1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static int vgic_its_save_tables_v0(struct vgic_its *its); 27 static int vgic_its_restore_tables_v0(struct vgic_its *its); 28 static int vgic_its_commit_v0(struct vgic_its *its); 29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32 /* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41 { 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92 out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116 } 117 118 struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126 }; 127 128 #define COLLECTION_NOT_MAPPED ((u32)~0) 129 130 struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135 }; 136 137 #define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140 struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146 }; 147 148 struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154 }; 155 156 /** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167 struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174 }; 175 176 #define ABI_0_ESZ 8 177 #define ESZ_MAX ABI_0_ESZ 178 179 static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188 }; 189 190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193 { 194 return &its_table_abi_versions[its->abi_rev]; 195 } 196 197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198 { 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204 } 205 206 /* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211 { 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219 } 220 221 /* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228 { 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241 } 242 243 /* To be used as an iterator this macro misses the enclosing parentheses */ 244 #define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248 #define GIC_LPI_OFFSET 8192 249 250 #define VITS_TYPER_IDBITS 16 251 #define VITS_TYPER_DEVBITS 16 252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255 /* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260 { 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269 } 270 271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274 /* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282 { 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312 } 313 314 /* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320 { 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352 } 353 354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355 { 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379 } 380 381 /* 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 383 * is targeting) to the VGIC's view, which deals with target VCPUs. 384 * Needs to be called whenever either the collection for a LPIs has 385 * changed or the collection itself got retargeted. 386 */ 387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 388 { 389 struct kvm_vcpu *vcpu; 390 391 if (!its_is_collection_mapped(ite->collection)) 392 return; 393 394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 395 update_affinity(ite->irq, vcpu); 396 } 397 398 /* 399 * Updates the target VCPU for every LPI targeting this collection. 400 * Must be called with the its_lock mutex held. 401 */ 402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 403 struct its_collection *coll) 404 { 405 struct its_device *device; 406 struct its_ite *ite; 407 408 for_each_lpi_its(device, ite, its) { 409 if (!ite->collection || coll != ite->collection) 410 continue; 411 412 update_affinity_ite(kvm, ite); 413 } 414 } 415 416 static u32 max_lpis_propbaser(u64 propbaser) 417 { 418 int nr_idbits = (propbaser & 0x1f) + 1; 419 420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 421 } 422 423 /* 424 * Sync the pending table pending bit of LPIs targeting @vcpu 425 * with our own data structures. This relies on the LPI being 426 * mapped before. 427 */ 428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 429 { 430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 431 struct vgic_irq *irq; 432 int last_byte_offset = -1; 433 int ret = 0; 434 u32 *intids; 435 int nr_irqs, i; 436 unsigned long flags; 437 u8 pendmask; 438 439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 440 if (nr_irqs < 0) 441 return nr_irqs; 442 443 for (i = 0; i < nr_irqs; i++) { 444 int byte_offset, bit_nr; 445 446 byte_offset = intids[i] / BITS_PER_BYTE; 447 bit_nr = intids[i] % BITS_PER_BYTE; 448 449 /* 450 * For contiguously allocated LPIs chances are we just read 451 * this very same byte in the last iteration. Reuse that. 452 */ 453 if (byte_offset != last_byte_offset) { 454 ret = kvm_read_guest_lock(vcpu->kvm, 455 pendbase + byte_offset, 456 &pendmask, 1); 457 if (ret) { 458 kfree(intids); 459 return ret; 460 } 461 last_byte_offset = byte_offset; 462 } 463 464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 465 raw_spin_lock_irqsave(&irq->irq_lock, flags); 466 irq->pending_latch = pendmask & (1U << bit_nr); 467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 468 vgic_put_irq(vcpu->kvm, irq); 469 } 470 471 kfree(intids); 472 473 return ret; 474 } 475 476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 477 struct vgic_its *its, 478 gpa_t addr, unsigned int len) 479 { 480 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 481 u64 reg = GITS_TYPER_PLPIS; 482 483 /* 484 * We use linear CPU numbers for redistributor addressing, 485 * so GITS_TYPER.PTA is 0. 486 * Also we force all PROPBASER registers to be the same, so 487 * CommonLPIAff is 0 as well. 488 * To avoid memory waste in the guest, we keep the number of IDBits and 489 * DevBits low - as least for the time being. 490 */ 491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 494 495 return extract_bytes(reg, addr & 7, len); 496 } 497 498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 499 struct vgic_its *its, 500 gpa_t addr, unsigned int len) 501 { 502 u32 val; 503 504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 506 return val; 507 } 508 509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 510 struct vgic_its *its, 511 gpa_t addr, unsigned int len, 512 unsigned long val) 513 { 514 u32 rev = GITS_IIDR_REV(val); 515 516 if (rev >= NR_ITS_ABIS) 517 return -EINVAL; 518 return vgic_its_set_abi(its, rev); 519 } 520 521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 522 struct vgic_its *its, 523 gpa_t addr, unsigned int len) 524 { 525 switch (addr & 0xffff) { 526 case GITS_PIDR0: 527 return 0x92; /* part number, bits[7:0] */ 528 case GITS_PIDR1: 529 return 0xb4; /* part number, bits[11:8] */ 530 case GITS_PIDR2: 531 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 532 case GITS_PIDR4: 533 return 0x40; /* This is a 64K software visible page */ 534 /* The following are the ID registers for (any) GIC. */ 535 case GITS_CIDR0: 536 return 0x0d; 537 case GITS_CIDR1: 538 return 0xf0; 539 case GITS_CIDR2: 540 return 0x05; 541 case GITS_CIDR3: 542 return 0xb1; 543 } 544 545 return 0; 546 } 547 548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 549 phys_addr_t db, 550 u32 devid, u32 eventid) 551 { 552 struct vgic_translation_cache_entry *cte; 553 554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 555 /* 556 * If we hit a NULL entry, there is nothing after this 557 * point. 558 */ 559 if (!cte->irq) 560 break; 561 562 if (cte->db != db || cte->devid != devid || 563 cte->eventid != eventid) 564 continue; 565 566 /* 567 * Move this entry to the head, as it is the most 568 * recently used. 569 */ 570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 571 list_move(&cte->entry, &dist->lpi_translation_cache); 572 573 return cte->irq; 574 } 575 576 return NULL; 577 } 578 579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 580 u32 devid, u32 eventid) 581 { 582 struct vgic_dist *dist = &kvm->arch.vgic; 583 struct vgic_irq *irq; 584 unsigned long flags; 585 586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 587 irq = __vgic_its_check_cache(dist, db, devid, eventid); 588 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 589 590 return irq; 591 } 592 593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 594 u32 devid, u32 eventid, 595 struct vgic_irq *irq) 596 { 597 struct vgic_dist *dist = &kvm->arch.vgic; 598 struct vgic_translation_cache_entry *cte; 599 unsigned long flags; 600 phys_addr_t db; 601 602 /* Do not cache a directly injected interrupt */ 603 if (irq->hw) 604 return; 605 606 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 607 608 if (unlikely(list_empty(&dist->lpi_translation_cache))) 609 goto out; 610 611 /* 612 * We could have raced with another CPU caching the same 613 * translation behind our back, so let's check it is not in 614 * already 615 */ 616 db = its->vgic_its_base + GITS_TRANSLATER; 617 if (__vgic_its_check_cache(dist, db, devid, eventid)) 618 goto out; 619 620 /* Always reuse the last entry (LRU policy) */ 621 cte = list_last_entry(&dist->lpi_translation_cache, 622 typeof(*cte), entry); 623 624 /* 625 * Caching the translation implies having an extra reference 626 * to the interrupt, so drop the potential reference on what 627 * was in the cache, and increment it on the new interrupt. 628 */ 629 if (cte->irq) 630 __vgic_put_lpi_locked(kvm, cte->irq); 631 632 vgic_get_irq_kref(irq); 633 634 cte->db = db; 635 cte->devid = devid; 636 cte->eventid = eventid; 637 cte->irq = irq; 638 639 /* Move the new translation to the head of the list */ 640 list_move(&cte->entry, &dist->lpi_translation_cache); 641 642 out: 643 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 644 } 645 646 void vgic_its_invalidate_cache(struct kvm *kvm) 647 { 648 struct vgic_dist *dist = &kvm->arch.vgic; 649 struct vgic_translation_cache_entry *cte; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 653 654 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 655 /* 656 * If we hit a NULL entry, there is nothing after this 657 * point. 658 */ 659 if (!cte->irq) 660 break; 661 662 __vgic_put_lpi_locked(kvm, cte->irq); 663 cte->irq = NULL; 664 } 665 666 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 667 } 668 669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 670 u32 devid, u32 eventid, struct vgic_irq **irq) 671 { 672 struct kvm_vcpu *vcpu; 673 struct its_ite *ite; 674 675 if (!its->enabled) 676 return -EBUSY; 677 678 ite = find_ite(its, devid, eventid); 679 if (!ite || !its_is_collection_mapped(ite->collection)) 680 return E_ITS_INT_UNMAPPED_INTERRUPT; 681 682 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 683 if (!vcpu) 684 return E_ITS_INT_UNMAPPED_INTERRUPT; 685 686 if (!vcpu->arch.vgic_cpu.lpis_enabled) 687 return -EBUSY; 688 689 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 690 691 *irq = ite->irq; 692 return 0; 693 } 694 695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 696 { 697 u64 address; 698 struct kvm_io_device *kvm_io_dev; 699 struct vgic_io_device *iodev; 700 701 if (!vgic_has_its(kvm)) 702 return ERR_PTR(-ENODEV); 703 704 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 705 return ERR_PTR(-EINVAL); 706 707 address = (u64)msi->address_hi << 32 | msi->address_lo; 708 709 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 710 if (!kvm_io_dev) 711 return ERR_PTR(-EINVAL); 712 713 if (kvm_io_dev->ops != &kvm_io_gic_ops) 714 return ERR_PTR(-EINVAL); 715 716 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 717 if (iodev->iodev_type != IODEV_ITS) 718 return ERR_PTR(-EINVAL); 719 720 return iodev->its; 721 } 722 723 /* 724 * Find the target VCPU and the LPI number for a given devid/eventid pair 725 * and make this IRQ pending, possibly injecting it. 726 * Must be called with the its_lock mutex held. 727 * Returns 0 on success, a positive error value for any ITS mapping 728 * related errors and negative error values for generic errors. 729 */ 730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 731 u32 devid, u32 eventid) 732 { 733 struct vgic_irq *irq = NULL; 734 unsigned long flags; 735 int err; 736 737 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 738 if (err) 739 return err; 740 741 if (irq->hw) 742 return irq_set_irqchip_state(irq->host_irq, 743 IRQCHIP_STATE_PENDING, true); 744 745 raw_spin_lock_irqsave(&irq->irq_lock, flags); 746 irq->pending_latch = true; 747 vgic_queue_irq_unlock(kvm, irq, flags); 748 749 return 0; 750 } 751 752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 753 { 754 struct vgic_irq *irq; 755 unsigned long flags; 756 phys_addr_t db; 757 758 db = (u64)msi->address_hi << 32 | msi->address_lo; 759 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 760 if (!irq) 761 return -EWOULDBLOCK; 762 763 raw_spin_lock_irqsave(&irq->irq_lock, flags); 764 irq->pending_latch = true; 765 vgic_queue_irq_unlock(kvm, irq, flags); 766 767 return 0; 768 } 769 770 /* 771 * Queries the KVM IO bus framework to get the ITS pointer from the given 772 * doorbell address. 773 * We then call vgic_its_trigger_msi() with the decoded data. 774 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 775 */ 776 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 777 { 778 struct vgic_its *its; 779 int ret; 780 781 if (!vgic_its_inject_cached_translation(kvm, msi)) 782 return 1; 783 784 its = vgic_msi_to_its(kvm, msi); 785 if (IS_ERR(its)) 786 return PTR_ERR(its); 787 788 mutex_lock(&its->its_lock); 789 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 790 mutex_unlock(&its->its_lock); 791 792 if (ret < 0) 793 return ret; 794 795 /* 796 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 797 * if the guest has blocked the MSI. So we map any LPI mapping 798 * related error to that. 799 */ 800 if (ret) 801 return 0; 802 else 803 return 1; 804 } 805 806 /* Requires the its_lock to be held. */ 807 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 808 { 809 list_del(&ite->ite_list); 810 811 /* This put matches the get in vgic_add_lpi. */ 812 if (ite->irq) { 813 if (ite->irq->hw) 814 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 815 816 vgic_put_irq(kvm, ite->irq); 817 } 818 819 kfree(ite); 820 } 821 822 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 823 { 824 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 825 } 826 827 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 828 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 829 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 830 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 831 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 832 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 833 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 834 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 835 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 836 837 /* 838 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 839 * Must be called with the its_lock mutex held. 840 */ 841 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 842 u64 *its_cmd) 843 { 844 u32 device_id = its_cmd_get_deviceid(its_cmd); 845 u32 event_id = its_cmd_get_id(its_cmd); 846 struct its_ite *ite; 847 848 ite = find_ite(its, device_id, event_id); 849 if (ite && its_is_collection_mapped(ite->collection)) { 850 /* 851 * Though the spec talks about removing the pending state, we 852 * don't bother here since we clear the ITTE anyway and the 853 * pending state is a property of the ITTE struct. 854 */ 855 vgic_its_invalidate_cache(kvm); 856 857 its_free_ite(kvm, ite); 858 return 0; 859 } 860 861 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 862 } 863 864 /* 865 * The MOVI command moves an ITTE to a different collection. 866 * Must be called with the its_lock mutex held. 867 */ 868 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 869 u64 *its_cmd) 870 { 871 u32 device_id = its_cmd_get_deviceid(its_cmd); 872 u32 event_id = its_cmd_get_id(its_cmd); 873 u32 coll_id = its_cmd_get_collection(its_cmd); 874 struct kvm_vcpu *vcpu; 875 struct its_ite *ite; 876 struct its_collection *collection; 877 878 ite = find_ite(its, device_id, event_id); 879 if (!ite) 880 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 881 882 if (!its_is_collection_mapped(ite->collection)) 883 return E_ITS_MOVI_UNMAPPED_COLLECTION; 884 885 collection = find_collection(its, coll_id); 886 if (!its_is_collection_mapped(collection)) 887 return E_ITS_MOVI_UNMAPPED_COLLECTION; 888 889 ite->collection = collection; 890 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 891 892 vgic_its_invalidate_cache(kvm); 893 894 return update_affinity(ite->irq, vcpu); 895 } 896 897 /* 898 * Check whether an ID can be stored into the corresponding guest table. 899 * For a direct table this is pretty easy, but gets a bit nasty for 900 * indirect tables. We check whether the resulting guest physical address 901 * is actually valid (covered by a memslot and guest accessible). 902 * For this we have to read the respective first level entry. 903 */ 904 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 905 gpa_t *eaddr) 906 { 907 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 908 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 909 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 910 int esz = GITS_BASER_ENTRY_SIZE(baser); 911 int index, idx; 912 gfn_t gfn; 913 bool ret; 914 915 switch (type) { 916 case GITS_BASER_TYPE_DEVICE: 917 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 918 return false; 919 break; 920 case GITS_BASER_TYPE_COLLECTION: 921 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 922 if (id >= BIT_ULL(16)) 923 return false; 924 break; 925 default: 926 return false; 927 } 928 929 if (!(baser & GITS_BASER_INDIRECT)) { 930 phys_addr_t addr; 931 932 if (id >= (l1_tbl_size / esz)) 933 return false; 934 935 addr = base + id * esz; 936 gfn = addr >> PAGE_SHIFT; 937 938 if (eaddr) 939 *eaddr = addr; 940 941 goto out; 942 } 943 944 /* calculate and check the index into the 1st level */ 945 index = id / (SZ_64K / esz); 946 if (index >= (l1_tbl_size / sizeof(u64))) 947 return false; 948 949 /* Each 1st level entry is represented by a 64-bit value. */ 950 if (kvm_read_guest_lock(its->dev->kvm, 951 base + index * sizeof(indirect_ptr), 952 &indirect_ptr, sizeof(indirect_ptr))) 953 return false; 954 955 indirect_ptr = le64_to_cpu(indirect_ptr); 956 957 /* check the valid bit of the first level entry */ 958 if (!(indirect_ptr & BIT_ULL(63))) 959 return false; 960 961 /* Mask the guest physical address and calculate the frame number. */ 962 indirect_ptr &= GENMASK_ULL(51, 16); 963 964 /* Find the address of the actual entry */ 965 index = id % (SZ_64K / esz); 966 indirect_ptr += index * esz; 967 gfn = indirect_ptr >> PAGE_SHIFT; 968 969 if (eaddr) 970 *eaddr = indirect_ptr; 971 972 out: 973 idx = srcu_read_lock(&its->dev->kvm->srcu); 974 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 975 srcu_read_unlock(&its->dev->kvm->srcu, idx); 976 return ret; 977 } 978 979 static int vgic_its_alloc_collection(struct vgic_its *its, 980 struct its_collection **colp, 981 u32 coll_id) 982 { 983 struct its_collection *collection; 984 985 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 986 return E_ITS_MAPC_COLLECTION_OOR; 987 988 collection = kzalloc(sizeof(*collection), GFP_KERNEL); 989 if (!collection) 990 return -ENOMEM; 991 992 collection->collection_id = coll_id; 993 collection->target_addr = COLLECTION_NOT_MAPPED; 994 995 list_add_tail(&collection->coll_list, &its->collection_list); 996 *colp = collection; 997 998 return 0; 999 } 1000 1001 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1002 { 1003 struct its_collection *collection; 1004 struct its_device *device; 1005 struct its_ite *ite; 1006 1007 /* 1008 * Clearing the mapping for that collection ID removes the 1009 * entry from the list. If there wasn't any before, we can 1010 * go home early. 1011 */ 1012 collection = find_collection(its, coll_id); 1013 if (!collection) 1014 return; 1015 1016 for_each_lpi_its(device, ite, its) 1017 if (ite->collection && 1018 ite->collection->collection_id == coll_id) 1019 ite->collection = NULL; 1020 1021 list_del(&collection->coll_list); 1022 kfree(collection); 1023 } 1024 1025 /* Must be called with its_lock mutex held */ 1026 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1027 struct its_collection *collection, 1028 u32 event_id) 1029 { 1030 struct its_ite *ite; 1031 1032 ite = kzalloc(sizeof(*ite), GFP_KERNEL); 1033 if (!ite) 1034 return ERR_PTR(-ENOMEM); 1035 1036 ite->event_id = event_id; 1037 ite->collection = collection; 1038 1039 list_add_tail(&ite->ite_list, &device->itt_head); 1040 return ite; 1041 } 1042 1043 /* 1044 * The MAPTI and MAPI commands map LPIs to ITTEs. 1045 * Must be called with its_lock mutex held. 1046 */ 1047 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1048 u64 *its_cmd) 1049 { 1050 u32 device_id = its_cmd_get_deviceid(its_cmd); 1051 u32 event_id = its_cmd_get_id(its_cmd); 1052 u32 coll_id = its_cmd_get_collection(its_cmd); 1053 struct its_ite *ite; 1054 struct kvm_vcpu *vcpu = NULL; 1055 struct its_device *device; 1056 struct its_collection *collection, *new_coll = NULL; 1057 struct vgic_irq *irq; 1058 int lpi_nr; 1059 1060 device = find_its_device(its, device_id); 1061 if (!device) 1062 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1063 1064 if (event_id >= BIT_ULL(device->num_eventid_bits)) 1065 return E_ITS_MAPTI_ID_OOR; 1066 1067 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1068 lpi_nr = its_cmd_get_physical_id(its_cmd); 1069 else 1070 lpi_nr = event_id; 1071 if (lpi_nr < GIC_LPI_OFFSET || 1072 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1073 return E_ITS_MAPTI_PHYSICALID_OOR; 1074 1075 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1076 if (find_ite(its, device_id, event_id)) 1077 return 0; 1078 1079 collection = find_collection(its, coll_id); 1080 if (!collection) { 1081 int ret = vgic_its_alloc_collection(its, &collection, coll_id); 1082 if (ret) 1083 return ret; 1084 new_coll = collection; 1085 } 1086 1087 ite = vgic_its_alloc_ite(device, collection, event_id); 1088 if (IS_ERR(ite)) { 1089 if (new_coll) 1090 vgic_its_free_collection(its, coll_id); 1091 return PTR_ERR(ite); 1092 } 1093 1094 if (its_is_collection_mapped(collection)) 1095 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1096 1097 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1098 if (IS_ERR(irq)) { 1099 if (new_coll) 1100 vgic_its_free_collection(its, coll_id); 1101 its_free_ite(kvm, ite); 1102 return PTR_ERR(irq); 1103 } 1104 ite->irq = irq; 1105 1106 return 0; 1107 } 1108 1109 /* Requires the its_lock to be held. */ 1110 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1111 { 1112 struct its_ite *ite, *temp; 1113 1114 /* 1115 * The spec says that unmapping a device with still valid 1116 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1117 * since we cannot leave the memory unreferenced. 1118 */ 1119 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1120 its_free_ite(kvm, ite); 1121 1122 vgic_its_invalidate_cache(kvm); 1123 1124 list_del(&device->dev_list); 1125 kfree(device); 1126 } 1127 1128 /* its lock must be held */ 1129 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1130 { 1131 struct its_device *cur, *temp; 1132 1133 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1134 vgic_its_free_device(kvm, cur); 1135 } 1136 1137 /* its lock must be held */ 1138 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1139 { 1140 struct its_collection *cur, *temp; 1141 1142 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1143 vgic_its_free_collection(its, cur->collection_id); 1144 } 1145 1146 /* Must be called with its_lock mutex held */ 1147 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1148 u32 device_id, gpa_t itt_addr, 1149 u8 num_eventid_bits) 1150 { 1151 struct its_device *device; 1152 1153 device = kzalloc(sizeof(*device), GFP_KERNEL); 1154 if (!device) 1155 return ERR_PTR(-ENOMEM); 1156 1157 device->device_id = device_id; 1158 device->itt_addr = itt_addr; 1159 device->num_eventid_bits = num_eventid_bits; 1160 INIT_LIST_HEAD(&device->itt_head); 1161 1162 list_add_tail(&device->dev_list, &its->device_list); 1163 return device; 1164 } 1165 1166 /* 1167 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1168 * Must be called with the its_lock mutex held. 1169 */ 1170 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1171 u64 *its_cmd) 1172 { 1173 u32 device_id = its_cmd_get_deviceid(its_cmd); 1174 bool valid = its_cmd_get_validbit(its_cmd); 1175 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1176 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1177 struct its_device *device; 1178 1179 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1180 return E_ITS_MAPD_DEVICE_OOR; 1181 1182 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1183 return E_ITS_MAPD_ITTSIZE_OOR; 1184 1185 device = find_its_device(its, device_id); 1186 1187 /* 1188 * The spec says that calling MAPD on an already mapped device 1189 * invalidates all cached data for this device. We implement this 1190 * by removing the mapping and re-establishing it. 1191 */ 1192 if (device) 1193 vgic_its_free_device(kvm, device); 1194 1195 /* 1196 * The spec does not say whether unmapping a not-mapped device 1197 * is an error, so we are done in any case. 1198 */ 1199 if (!valid) 1200 return 0; 1201 1202 device = vgic_its_alloc_device(its, device_id, itt_addr, 1203 num_eventid_bits); 1204 1205 return PTR_ERR_OR_ZERO(device); 1206 } 1207 1208 /* 1209 * The MAPC command maps collection IDs to redistributors. 1210 * Must be called with the its_lock mutex held. 1211 */ 1212 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1213 u64 *its_cmd) 1214 { 1215 u16 coll_id; 1216 u32 target_addr; 1217 struct its_collection *collection; 1218 bool valid; 1219 1220 valid = its_cmd_get_validbit(its_cmd); 1221 coll_id = its_cmd_get_collection(its_cmd); 1222 target_addr = its_cmd_get_target_addr(its_cmd); 1223 1224 if (target_addr >= atomic_read(&kvm->online_vcpus)) 1225 return E_ITS_MAPC_PROCNUM_OOR; 1226 1227 if (!valid) { 1228 vgic_its_free_collection(its, coll_id); 1229 vgic_its_invalidate_cache(kvm); 1230 } else { 1231 collection = find_collection(its, coll_id); 1232 1233 if (!collection) { 1234 int ret; 1235 1236 ret = vgic_its_alloc_collection(its, &collection, 1237 coll_id); 1238 if (ret) 1239 return ret; 1240 collection->target_addr = target_addr; 1241 } else { 1242 collection->target_addr = target_addr; 1243 update_affinity_collection(kvm, its, collection); 1244 } 1245 } 1246 1247 return 0; 1248 } 1249 1250 /* 1251 * The CLEAR command removes the pending state for a particular LPI. 1252 * Must be called with the its_lock mutex held. 1253 */ 1254 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1255 u64 *its_cmd) 1256 { 1257 u32 device_id = its_cmd_get_deviceid(its_cmd); 1258 u32 event_id = its_cmd_get_id(its_cmd); 1259 struct its_ite *ite; 1260 1261 1262 ite = find_ite(its, device_id, event_id); 1263 if (!ite) 1264 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1265 1266 ite->irq->pending_latch = false; 1267 1268 if (ite->irq->hw) 1269 return irq_set_irqchip_state(ite->irq->host_irq, 1270 IRQCHIP_STATE_PENDING, false); 1271 1272 return 0; 1273 } 1274 1275 /* 1276 * The INV command syncs the configuration bits from the memory table. 1277 * Must be called with the its_lock mutex held. 1278 */ 1279 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1280 u64 *its_cmd) 1281 { 1282 u32 device_id = its_cmd_get_deviceid(its_cmd); 1283 u32 event_id = its_cmd_get_id(its_cmd); 1284 struct its_ite *ite; 1285 1286 1287 ite = find_ite(its, device_id, event_id); 1288 if (!ite) 1289 return E_ITS_INV_UNMAPPED_INTERRUPT; 1290 1291 return update_lpi_config(kvm, ite->irq, NULL, true); 1292 } 1293 1294 /* 1295 * The INVALL command requests flushing of all IRQ data in this collection. 1296 * Find the VCPU mapped to that collection, then iterate over the VM's list 1297 * of mapped LPIs and update the configuration for each IRQ which targets 1298 * the specified vcpu. The configuration will be read from the in-memory 1299 * configuration table. 1300 * Must be called with the its_lock mutex held. 1301 */ 1302 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1303 u64 *its_cmd) 1304 { 1305 u32 coll_id = its_cmd_get_collection(its_cmd); 1306 struct its_collection *collection; 1307 struct kvm_vcpu *vcpu; 1308 struct vgic_irq *irq; 1309 u32 *intids; 1310 int irq_count, i; 1311 1312 collection = find_collection(its, coll_id); 1313 if (!its_is_collection_mapped(collection)) 1314 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1315 1316 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1317 1318 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1319 if (irq_count < 0) 1320 return irq_count; 1321 1322 for (i = 0; i < irq_count; i++) { 1323 irq = vgic_get_irq(kvm, NULL, intids[i]); 1324 if (!irq) 1325 continue; 1326 update_lpi_config(kvm, irq, vcpu, false); 1327 vgic_put_irq(kvm, irq); 1328 } 1329 1330 kfree(intids); 1331 1332 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1333 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1334 1335 return 0; 1336 } 1337 1338 /* 1339 * The MOVALL command moves the pending state of all IRQs targeting one 1340 * redistributor to another. We don't hold the pending state in the VCPUs, 1341 * but in the IRQs instead, so there is really not much to do for us here. 1342 * However the spec says that no IRQ must target the old redistributor 1343 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1344 * This command affects all LPIs in the system that target that redistributor. 1345 */ 1346 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1347 u64 *its_cmd) 1348 { 1349 u32 target1_addr = its_cmd_get_target_addr(its_cmd); 1350 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); 1351 struct kvm_vcpu *vcpu1, *vcpu2; 1352 struct vgic_irq *irq; 1353 u32 *intids; 1354 int irq_count, i; 1355 1356 if (target1_addr >= atomic_read(&kvm->online_vcpus) || 1357 target2_addr >= atomic_read(&kvm->online_vcpus)) 1358 return E_ITS_MOVALL_PROCNUM_OOR; 1359 1360 if (target1_addr == target2_addr) 1361 return 0; 1362 1363 vcpu1 = kvm_get_vcpu(kvm, target1_addr); 1364 vcpu2 = kvm_get_vcpu(kvm, target2_addr); 1365 1366 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1367 if (irq_count < 0) 1368 return irq_count; 1369 1370 for (i = 0; i < irq_count; i++) { 1371 irq = vgic_get_irq(kvm, NULL, intids[i]); 1372 1373 update_affinity(irq, vcpu2); 1374 1375 vgic_put_irq(kvm, irq); 1376 } 1377 1378 vgic_its_invalidate_cache(kvm); 1379 1380 kfree(intids); 1381 return 0; 1382 } 1383 1384 /* 1385 * The INT command injects the LPI associated with that DevID/EvID pair. 1386 * Must be called with the its_lock mutex held. 1387 */ 1388 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1389 u64 *its_cmd) 1390 { 1391 u32 msi_data = its_cmd_get_id(its_cmd); 1392 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1393 1394 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1395 } 1396 1397 /* 1398 * This function is called with the its_cmd lock held, but the ITS data 1399 * structure lock dropped. 1400 */ 1401 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1402 u64 *its_cmd) 1403 { 1404 int ret = -ENODEV; 1405 1406 mutex_lock(&its->its_lock); 1407 switch (its_cmd_get_command(its_cmd)) { 1408 case GITS_CMD_MAPD: 1409 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1410 break; 1411 case GITS_CMD_MAPC: 1412 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1413 break; 1414 case GITS_CMD_MAPI: 1415 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1416 break; 1417 case GITS_CMD_MAPTI: 1418 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1419 break; 1420 case GITS_CMD_MOVI: 1421 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1422 break; 1423 case GITS_CMD_DISCARD: 1424 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1425 break; 1426 case GITS_CMD_CLEAR: 1427 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1428 break; 1429 case GITS_CMD_MOVALL: 1430 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1431 break; 1432 case GITS_CMD_INT: 1433 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1434 break; 1435 case GITS_CMD_INV: 1436 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1437 break; 1438 case GITS_CMD_INVALL: 1439 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1440 break; 1441 case GITS_CMD_SYNC: 1442 /* we ignore this command: we are in sync all of the time */ 1443 ret = 0; 1444 break; 1445 } 1446 mutex_unlock(&its->its_lock); 1447 1448 return ret; 1449 } 1450 1451 static u64 vgic_sanitise_its_baser(u64 reg) 1452 { 1453 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1454 GITS_BASER_SHAREABILITY_SHIFT, 1455 vgic_sanitise_shareability); 1456 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1457 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1458 vgic_sanitise_inner_cacheability); 1459 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1460 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1461 vgic_sanitise_outer_cacheability); 1462 1463 /* We support only one (ITS) page size: 64K */ 1464 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1465 1466 return reg; 1467 } 1468 1469 static u64 vgic_sanitise_its_cbaser(u64 reg) 1470 { 1471 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1472 GITS_CBASER_SHAREABILITY_SHIFT, 1473 vgic_sanitise_shareability); 1474 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1475 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1476 vgic_sanitise_inner_cacheability); 1477 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1478 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1479 vgic_sanitise_outer_cacheability); 1480 1481 /* Sanitise the physical address to be 64k aligned. */ 1482 reg &= ~GENMASK_ULL(15, 12); 1483 1484 return reg; 1485 } 1486 1487 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1488 struct vgic_its *its, 1489 gpa_t addr, unsigned int len) 1490 { 1491 return extract_bytes(its->cbaser, addr & 7, len); 1492 } 1493 1494 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1495 gpa_t addr, unsigned int len, 1496 unsigned long val) 1497 { 1498 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1499 if (its->enabled) 1500 return; 1501 1502 mutex_lock(&its->cmd_lock); 1503 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1504 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1505 its->creadr = 0; 1506 /* 1507 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1508 * it to CREADR to make sure we start with an empty command buffer. 1509 */ 1510 its->cwriter = its->creadr; 1511 mutex_unlock(&its->cmd_lock); 1512 } 1513 1514 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1515 #define ITS_CMD_SIZE 32 1516 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1517 1518 /* Must be called with the cmd_lock held. */ 1519 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1520 { 1521 gpa_t cbaser; 1522 u64 cmd_buf[4]; 1523 1524 /* Commands are only processed when the ITS is enabled. */ 1525 if (!its->enabled) 1526 return; 1527 1528 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1529 1530 while (its->cwriter != its->creadr) { 1531 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1532 cmd_buf, ITS_CMD_SIZE); 1533 /* 1534 * If kvm_read_guest() fails, this could be due to the guest 1535 * programming a bogus value in CBASER or something else going 1536 * wrong from which we cannot easily recover. 1537 * According to section 6.3.2 in the GICv3 spec we can just 1538 * ignore that command then. 1539 */ 1540 if (!ret) 1541 vgic_its_handle_command(kvm, its, cmd_buf); 1542 1543 its->creadr += ITS_CMD_SIZE; 1544 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1545 its->creadr = 0; 1546 } 1547 } 1548 1549 /* 1550 * By writing to CWRITER the guest announces new commands to be processed. 1551 * To avoid any races in the first place, we take the its_cmd lock, which 1552 * protects our ring buffer variables, so that there is only one user 1553 * per ITS handling commands at a given time. 1554 */ 1555 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1556 gpa_t addr, unsigned int len, 1557 unsigned long val) 1558 { 1559 u64 reg; 1560 1561 if (!its) 1562 return; 1563 1564 mutex_lock(&its->cmd_lock); 1565 1566 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1567 reg = ITS_CMD_OFFSET(reg); 1568 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1569 mutex_unlock(&its->cmd_lock); 1570 return; 1571 } 1572 its->cwriter = reg; 1573 1574 vgic_its_process_commands(kvm, its); 1575 1576 mutex_unlock(&its->cmd_lock); 1577 } 1578 1579 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1580 struct vgic_its *its, 1581 gpa_t addr, unsigned int len) 1582 { 1583 return extract_bytes(its->cwriter, addr & 0x7, len); 1584 } 1585 1586 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1587 struct vgic_its *its, 1588 gpa_t addr, unsigned int len) 1589 { 1590 return extract_bytes(its->creadr, addr & 0x7, len); 1591 } 1592 1593 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1594 struct vgic_its *its, 1595 gpa_t addr, unsigned int len, 1596 unsigned long val) 1597 { 1598 u32 cmd_offset; 1599 int ret = 0; 1600 1601 mutex_lock(&its->cmd_lock); 1602 1603 if (its->enabled) { 1604 ret = -EBUSY; 1605 goto out; 1606 } 1607 1608 cmd_offset = ITS_CMD_OFFSET(val); 1609 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1610 ret = -EINVAL; 1611 goto out; 1612 } 1613 1614 its->creadr = cmd_offset; 1615 out: 1616 mutex_unlock(&its->cmd_lock); 1617 return ret; 1618 } 1619 1620 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1621 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1622 struct vgic_its *its, 1623 gpa_t addr, unsigned int len) 1624 { 1625 u64 reg; 1626 1627 switch (BASER_INDEX(addr)) { 1628 case 0: 1629 reg = its->baser_device_table; 1630 break; 1631 case 1: 1632 reg = its->baser_coll_table; 1633 break; 1634 default: 1635 reg = 0; 1636 break; 1637 } 1638 1639 return extract_bytes(reg, addr & 7, len); 1640 } 1641 1642 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1643 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1644 struct vgic_its *its, 1645 gpa_t addr, unsigned int len, 1646 unsigned long val) 1647 { 1648 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1649 u64 entry_size, table_type; 1650 u64 reg, *regptr, clearbits = 0; 1651 1652 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1653 if (its->enabled) 1654 return; 1655 1656 switch (BASER_INDEX(addr)) { 1657 case 0: 1658 regptr = &its->baser_device_table; 1659 entry_size = abi->dte_esz; 1660 table_type = GITS_BASER_TYPE_DEVICE; 1661 break; 1662 case 1: 1663 regptr = &its->baser_coll_table; 1664 entry_size = abi->cte_esz; 1665 table_type = GITS_BASER_TYPE_COLLECTION; 1666 clearbits = GITS_BASER_INDIRECT; 1667 break; 1668 default: 1669 return; 1670 } 1671 1672 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1673 reg &= ~GITS_BASER_RO_MASK; 1674 reg &= ~clearbits; 1675 1676 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1677 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1678 reg = vgic_sanitise_its_baser(reg); 1679 1680 *regptr = reg; 1681 1682 if (!(reg & GITS_BASER_VALID)) { 1683 /* Take the its_lock to prevent a race with a save/restore */ 1684 mutex_lock(&its->its_lock); 1685 switch (table_type) { 1686 case GITS_BASER_TYPE_DEVICE: 1687 vgic_its_free_device_list(kvm, its); 1688 break; 1689 case GITS_BASER_TYPE_COLLECTION: 1690 vgic_its_free_collection_list(kvm, its); 1691 break; 1692 } 1693 mutex_unlock(&its->its_lock); 1694 } 1695 } 1696 1697 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1698 struct vgic_its *its, 1699 gpa_t addr, unsigned int len) 1700 { 1701 u32 reg = 0; 1702 1703 mutex_lock(&its->cmd_lock); 1704 if (its->creadr == its->cwriter) 1705 reg |= GITS_CTLR_QUIESCENT; 1706 if (its->enabled) 1707 reg |= GITS_CTLR_ENABLE; 1708 mutex_unlock(&its->cmd_lock); 1709 1710 return reg; 1711 } 1712 1713 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1714 gpa_t addr, unsigned int len, 1715 unsigned long val) 1716 { 1717 mutex_lock(&its->cmd_lock); 1718 1719 /* 1720 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1721 * device/collection BASER are invalid 1722 */ 1723 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1724 (!(its->baser_device_table & GITS_BASER_VALID) || 1725 !(its->baser_coll_table & GITS_BASER_VALID) || 1726 !(its->cbaser & GITS_CBASER_VALID))) 1727 goto out; 1728 1729 its->enabled = !!(val & GITS_CTLR_ENABLE); 1730 if (!its->enabled) 1731 vgic_its_invalidate_cache(kvm); 1732 1733 /* 1734 * Try to process any pending commands. This function bails out early 1735 * if the ITS is disabled or no commands have been queued. 1736 */ 1737 vgic_its_process_commands(kvm, its); 1738 1739 out: 1740 mutex_unlock(&its->cmd_lock); 1741 } 1742 1743 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1744 { \ 1745 .reg_offset = off, \ 1746 .len = length, \ 1747 .access_flags = acc, \ 1748 .its_read = rd, \ 1749 .its_write = wr, \ 1750 } 1751 1752 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1753 { \ 1754 .reg_offset = off, \ 1755 .len = length, \ 1756 .access_flags = acc, \ 1757 .its_read = rd, \ 1758 .its_write = wr, \ 1759 .uaccess_its_write = uwr, \ 1760 } 1761 1762 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1763 gpa_t addr, unsigned int len, unsigned long val) 1764 { 1765 /* Ignore */ 1766 } 1767 1768 static struct vgic_register_region its_registers[] = { 1769 REGISTER_ITS_DESC(GITS_CTLR, 1770 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1771 VGIC_ACCESS_32bit), 1772 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1773 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1774 vgic_mmio_uaccess_write_its_iidr, 4, 1775 VGIC_ACCESS_32bit), 1776 REGISTER_ITS_DESC(GITS_TYPER, 1777 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1778 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1779 REGISTER_ITS_DESC(GITS_CBASER, 1780 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1781 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1782 REGISTER_ITS_DESC(GITS_CWRITER, 1783 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1784 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1785 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1786 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1787 vgic_mmio_uaccess_write_its_creadr, 8, 1788 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1789 REGISTER_ITS_DESC(GITS_BASER, 1790 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1791 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1792 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1793 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1794 VGIC_ACCESS_32bit), 1795 }; 1796 1797 /* This is called on setting the LPI enable bit in the redistributor. */ 1798 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1799 { 1800 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1801 its_sync_lpi_pending_table(vcpu); 1802 } 1803 1804 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1805 u64 addr) 1806 { 1807 struct vgic_io_device *iodev = &its->iodev; 1808 int ret; 1809 1810 mutex_lock(&kvm->slots_lock); 1811 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1812 ret = -EBUSY; 1813 goto out; 1814 } 1815 1816 its->vgic_its_base = addr; 1817 iodev->regions = its_registers; 1818 iodev->nr_regions = ARRAY_SIZE(its_registers); 1819 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1820 1821 iodev->base_addr = its->vgic_its_base; 1822 iodev->iodev_type = IODEV_ITS; 1823 iodev->its = its; 1824 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1825 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1826 out: 1827 mutex_unlock(&kvm->slots_lock); 1828 1829 return ret; 1830 } 1831 1832 /* Default is 16 cached LPIs per vcpu */ 1833 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1834 1835 void vgic_lpi_translation_cache_init(struct kvm *kvm) 1836 { 1837 struct vgic_dist *dist = &kvm->arch.vgic; 1838 unsigned int sz; 1839 int i; 1840 1841 if (!list_empty(&dist->lpi_translation_cache)) 1842 return; 1843 1844 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1845 1846 for (i = 0; i < sz; i++) { 1847 struct vgic_translation_cache_entry *cte; 1848 1849 /* An allocation failure is not fatal */ 1850 cte = kzalloc(sizeof(*cte), GFP_KERNEL); 1851 if (WARN_ON(!cte)) 1852 break; 1853 1854 INIT_LIST_HEAD(&cte->entry); 1855 list_add(&cte->entry, &dist->lpi_translation_cache); 1856 } 1857 } 1858 1859 void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1860 { 1861 struct vgic_dist *dist = &kvm->arch.vgic; 1862 struct vgic_translation_cache_entry *cte, *tmp; 1863 1864 vgic_its_invalidate_cache(kvm); 1865 1866 list_for_each_entry_safe(cte, tmp, 1867 &dist->lpi_translation_cache, entry) { 1868 list_del(&cte->entry); 1869 kfree(cte); 1870 } 1871 } 1872 1873 #define INITIAL_BASER_VALUE \ 1874 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1875 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1876 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1877 GITS_BASER_PAGE_SIZE_64K) 1878 1879 #define INITIAL_PROPBASER_VALUE \ 1880 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1881 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1882 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1883 1884 static int vgic_its_create(struct kvm_device *dev, u32 type) 1885 { 1886 struct vgic_its *its; 1887 1888 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1889 return -ENODEV; 1890 1891 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL); 1892 if (!its) 1893 return -ENOMEM; 1894 1895 if (vgic_initialized(dev->kvm)) { 1896 int ret = vgic_v4_init(dev->kvm); 1897 if (ret < 0) { 1898 kfree(its); 1899 return ret; 1900 } 1901 1902 vgic_lpi_translation_cache_init(dev->kvm); 1903 } 1904 1905 mutex_init(&its->its_lock); 1906 mutex_init(&its->cmd_lock); 1907 1908 its->vgic_its_base = VGIC_ADDR_UNDEF; 1909 1910 INIT_LIST_HEAD(&its->device_list); 1911 INIT_LIST_HEAD(&its->collection_list); 1912 1913 dev->kvm->arch.vgic.msis_require_devid = true; 1914 dev->kvm->arch.vgic.has_its = true; 1915 its->enabled = false; 1916 its->dev = dev; 1917 1918 its->baser_device_table = INITIAL_BASER_VALUE | 1919 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1920 its->baser_coll_table = INITIAL_BASER_VALUE | 1921 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1922 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1923 1924 dev->private = its; 1925 1926 return vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1927 } 1928 1929 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1930 { 1931 struct kvm *kvm = kvm_dev->kvm; 1932 struct vgic_its *its = kvm_dev->private; 1933 1934 mutex_lock(&its->its_lock); 1935 1936 vgic_its_free_device_list(kvm, its); 1937 vgic_its_free_collection_list(kvm, its); 1938 1939 mutex_unlock(&its->its_lock); 1940 kfree(its); 1941 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1942 } 1943 1944 static int vgic_its_has_attr_regs(struct kvm_device *dev, 1945 struct kvm_device_attr *attr) 1946 { 1947 const struct vgic_register_region *region; 1948 gpa_t offset = attr->attr; 1949 int align; 1950 1951 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1952 1953 if (offset & align) 1954 return -EINVAL; 1955 1956 region = vgic_find_mmio_region(its_registers, 1957 ARRAY_SIZE(its_registers), 1958 offset); 1959 if (!region) 1960 return -ENXIO; 1961 1962 return 0; 1963 } 1964 1965 static int vgic_its_attr_regs_access(struct kvm_device *dev, 1966 struct kvm_device_attr *attr, 1967 u64 *reg, bool is_write) 1968 { 1969 const struct vgic_register_region *region; 1970 struct vgic_its *its; 1971 gpa_t addr, offset; 1972 unsigned int len; 1973 int align, ret = 0; 1974 1975 its = dev->private; 1976 offset = attr->attr; 1977 1978 /* 1979 * Although the spec supports upper/lower 32-bit accesses to 1980 * 64-bit ITS registers, the userspace ABI requires 64-bit 1981 * accesses to all 64-bit wide registers. We therefore only 1982 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1983 * registers 1984 */ 1985 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1986 align = 0x3; 1987 else 1988 align = 0x7; 1989 1990 if (offset & align) 1991 return -EINVAL; 1992 1993 mutex_lock(&dev->kvm->lock); 1994 1995 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1996 ret = -ENXIO; 1997 goto out; 1998 } 1999 2000 region = vgic_find_mmio_region(its_registers, 2001 ARRAY_SIZE(its_registers), 2002 offset); 2003 if (!region) { 2004 ret = -ENXIO; 2005 goto out; 2006 } 2007 2008 if (!lock_all_vcpus(dev->kvm)) { 2009 ret = -EBUSY; 2010 goto out; 2011 } 2012 2013 addr = its->vgic_its_base + offset; 2014 2015 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2016 2017 if (is_write) { 2018 if (region->uaccess_its_write) 2019 ret = region->uaccess_its_write(dev->kvm, its, addr, 2020 len, *reg); 2021 else 2022 region->its_write(dev->kvm, its, addr, len, *reg); 2023 } else { 2024 *reg = region->its_read(dev->kvm, its, addr, len); 2025 } 2026 unlock_all_vcpus(dev->kvm); 2027 out: 2028 mutex_unlock(&dev->kvm->lock); 2029 return ret; 2030 } 2031 2032 static u32 compute_next_devid_offset(struct list_head *h, 2033 struct its_device *dev) 2034 { 2035 struct its_device *next; 2036 u32 next_offset; 2037 2038 if (list_is_last(&dev->dev_list, h)) 2039 return 0; 2040 next = list_next_entry(dev, dev_list); 2041 next_offset = next->device_id - dev->device_id; 2042 2043 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2044 } 2045 2046 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2047 { 2048 struct its_ite *next; 2049 u32 next_offset; 2050 2051 if (list_is_last(&ite->ite_list, h)) 2052 return 0; 2053 next = list_next_entry(ite, ite_list); 2054 next_offset = next->event_id - ite->event_id; 2055 2056 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2057 } 2058 2059 /** 2060 * entry_fn_t - Callback called on a table entry restore path 2061 * @its: its handle 2062 * @id: id of the entry 2063 * @entry: pointer to the entry 2064 * @opaque: pointer to an opaque data 2065 * 2066 * Return: < 0 on error, 0 if last element was identified, id offset to next 2067 * element otherwise 2068 */ 2069 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2070 void *opaque); 2071 2072 /** 2073 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2074 * to each entry 2075 * 2076 * @its: its handle 2077 * @base: base gpa of the table 2078 * @size: size of the table in bytes 2079 * @esz: entry size in bytes 2080 * @start_id: the ID of the first entry in the table 2081 * (non zero for 2d level tables) 2082 * @fn: function to apply on each entry 2083 * 2084 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2085 * (the last element may not be found on second level tables) 2086 */ 2087 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2088 int start_id, entry_fn_t fn, void *opaque) 2089 { 2090 struct kvm *kvm = its->dev->kvm; 2091 unsigned long len = size; 2092 int id = start_id; 2093 gpa_t gpa = base; 2094 char entry[ESZ_MAX]; 2095 int ret; 2096 2097 memset(entry, 0, esz); 2098 2099 while (len > 0) { 2100 int next_offset; 2101 size_t byte_offset; 2102 2103 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2104 if (ret) 2105 return ret; 2106 2107 next_offset = fn(its, id, entry, opaque); 2108 if (next_offset <= 0) 2109 return next_offset; 2110 2111 byte_offset = next_offset * esz; 2112 id += next_offset; 2113 gpa += byte_offset; 2114 len -= byte_offset; 2115 } 2116 return 1; 2117 } 2118 2119 /** 2120 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2121 */ 2122 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2123 struct its_ite *ite, gpa_t gpa, int ite_esz) 2124 { 2125 struct kvm *kvm = its->dev->kvm; 2126 u32 next_offset; 2127 u64 val; 2128 2129 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2130 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2131 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2132 ite->collection->collection_id; 2133 val = cpu_to_le64(val); 2134 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz); 2135 } 2136 2137 /** 2138 * vgic_its_restore_ite - restore an interrupt translation entry 2139 * @event_id: id used for indexing 2140 * @ptr: pointer to the ITE entry 2141 * @opaque: pointer to the its_device 2142 */ 2143 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2144 void *ptr, void *opaque) 2145 { 2146 struct its_device *dev = (struct its_device *)opaque; 2147 struct its_collection *collection; 2148 struct kvm *kvm = its->dev->kvm; 2149 struct kvm_vcpu *vcpu = NULL; 2150 u64 val; 2151 u64 *p = (u64 *)ptr; 2152 struct vgic_irq *irq; 2153 u32 coll_id, lpi_id; 2154 struct its_ite *ite; 2155 u32 offset; 2156 2157 val = *p; 2158 2159 val = le64_to_cpu(val); 2160 2161 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2162 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2163 2164 if (!lpi_id) 2165 return 1; /* invalid entry, no choice but to scan next entry */ 2166 2167 if (lpi_id < VGIC_MIN_LPI) 2168 return -EINVAL; 2169 2170 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2171 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2172 return -EINVAL; 2173 2174 collection = find_collection(its, coll_id); 2175 if (!collection) 2176 return -EINVAL; 2177 2178 ite = vgic_its_alloc_ite(dev, collection, event_id); 2179 if (IS_ERR(ite)) 2180 return PTR_ERR(ite); 2181 2182 if (its_is_collection_mapped(collection)) 2183 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 2184 2185 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2186 if (IS_ERR(irq)) 2187 return PTR_ERR(irq); 2188 ite->irq = irq; 2189 2190 return offset; 2191 } 2192 2193 static int vgic_its_ite_cmp(void *priv, struct list_head *a, 2194 struct list_head *b) 2195 { 2196 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2197 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2198 2199 if (itea->event_id < iteb->event_id) 2200 return -1; 2201 else 2202 return 1; 2203 } 2204 2205 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2206 { 2207 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2208 gpa_t base = device->itt_addr; 2209 struct its_ite *ite; 2210 int ret; 2211 int ite_esz = abi->ite_esz; 2212 2213 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2214 2215 list_for_each_entry(ite, &device->itt_head, ite_list) { 2216 gpa_t gpa = base + ite->event_id * ite_esz; 2217 2218 /* 2219 * If an LPI carries the HW bit, this means that this 2220 * interrupt is controlled by GICv4, and we do not 2221 * have direct access to that state. Let's simply fail 2222 * the save operation... 2223 */ 2224 if (ite->irq->hw) 2225 return -EACCES; 2226 2227 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2228 if (ret) 2229 return ret; 2230 } 2231 return 0; 2232 } 2233 2234 /** 2235 * vgic_its_restore_itt - restore the ITT of a device 2236 * 2237 * @its: its handle 2238 * @dev: device handle 2239 * 2240 * Return 0 on success, < 0 on error 2241 */ 2242 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2243 { 2244 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2245 gpa_t base = dev->itt_addr; 2246 int ret; 2247 int ite_esz = abi->ite_esz; 2248 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2249 2250 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2251 vgic_its_restore_ite, dev); 2252 2253 /* scan_its_table returns +1 if all ITEs are invalid */ 2254 if (ret > 0) 2255 ret = 0; 2256 2257 return ret; 2258 } 2259 2260 /** 2261 * vgic_its_save_dte - Save a device table entry at a given GPA 2262 * 2263 * @its: ITS handle 2264 * @dev: ITS device 2265 * @ptr: GPA 2266 */ 2267 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2268 gpa_t ptr, int dte_esz) 2269 { 2270 struct kvm *kvm = its->dev->kvm; 2271 u64 val, itt_addr_field; 2272 u32 next_offset; 2273 2274 itt_addr_field = dev->itt_addr >> 8; 2275 next_offset = compute_next_devid_offset(&its->device_list, dev); 2276 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2277 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2278 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2279 (dev->num_eventid_bits - 1)); 2280 val = cpu_to_le64(val); 2281 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz); 2282 } 2283 2284 /** 2285 * vgic_its_restore_dte - restore a device table entry 2286 * 2287 * @its: its handle 2288 * @id: device id the DTE corresponds to 2289 * @ptr: kernel VA where the 8 byte DTE is located 2290 * @opaque: unused 2291 * 2292 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2293 * next dte otherwise 2294 */ 2295 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2296 void *ptr, void *opaque) 2297 { 2298 struct its_device *dev; 2299 gpa_t itt_addr; 2300 u8 num_eventid_bits; 2301 u64 entry = *(u64 *)ptr; 2302 bool valid; 2303 u32 offset; 2304 int ret; 2305 2306 entry = le64_to_cpu(entry); 2307 2308 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2309 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2310 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2311 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2312 2313 if (!valid) 2314 return 1; 2315 2316 /* dte entry is valid */ 2317 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2318 2319 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2320 if (IS_ERR(dev)) 2321 return PTR_ERR(dev); 2322 2323 ret = vgic_its_restore_itt(its, dev); 2324 if (ret) { 2325 vgic_its_free_device(its->dev->kvm, dev); 2326 return ret; 2327 } 2328 2329 return offset; 2330 } 2331 2332 static int vgic_its_device_cmp(void *priv, struct list_head *a, 2333 struct list_head *b) 2334 { 2335 struct its_device *deva = container_of(a, struct its_device, dev_list); 2336 struct its_device *devb = container_of(b, struct its_device, dev_list); 2337 2338 if (deva->device_id < devb->device_id) 2339 return -1; 2340 else 2341 return 1; 2342 } 2343 2344 /** 2345 * vgic_its_save_device_tables - Save the device table and all ITT 2346 * into guest RAM 2347 * 2348 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2349 * returns the GPA of the device entry 2350 */ 2351 static int vgic_its_save_device_tables(struct vgic_its *its) 2352 { 2353 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2354 u64 baser = its->baser_device_table; 2355 struct its_device *dev; 2356 int dte_esz = abi->dte_esz; 2357 2358 if (!(baser & GITS_BASER_VALID)) 2359 return 0; 2360 2361 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2362 2363 list_for_each_entry(dev, &its->device_list, dev_list) { 2364 int ret; 2365 gpa_t eaddr; 2366 2367 if (!vgic_its_check_id(its, baser, 2368 dev->device_id, &eaddr)) 2369 return -EINVAL; 2370 2371 ret = vgic_its_save_itt(its, dev); 2372 if (ret) 2373 return ret; 2374 2375 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2376 if (ret) 2377 return ret; 2378 } 2379 return 0; 2380 } 2381 2382 /** 2383 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2384 * 2385 * @its: its handle 2386 * @id: index of the entry in the L1 table 2387 * @addr: kernel VA 2388 * @opaque: unused 2389 * 2390 * L1 table entries are scanned by steps of 1 entry 2391 * Return < 0 if error, 0 if last dte was found when scanning the L2 2392 * table, +1 otherwise (meaning next L1 entry must be scanned) 2393 */ 2394 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2395 void *opaque) 2396 { 2397 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2398 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2399 u64 entry = *(u64 *)addr; 2400 int dte_esz = abi->dte_esz; 2401 gpa_t gpa; 2402 int ret; 2403 2404 entry = le64_to_cpu(entry); 2405 2406 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2407 return 1; 2408 2409 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2410 2411 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2412 l2_start_id, vgic_its_restore_dte, NULL); 2413 2414 return ret; 2415 } 2416 2417 /** 2418 * vgic_its_restore_device_tables - Restore the device table and all ITT 2419 * from guest RAM to internal data structs 2420 */ 2421 static int vgic_its_restore_device_tables(struct vgic_its *its) 2422 { 2423 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2424 u64 baser = its->baser_device_table; 2425 int l1_esz, ret; 2426 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2427 gpa_t l1_gpa; 2428 2429 if (!(baser & GITS_BASER_VALID)) 2430 return 0; 2431 2432 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2433 2434 if (baser & GITS_BASER_INDIRECT) { 2435 l1_esz = GITS_LVL1_ENTRY_SIZE; 2436 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2437 handle_l1_dte, NULL); 2438 } else { 2439 l1_esz = abi->dte_esz; 2440 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2441 vgic_its_restore_dte, NULL); 2442 } 2443 2444 /* scan_its_table returns +1 if all entries are invalid */ 2445 if (ret > 0) 2446 ret = 0; 2447 2448 return ret; 2449 } 2450 2451 static int vgic_its_save_cte(struct vgic_its *its, 2452 struct its_collection *collection, 2453 gpa_t gpa, int esz) 2454 { 2455 u64 val; 2456 2457 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2458 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2459 collection->collection_id); 2460 val = cpu_to_le64(val); 2461 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2462 } 2463 2464 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2465 { 2466 struct its_collection *collection; 2467 struct kvm *kvm = its->dev->kvm; 2468 u32 target_addr, coll_id; 2469 u64 val; 2470 int ret; 2471 2472 BUG_ON(esz > sizeof(val)); 2473 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2474 if (ret) 2475 return ret; 2476 val = le64_to_cpu(val); 2477 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2478 return 0; 2479 2480 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2481 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2482 2483 if (target_addr != COLLECTION_NOT_MAPPED && 2484 target_addr >= atomic_read(&kvm->online_vcpus)) 2485 return -EINVAL; 2486 2487 collection = find_collection(its, coll_id); 2488 if (collection) 2489 return -EEXIST; 2490 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2491 if (ret) 2492 return ret; 2493 collection->target_addr = target_addr; 2494 return 1; 2495 } 2496 2497 /** 2498 * vgic_its_save_collection_table - Save the collection table into 2499 * guest RAM 2500 */ 2501 static int vgic_its_save_collection_table(struct vgic_its *its) 2502 { 2503 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2504 u64 baser = its->baser_coll_table; 2505 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2506 struct its_collection *collection; 2507 u64 val; 2508 size_t max_size, filled = 0; 2509 int ret, cte_esz = abi->cte_esz; 2510 2511 if (!(baser & GITS_BASER_VALID)) 2512 return 0; 2513 2514 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2515 2516 list_for_each_entry(collection, &its->collection_list, coll_list) { 2517 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2518 if (ret) 2519 return ret; 2520 gpa += cte_esz; 2521 filled += cte_esz; 2522 } 2523 2524 if (filled == max_size) 2525 return 0; 2526 2527 /* 2528 * table is not fully filled, add a last dummy element 2529 * with valid bit unset 2530 */ 2531 val = 0; 2532 BUG_ON(cte_esz > sizeof(val)); 2533 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2534 return ret; 2535 } 2536 2537 /** 2538 * vgic_its_restore_collection_table - reads the collection table 2539 * in guest memory and restores the ITS internal state. Requires the 2540 * BASER registers to be restored before. 2541 */ 2542 static int vgic_its_restore_collection_table(struct vgic_its *its) 2543 { 2544 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2545 u64 baser = its->baser_coll_table; 2546 int cte_esz = abi->cte_esz; 2547 size_t max_size, read = 0; 2548 gpa_t gpa; 2549 int ret; 2550 2551 if (!(baser & GITS_BASER_VALID)) 2552 return 0; 2553 2554 gpa = GITS_BASER_ADDR_48_to_52(baser); 2555 2556 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2557 2558 while (read < max_size) { 2559 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2560 if (ret <= 0) 2561 break; 2562 gpa += cte_esz; 2563 read += cte_esz; 2564 } 2565 2566 if (ret > 0) 2567 return 0; 2568 2569 return ret; 2570 } 2571 2572 /** 2573 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2574 * according to v0 ABI 2575 */ 2576 static int vgic_its_save_tables_v0(struct vgic_its *its) 2577 { 2578 int ret; 2579 2580 ret = vgic_its_save_device_tables(its); 2581 if (ret) 2582 return ret; 2583 2584 return vgic_its_save_collection_table(its); 2585 } 2586 2587 /** 2588 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2589 * to internal data structs according to V0 ABI 2590 * 2591 */ 2592 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2593 { 2594 int ret; 2595 2596 ret = vgic_its_restore_collection_table(its); 2597 if (ret) 2598 return ret; 2599 2600 return vgic_its_restore_device_tables(its); 2601 } 2602 2603 static int vgic_its_commit_v0(struct vgic_its *its) 2604 { 2605 const struct vgic_its_abi *abi; 2606 2607 abi = vgic_its_get_abi(its); 2608 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2609 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2610 2611 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2612 << GITS_BASER_ENTRY_SIZE_SHIFT); 2613 2614 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2615 << GITS_BASER_ENTRY_SIZE_SHIFT); 2616 return 0; 2617 } 2618 2619 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2620 { 2621 /* We need to keep the ABI specific field values */ 2622 its->baser_coll_table &= ~GITS_BASER_VALID; 2623 its->baser_device_table &= ~GITS_BASER_VALID; 2624 its->cbaser = 0; 2625 its->creadr = 0; 2626 its->cwriter = 0; 2627 its->enabled = 0; 2628 vgic_its_free_device_list(kvm, its); 2629 vgic_its_free_collection_list(kvm, its); 2630 } 2631 2632 static int vgic_its_has_attr(struct kvm_device *dev, 2633 struct kvm_device_attr *attr) 2634 { 2635 switch (attr->group) { 2636 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2637 switch (attr->attr) { 2638 case KVM_VGIC_ITS_ADDR_TYPE: 2639 return 0; 2640 } 2641 break; 2642 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2643 switch (attr->attr) { 2644 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2645 return 0; 2646 case KVM_DEV_ARM_ITS_CTRL_RESET: 2647 return 0; 2648 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2649 return 0; 2650 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2651 return 0; 2652 } 2653 break; 2654 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2655 return vgic_its_has_attr_regs(dev, attr); 2656 } 2657 return -ENXIO; 2658 } 2659 2660 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2661 { 2662 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2663 int ret = 0; 2664 2665 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2666 return 0; 2667 2668 mutex_lock(&kvm->lock); 2669 mutex_lock(&its->its_lock); 2670 2671 if (!lock_all_vcpus(kvm)) { 2672 mutex_unlock(&its->its_lock); 2673 mutex_unlock(&kvm->lock); 2674 return -EBUSY; 2675 } 2676 2677 switch (attr) { 2678 case KVM_DEV_ARM_ITS_CTRL_RESET: 2679 vgic_its_reset(kvm, its); 2680 break; 2681 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2682 ret = abi->save_tables(its); 2683 break; 2684 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2685 ret = abi->restore_tables(its); 2686 break; 2687 } 2688 2689 unlock_all_vcpus(kvm); 2690 mutex_unlock(&its->its_lock); 2691 mutex_unlock(&kvm->lock); 2692 return ret; 2693 } 2694 2695 static int vgic_its_set_attr(struct kvm_device *dev, 2696 struct kvm_device_attr *attr) 2697 { 2698 struct vgic_its *its = dev->private; 2699 int ret; 2700 2701 switch (attr->group) { 2702 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2703 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2704 unsigned long type = (unsigned long)attr->attr; 2705 u64 addr; 2706 2707 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2708 return -ENODEV; 2709 2710 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2711 return -EFAULT; 2712 2713 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base, 2714 addr, SZ_64K); 2715 if (ret) 2716 return ret; 2717 2718 return vgic_register_its_iodev(dev->kvm, its, addr); 2719 } 2720 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2721 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2722 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2723 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2724 u64 reg; 2725 2726 if (get_user(reg, uaddr)) 2727 return -EFAULT; 2728 2729 return vgic_its_attr_regs_access(dev, attr, ®, true); 2730 } 2731 } 2732 return -ENXIO; 2733 } 2734 2735 static int vgic_its_get_attr(struct kvm_device *dev, 2736 struct kvm_device_attr *attr) 2737 { 2738 switch (attr->group) { 2739 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2740 struct vgic_its *its = dev->private; 2741 u64 addr = its->vgic_its_base; 2742 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2743 unsigned long type = (unsigned long)attr->attr; 2744 2745 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2746 return -ENODEV; 2747 2748 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2749 return -EFAULT; 2750 break; 2751 } 2752 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2753 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2754 u64 reg; 2755 int ret; 2756 2757 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2758 if (ret) 2759 return ret; 2760 return put_user(reg, uaddr); 2761 } 2762 default: 2763 return -ENXIO; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2770 .name = "kvm-arm-vgic-its", 2771 .create = vgic_its_create, 2772 .destroy = vgic_its_destroy, 2773 .set_attr = vgic_its_set_attr, 2774 .get_attr = vgic_its_get_attr, 2775 .has_attr = vgic_its_has_attr, 2776 }; 2777 2778 int kvm_vgic_register_its_device(void) 2779 { 2780 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2781 KVM_DEV_TYPE_ARM_VGIC_ITS); 2782 } 2783