTR_ERR(ite); 2253 2254 if (its_is_collection_mapped(collection)) 2255 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 2256 2257 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2258 if (IS_ERR(irq)) { 2259 its_free_ite(kvm, ite); 2260 return PTR_ERR(irq); 2261 } 2262 ite->irq = irq; 2263 2264 return offset; 2265 } 2266 2267 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2268 const struct list_head *b) 2269 { 2270 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2271 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2272 2273 if (itea->event_id < iteb->event_id) 2274 return -1; 2275 else 2276 return 1; 2277 } 2278 2279 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2280 { 2281 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2282 gpa_t base = device->itt_addr; 2283 struct its_ite *ite; 2284 int ret; 2285 int ite_esz = abi->ite_esz; 2286 2287 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2288 2289 list_for_each_entry(ite, &device->itt_head, ite_list) { 2290 gpa_t gpa = base + ite->event_id * ite_esz; 2291 2292 /* 2293 * If an LPI carries the HW bit, this means that this 2294 * interrupt is controlled by GICv4, and we do not 2295 * have direct access to that state without GICv4.1. 2296 * Let's simply fail the save operation... 2297 */ 2298 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2299 return -EACCES; 2300 2301 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2302 if (ret) 2303 return ret; 2304 } 2305 return 0; 2306 } 2307 2308 /** 2309 * vgic_its_restore_itt - restore the ITT of a device 2310 * 2311 * @its: its handle 2312 * @dev: device handle 2313 * 2314 * Return 0 on success, < 0 on error 2315 */ 2316 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2317 { 2318 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2319 gpa_t base = dev->itt_addr; 2320 int ret; 2321 int ite_esz = abi->ite_esz; 2322 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2323 2324 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2325 vgic_its_restore_ite, dev); 2326 2327 /* scan_its_table returns +1 if all ITEs are invalid */ 2328 if (ret > 0) 2329 ret = 0; 2330 2331 return ret; 2332 } 2333 2334 /** 2335 * vgic_its_save_dte - Save a device table entry at a given GPA 2336 * 2337 * @its: ITS handle 2338 * @dev: ITS device 2339 * @ptr: GPA 2340 */ 2341 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2342 gpa_t ptr, int dte_esz) 2343 { 2344 struct kvm *kvm = its->dev->kvm; 2345 u64 val, itt_addr_field; 2346 u32 next_offset; 2347 2348 itt_addr_field = dev->itt_addr >> 8; 2349 next_offset = compute_next_devid_offset(&its->device_list, dev); 2350 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2351 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2352 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2353 (dev->num_eventid_bits - 1)); 2354 val = cpu_to_le64(val); 2355 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz); 2356 } 2357 2358 /** 2359 * vgic_its_restore_dte - restore a device table entry 2360 * 2361 * @its: its handle 2362 * @id: device id the DTE corresponds to 2363 * @ptr: kernel VA where the 8 byte DTE is located 2364 * @opaque: unused 2365 * 2366 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2367 * next dte otherwise 2368 */ 2369 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2370 void *ptr, void *opaque) 2371 { 2372 struct its_device *dev; 2373 u64 baser = its->baser_device_table; 2374 gpa_t itt_addr; 2375 u8 num_eventid_bits; 2376 u64 entry = *(u64 *)ptr; 2377 bool valid; 2378 u32 offset; 2379 int ret; 2380 2381 entry = le64_to_cpu(entry); 2382 2383 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2384 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2385 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2386 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2387 2388 if (!valid) 2389 return 1; 2390 2391 /* dte entry is valid */ 2392 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2393 2394 if (!vgic_its_check_id(its, baser, id, NULL)) 2395 return -EINVAL; 2396 2397 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2398 if (IS_ERR(dev)) 2399 return PTR_ERR(dev); 2400 2401 ret = vgic_its_restore_itt(its, dev); 2402 if (ret) { 2403 vgic_its_free_device(its->dev->kvm, dev); 2404 return ret; 2405 } 2406 2407 return offset; 2408 } 2409 2410 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2411 const struct list_head *b) 2412 { 2413 struct its_device *deva = container_of(a, struct its_device, dev_list); 2414 struct its_device *devb = container_of(b, struct its_device, dev_list); 2415 2416 if (deva->device_id < devb->device_id) 2417 return -1; 2418 else 2419 return 1; 2420 } 2421 2422 /** 2423 * vgic_its_save_device_tables - Save the device table and all ITT 2424 * into guest RAM 2425 * 2426 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2427 * returns the GPA of the device entry 2428 */ 2429 static int vgic_its_save_device_tables(struct vgic_its *its) 2430 { 2431 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2432 u64 baser = its->baser_device_table; 2433 struct its_device *dev; 2434 int dte_esz = abi->dte_esz; 2435 2436 if (!(baser & GITS_BASER_VALID)) 2437 return 0; 2438 2439 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2440 2441 list_for_each_entry(dev, &its->device_list, dev_list) { 2442 int ret; 2443 gpa_t eaddr; 2444 2445 if (!vgic_its_check_id(its, baser, 2446 dev->device_id, &eaddr)) 2447 return -EINVAL; 2448 2449 ret = vgic_its_save_itt(its, dev); 2450 if (ret) 2451 return ret; 2452 2453 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2454 if (ret) 2455 return ret; 2456 } 2457 return 0; 2458 } 2459 2460 /** 2461 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2462 * 2463 * @its: its handle 2464 * @id: index of the entry in the L1 table 2465 * @addr: kernel VA 2466 * @opaque: unused 2467 * 2468 * L1 table entries are scanned by steps of 1 entry 2469 * Return < 0 if error, 0 if last dte was found when scanning the L2 2470 * table, +1 otherwise (meaning next L1 entry must be scanned) 2471 */ 2472 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2473 void *opaque) 2474 { 2475 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2476 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2477 u64 entry = *(u64 *)addr; 2478 int dte_esz = abi->dte_esz; 2479 gpa_t gpa; 2480 int ret; 2481 2482 entry = le64_to_cpu(entry); 2483 2484 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2485 return 1; 2486 2487 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2488 2489 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2490 l2_start_id, vgic_its_restore_dte, NULL); 2491 2492 return ret; 2493 } 2494 2495 /** 2496 * vgic_its_restore_device_tables - Restore the device table and all ITT 2497 * from guest RAM to internal data structs 2498 */ 2499 static int vgic_its_restore_device_tables(struct vgic_its *its) 2500 { 2501 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2502 u64 baser = its->baser_device_table; 2503 int l1_esz, ret; 2504 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2505 gpa_t l1_gpa; 2506 2507 if (!(baser & GITS_BASER_VALID)) 2508 return 0; 2509 2510 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2511 2512 if (baser & GITS_BASER_INDIRECT) { 2513 l1_esz = GITS_LVL1_ENTRY_SIZE; 2514 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2515 handle_l1_dte, NULL); 2516 } else { 2517 l1_esz = abi->dte_esz; 2518 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2519 vgic_its_restore_dte, NULL); 2520 } 2521 2522 /* scan_its_table returns +1 if all entries are invalid */ 2523 if (ret > 0) 2524 ret = 0; 2525 2526 if (ret < 0) 2527 vgic_its_free_device_list(its->dev->kvm, its); 2528 2529 return ret; 2530 } 2531 2532 static int vgic_its_save_cte(struct vgic_its *its, 2533 struct its_collection *collection, 2534 gpa_t gpa, int esz) 2535 { 2536 u64 val; 2537 2538 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2539 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2540 collection->collection_id); 2541 val = cpu_to_le64(val); 2542 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2543 } 2544 2545 /* 2546 * Restore a collection entry into the ITS collection table. 2547 * Return +1 on success, 0 if the entry was invalid (which should be 2548 * interpreted as end-of-table), and a negative error value for generic errors. 2549 */ 2550 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2551 { 2552 struct its_collection *collection; 2553 struct kvm *kvm = its->dev->kvm; 2554 u32 target_addr, coll_id; 2555 u64 val; 2556 int ret; 2557 2558 BUG_ON(esz > sizeof(val)); 2559 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2560 if (ret) 2561 return ret; 2562 val = le64_to_cpu(val); 2563 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2564 return 0; 2565 2566 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2567 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2568 2569 if (target_addr != COLLECTION_NOT_MAPPED && 2570 target_addr >= atomic_read(&kvm->online_vcpus)) 2571 return -EINVAL; 2572 2573 collection = find_collection(its, coll_id); 2574 if (collection) 2575 return -EEXIST; 2576 2577 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2578 return -EINVAL; 2579 2580 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2581 if (ret) 2582 return ret; 2583 collection->target_addr = target_addr; 2584 return 1; 2585 } 2586 2587 /** 2588 * vgic_its_save_collection_table - Save the collection table into 2589 * guest RAM 2590 */ 2591 static int vgic_its_save_collection_table(struct vgic_its *its) 2592 { 2593 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2594 u64 baser = its->baser_coll_table; 2595 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2596 struct its_collection *collection; 2597 u64 val; 2598 size_t max_size, filled = 0; 2599 int ret, cte_esz = abi->cte_esz; 2600 2601 if (!(baser & GITS_BASER_VALID)) 2602 return 0; 2603 2604 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2605 2606 list_for_each_entry(collection, &its->collection_list, coll_list) { 2607 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2608 if (ret) 2609 return ret; 2610 gpa += cte_esz; 2611 filled += cte_esz; 2612 } 2613 2614 if (filled == max_size) 2615 return 0; 2616 2617 /* 2618 * table is not fully filled, add a last dummy element 2619 * with valid bit unset 2620 */ 2621 val = 0; 2622 BUG_ON(cte_esz > sizeof(val)); 2623 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2624 return ret; 2625 } 2626 2627 /** 2628 * vgic_its_restore_collection_table - reads the collection table 2629 * in guest memory and restores the ITS internal state. Requires the 2630 * BASER registers to be restored before. 2631 */ 2632 static int vgic_its_restore_collection_table(struct vgic_its *its) 2633 { 2634 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2635 u64 baser = its->baser_coll_table; 2636 int cte_esz = abi->cte_esz; 2637 size_t max_size, read = 0; 2638 gpa_t gpa; 2639 int ret; 2640 2641 if (!(baser & GITS_BASER_VALID)) 2642 return 0; 2643 2644 gpa = GITS_BASER_ADDR_48_to_52(baser); 2645 2646 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2647 2648 while (read < max_size) { 2649 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2650 if (ret <= 0) 2651 break; 2652 gpa += cte_esz; 2653 read += cte_esz; 2654 } 2655 2656 if (ret > 0) 2657 return 0; 2658 2659 if (ret < 0) 2660 vgic_its_free_collection_list(its->dev->kvm, its); 2661 2662 return ret; 2663 } 2664 2665 /** 2666 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2667 * according to v0 ABI 2668 */ 2669 static int vgic_its_save_tables_v0(struct vgic_its *its) 2670 { 2671 int ret; 2672 2673 ret = vgic_its_save_device_tables(its); 2674 if (ret) 2675 return ret; 2676 2677 return vgic_its_save_collection_table(its); 2678 } 2679 2680 /** 2681 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2682 * to internal data structs according to V0 ABI 2683 * 2684 */ 2685 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2686 { 2687 int ret; 2688 2689 ret = vgic_its_restore_collection_table(its); 2690 if (ret) 2691 return ret; 2692 2693 ret = vgic_its_restore_device_tables(its); 2694 if (ret) 2695 vgic_its_free_collection_list(its->dev->kvm, its); 2696 return ret; 2697 } 2698 2699 static int vgic_its_commit_v0(struct vgic_its *its) 2700 { 2701 const struct vgic_its_abi *abi; 2702 2703 abi = vgic_its_get_abi(its); 2704 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2705 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2706 2707 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2708 << GITS_BASER_ENTRY_SIZE_SHIFT); 2709 2710 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2711 << GITS_BASER_ENTRY_SIZE_SHIFT); 2712 return 0; 2713 } 2714 2715 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2716 { 2717 /* We need to keep the ABI specific field values */ 2718 its->baser_coll_table &= ~GITS_BASER_VALID; 2719 its->baser_device_table &= ~GITS_BASER_VALID; 2720 its->cbaser = 0; 2721 its->creadr = 0; 2722 its->cwriter = 0; 2723 its->enabled = 0; 2724 vgic_its_free_device_list(kvm, its); 2725 vgic_its_free_collection_list(kvm, its); 2726 } 2727 2728 static int vgic_its_has_attr(struct kvm_device *dev, 2729 struct kvm_device_attr *attr) 2730 { 2731 switch (attr->group) { 2732 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2733 switch (attr->attr) { 2734 case KVM_VGIC_ITS_ADDR_TYPE: 2735 return 0; 2736 } 2737 break; 2738 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2739 switch (attr->attr) { 2740 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2741 return 0; 2742 case KVM_DEV_ARM_ITS_CTRL_RESET: 2743 return 0; 2744 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2745 return 0; 2746 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2747 return 0; 2748 } 2749 break; 2750 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2751 return vgic_its_has_attr_regs(dev, attr); 2752 } 2753 return -ENXIO; 2754 } 2755 2756 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2757 { 2758 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2759 int ret = 0; 2760 2761 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2762 return 0; 2763 2764 mutex_lock(&kvm->lock); 2765 2766 if (!lock_all_vcpus(kvm)) { 2767 mutex_unlock(&kvm->lock); 2768 return -EBUSY; 2769 } 2770 2771 mutex_lock(&kvm->arch.config_lock); 2772 mutex_lock(&its->its_lock); 2773 2774 switch (attr) { 2775 case KVM_DEV_ARM_ITS_CTRL_RESET: 2776 vgic_its_reset(kvm, its); 2777 break; 2778 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2779 ret = abi->save_tables(its); 2780 break; 2781 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2782 ret = abi->restore_tables(its); 2783 break; 2784 } 2785 2786 mutex_unlock(&its->its_lock); 2787 mutex_unlock(&kvm->arch.config_lock); 2788 unlock_all_vcpus(kvm); 2789 mutex_unlock(&kvm->lock); 2790 return ret; 2791 } 2792 2793 /* 2794 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2795 * without the running VCPU when dirty ring is enabled. 2796 * 2797 * The running VCPU is required to track dirty guest pages when dirty ring 2798 * is enabled. Otherwise, the backup bitmap should be used to track the 2799 * dirty guest pages. When vgic/its tables are being saved, the backup 2800 * bitmap is used to track the dirty guest pages due to the missed running 2801 * VCPU in the period. 2802 */ 2803 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2804 { 2805 struct vgic_dist *dist = &kvm->arch.vgic; 2806 2807 return dist->table_write_in_progress; 2808 } 2809 2810 static int vgic_its_set_attr(struct kvm_device *dev, 2811 struct kvm_device_attr *attr) 2812 { 2813 struct vgic_its *its = dev->private; 2814 int ret; 2815 2816 switch (attr->group) { 2817 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2818 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2819 unsigned long type = (unsigned long)attr->attr; 2820 u64 addr; 2821 2822 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2823 return -ENODEV; 2824 2825 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2826 return -EFAULT; 2827 2828 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2829 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2830 if (ret) 2831 return ret; 2832 2833 return vgic_register_its_iodev(dev->kvm, its, addr); 2834 } 2835 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2836 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2837 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2838 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2839 u64 reg; 2840 2841 if (get_user(reg, uaddr)) 2842 return -EFAULT; 2843 2844 return vgic_its_attr_regs_access(dev, attr, ®, true); 2845 } 2846 } 2847 return -ENXIO; 2848 } 2849 2850 static int vgic_its_get_attr(struct kvm_device *dev, 2851 struct kvm_device_attr *attr) 2852 { 2853 switch (attr->group) { 2854 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2855 struct vgic_its *its = dev->private; 2856 u64 addr = its->vgic_its_base; 2857 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2858 unsigned long type = (unsigned long)attr->attr; 2859 2860 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2861 return -ENODEV; 2862 2863 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2864 return -EFAULT; 2865 break; 2866 } 2867 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2868 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2869 u64 reg; 2870 int ret; 2871 2872 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2873 if (ret) 2874 return ret; 2875 return put_user(reg, uaddr); 2876 } 2877 default: 2878 return -ENXIO; 2879 } 2880 2881 return 0; 2882 } 2883 2884 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2885 .name = "kvm-arm-vgic-its", 2886 .create = vgic_its_create, 2887 .destroy = vgic_its_destroy, 2888 .set_attr = vgic_its_set_attr, 2889 .get_attr = vgic_its_get_attr, 2890 .has_attr = vgic_its_has_attr, 2891 }; 2892 2893 int kvm_vgic_register_its_device(void) 2894 { 2895 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2896 KVM_DEV_TYPE_ARM_VGIC_ITS); 2897 } 2898