xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-its.c (revision 8bbecfb4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 *
100 	 * Should any of these fail, behave as if we couldn't create the LPI
101 	 * by dropping the refcount and returning the error.
102 	 */
103 	ret = update_lpi_config(kvm, irq, NULL, false);
104 	if (ret) {
105 		vgic_put_irq(kvm, irq);
106 		return ERR_PTR(ret);
107 	}
108 
109 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 	if (ret) {
111 		vgic_put_irq(kvm, irq);
112 		return ERR_PTR(ret);
113 	}
114 
115 	return irq;
116 }
117 
118 struct its_device {
119 	struct list_head dev_list;
120 
121 	/* the head for the list of ITTEs */
122 	struct list_head itt_head;
123 	u32 num_eventid_bits;
124 	gpa_t itt_addr;
125 	u32 device_id;
126 };
127 
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129 
130 struct its_collection {
131 	struct list_head coll_list;
132 
133 	u32 collection_id;
134 	u32 target_addr;
135 };
136 
137 #define its_is_collection_mapped(coll) ((coll) && \
138 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139 
140 struct its_ite {
141 	struct list_head ite_list;
142 
143 	struct vgic_irq *irq;
144 	struct its_collection *collection;
145 	u32 event_id;
146 };
147 
148 struct vgic_translation_cache_entry {
149 	struct list_head	entry;
150 	phys_addr_t		db;
151 	u32			devid;
152 	u32			eventid;
153 	struct vgic_irq		*irq;
154 };
155 
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168 	int cte_esz;
169 	int dte_esz;
170 	int ite_esz;
171 	int (*save_tables)(struct vgic_its *its);
172 	int (*restore_tables)(struct vgic_its *its);
173 	int (*commit)(struct vgic_its *its);
174 };
175 
176 #define ABI_0_ESZ	8
177 #define ESZ_MAX		ABI_0_ESZ
178 
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 	[0] = {
181 	 .cte_esz = ABI_0_ESZ,
182 	 .dte_esz = ABI_0_ESZ,
183 	 .ite_esz = ABI_0_ESZ,
184 	 .save_tables = vgic_its_save_tables_v0,
185 	 .restore_tables = vgic_its_restore_tables_v0,
186 	 .commit = vgic_its_commit_v0,
187 	},
188 };
189 
190 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191 
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 	return &its_table_abi_versions[its->abi_rev];
195 }
196 
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 	const struct vgic_its_abi *abi;
200 
201 	its->abi_rev = rev;
202 	abi = vgic_its_get_abi(its);
203 	return abi->commit(its);
204 }
205 
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 	struct its_device *device;
213 
214 	list_for_each_entry(device, &its->device_list, dev_list)
215 		if (device_id == device->device_id)
216 			return device;
217 
218 	return NULL;
219 }
220 
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 				  u32 event_id)
228 {
229 	struct its_device *device;
230 	struct its_ite *ite;
231 
232 	device = find_its_device(its, device_id);
233 	if (device == NULL)
234 		return NULL;
235 
236 	list_for_each_entry(ite, &device->itt_head, ite_list)
237 		if (ite->event_id == event_id)
238 			return ite;
239 
240 	return NULL;
241 }
242 
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247 
248 #define GIC_LPI_OFFSET 8192
249 
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254 
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 	struct its_collection *collection;
262 
263 	list_for_each_entry(collection, &its->collection_list, coll_list) {
264 		if (coll_id == collection->collection_id)
265 			return collection;
266 	}
267 
268 	return NULL;
269 }
270 
271 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273 
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 	u8 prop;
285 	int ret;
286 	unsigned long flags;
287 
288 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 				  &prop, 1);
290 
291 	if (ret)
292 		return ret;
293 
294 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295 
296 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 		irq->priority = LPI_PROP_PRIORITY(prop);
298 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299 
300 		if (!irq->hw) {
301 			vgic_queue_irq_unlock(kvm, irq, flags);
302 			return 0;
303 		}
304 	}
305 
306 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307 
308 	if (irq->hw)
309 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310 
311 	return 0;
312 }
313 
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 	struct vgic_dist *dist = &kvm->arch.vgic;
322 	struct vgic_irq *irq;
323 	unsigned long flags;
324 	u32 *intids;
325 	int irq_count, i = 0;
326 
327 	/*
328 	 * There is an obvious race between allocating the array and LPIs
329 	 * being mapped/unmapped. If we ended up here as a result of a
330 	 * command, we're safe (locks are held, preventing another
331 	 * command). If coming from another path (such as enabling LPIs),
332 	 * we must be careful not to overrun the array.
333 	 */
334 	irq_count = READ_ONCE(dist->lpi_list_count);
335 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 	if (!intids)
337 		return -ENOMEM;
338 
339 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 		if (i == irq_count)
342 			break;
343 		/* We don't need to "get" the IRQ, as we hold the list lock. */
344 		if (vcpu && irq->target_vcpu != vcpu)
345 			continue;
346 		intids[i++] = irq->intid;
347 	}
348 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349 
350 	*intid_ptr = intids;
351 	return i;
352 }
353 
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 	int ret = 0;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 	irq->target_vcpu = vcpu;
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	if (irq->hw) {
364 		struct its_vlpi_map map;
365 
366 		ret = its_get_vlpi(irq->host_irq, &map);
367 		if (ret)
368 			return ret;
369 
370 		if (map.vpe)
371 			atomic_dec(&map.vpe->vlpi_count);
372 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 		atomic_inc(&map.vpe->vlpi_count);
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383  * is targeting) to the VGIC's view, which deals with target VCPUs.
384  * Needs to be called whenever either the collection for a LPIs has
385  * changed or the collection itself got retargeted.
386  */
387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 	struct kvm_vcpu *vcpu;
390 
391 	if (!its_is_collection_mapped(ite->collection))
392 		return;
393 
394 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 	update_affinity(ite->irq, vcpu);
396 }
397 
398 /*
399  * Updates the target VCPU for every LPI targeting this collection.
400  * Must be called with the its_lock mutex held.
401  */
402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 				       struct its_collection *coll)
404 {
405 	struct its_device *device;
406 	struct its_ite *ite;
407 
408 	for_each_lpi_its(device, ite, its) {
409 		if (!ite->collection || coll != ite->collection)
410 			continue;
411 
412 		update_affinity_ite(kvm, ite);
413 	}
414 }
415 
416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 	int nr_idbits = (propbaser & 0x1f) + 1;
419 
420 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422 
423 /*
424  * Sync the pending table pending bit of LPIs targeting @vcpu
425  * with our own data structures. This relies on the LPI being
426  * mapped before.
427  */
428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 	struct vgic_irq *irq;
432 	int last_byte_offset = -1;
433 	int ret = 0;
434 	u32 *intids;
435 	int nr_irqs, i;
436 	unsigned long flags;
437 	u8 pendmask;
438 
439 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 	if (nr_irqs < 0)
441 		return nr_irqs;
442 
443 	for (i = 0; i < nr_irqs; i++) {
444 		int byte_offset, bit_nr;
445 
446 		byte_offset = intids[i] / BITS_PER_BYTE;
447 		bit_nr = intids[i] % BITS_PER_BYTE;
448 
449 		/*
450 		 * For contiguously allocated LPIs chances are we just read
451 		 * this very same byte in the last iteration. Reuse that.
452 		 */
453 		if (byte_offset != last_byte_offset) {
454 			ret = kvm_read_guest_lock(vcpu->kvm,
455 						  pendbase + byte_offset,
456 						  &pendmask, 1);
457 			if (ret) {
458 				kfree(intids);
459 				return ret;
460 			}
461 			last_byte_offset = byte_offset;
462 		}
463 
464 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 		irq->pending_latch = pendmask & (1U << bit_nr);
467 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 		vgic_put_irq(vcpu->kvm, irq);
469 	}
470 
471 	kfree(intids);
472 
473 	return ret;
474 }
475 
476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 					      struct vgic_its *its,
478 					      gpa_t addr, unsigned int len)
479 {
480 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 	u64 reg = GITS_TYPER_PLPIS;
482 
483 	/*
484 	 * We use linear CPU numbers for redistributor addressing,
485 	 * so GITS_TYPER.PTA is 0.
486 	 * Also we force all PROPBASER registers to be the same, so
487 	 * CommonLPIAff is 0 as well.
488 	 * To avoid memory waste in the guest, we keep the number of IDBits and
489 	 * DevBits low - as least for the time being.
490 	 */
491 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494 
495 	return extract_bytes(reg, addr & 7, len);
496 }
497 
498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 					     struct vgic_its *its,
500 					     gpa_t addr, unsigned int len)
501 {
502 	u32 val;
503 
504 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 	return val;
507 }
508 
509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 					    struct vgic_its *its,
511 					    gpa_t addr, unsigned int len,
512 					    unsigned long val)
513 {
514 	u32 rev = GITS_IIDR_REV(val);
515 
516 	if (rev >= NR_ITS_ABIS)
517 		return -EINVAL;
518 	return vgic_its_set_abi(its, rev);
519 }
520 
521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 					       struct vgic_its *its,
523 					       gpa_t addr, unsigned int len)
524 {
525 	switch (addr & 0xffff) {
526 	case GITS_PIDR0:
527 		return 0x92;	/* part number, bits[7:0] */
528 	case GITS_PIDR1:
529 		return 0xb4;	/* part number, bits[11:8] */
530 	case GITS_PIDR2:
531 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 	case GITS_PIDR4:
533 		return 0x40;	/* This is a 64K software visible page */
534 	/* The following are the ID registers for (any) GIC. */
535 	case GITS_CIDR0:
536 		return 0x0d;
537 	case GITS_CIDR1:
538 		return 0xf0;
539 	case GITS_CIDR2:
540 		return 0x05;
541 	case GITS_CIDR3:
542 		return 0xb1;
543 	}
544 
545 	return 0;
546 }
547 
548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 					       phys_addr_t db,
550 					       u32 devid, u32 eventid)
551 {
552 	struct vgic_translation_cache_entry *cte;
553 
554 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 		/*
556 		 * If we hit a NULL entry, there is nothing after this
557 		 * point.
558 		 */
559 		if (!cte->irq)
560 			break;
561 
562 		if (cte->db != db || cte->devid != devid ||
563 		    cte->eventid != eventid)
564 			continue;
565 
566 		/*
567 		 * Move this entry to the head, as it is the most
568 		 * recently used.
569 		 */
570 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 			list_move(&cte->entry, &dist->lpi_translation_cache);
572 
573 		return cte->irq;
574 	}
575 
576 	return NULL;
577 }
578 
579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 					     u32 devid, u32 eventid)
581 {
582 	struct vgic_dist *dist = &kvm->arch.vgic;
583 	struct vgic_irq *irq;
584 	unsigned long flags;
585 
586 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
588 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
589 
590 	return irq;
591 }
592 
593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
594 				       u32 devid, u32 eventid,
595 				       struct vgic_irq *irq)
596 {
597 	struct vgic_dist *dist = &kvm->arch.vgic;
598 	struct vgic_translation_cache_entry *cte;
599 	unsigned long flags;
600 	phys_addr_t db;
601 
602 	/* Do not cache a directly injected interrupt */
603 	if (irq->hw)
604 		return;
605 
606 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
607 
608 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
609 		goto out;
610 
611 	/*
612 	 * We could have raced with another CPU caching the same
613 	 * translation behind our back, so let's check it is not in
614 	 * already
615 	 */
616 	db = its->vgic_its_base + GITS_TRANSLATER;
617 	if (__vgic_its_check_cache(dist, db, devid, eventid))
618 		goto out;
619 
620 	/* Always reuse the last entry (LRU policy) */
621 	cte = list_last_entry(&dist->lpi_translation_cache,
622 			      typeof(*cte), entry);
623 
624 	/*
625 	 * Caching the translation implies having an extra reference
626 	 * to the interrupt, so drop the potential reference on what
627 	 * was in the cache, and increment it on the new interrupt.
628 	 */
629 	if (cte->irq)
630 		__vgic_put_lpi_locked(kvm, cte->irq);
631 
632 	vgic_get_irq_kref(irq);
633 
634 	cte->db		= db;
635 	cte->devid	= devid;
636 	cte->eventid	= eventid;
637 	cte->irq	= irq;
638 
639 	/* Move the new translation to the head of the list */
640 	list_move(&cte->entry, &dist->lpi_translation_cache);
641 
642 out:
643 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
644 }
645 
646 void vgic_its_invalidate_cache(struct kvm *kvm)
647 {
648 	struct vgic_dist *dist = &kvm->arch.vgic;
649 	struct vgic_translation_cache_entry *cte;
650 	unsigned long flags;
651 
652 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
653 
654 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
655 		/*
656 		 * If we hit a NULL entry, there is nothing after this
657 		 * point.
658 		 */
659 		if (!cte->irq)
660 			break;
661 
662 		__vgic_put_lpi_locked(kvm, cte->irq);
663 		cte->irq = NULL;
664 	}
665 
666 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
667 }
668 
669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
670 			 u32 devid, u32 eventid, struct vgic_irq **irq)
671 {
672 	struct kvm_vcpu *vcpu;
673 	struct its_ite *ite;
674 
675 	if (!its->enabled)
676 		return -EBUSY;
677 
678 	ite = find_ite(its, devid, eventid);
679 	if (!ite || !its_is_collection_mapped(ite->collection))
680 		return E_ITS_INT_UNMAPPED_INTERRUPT;
681 
682 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
683 	if (!vcpu)
684 		return E_ITS_INT_UNMAPPED_INTERRUPT;
685 
686 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
687 		return -EBUSY;
688 
689 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
690 
691 	*irq = ite->irq;
692 	return 0;
693 }
694 
695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
696 {
697 	u64 address;
698 	struct kvm_io_device *kvm_io_dev;
699 	struct vgic_io_device *iodev;
700 
701 	if (!vgic_has_its(kvm))
702 		return ERR_PTR(-ENODEV);
703 
704 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
705 		return ERR_PTR(-EINVAL);
706 
707 	address = (u64)msi->address_hi << 32 | msi->address_lo;
708 
709 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
710 	if (!kvm_io_dev)
711 		return ERR_PTR(-EINVAL);
712 
713 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
714 		return ERR_PTR(-EINVAL);
715 
716 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
717 	if (iodev->iodev_type != IODEV_ITS)
718 		return ERR_PTR(-EINVAL);
719 
720 	return iodev->its;
721 }
722 
723 /*
724  * Find the target VCPU and the LPI number for a given devid/eventid pair
725  * and make this IRQ pending, possibly injecting it.
726  * Must be called with the its_lock mutex held.
727  * Returns 0 on success, a positive error value for any ITS mapping
728  * related errors and negative error values for generic errors.
729  */
730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
731 				u32 devid, u32 eventid)
732 {
733 	struct vgic_irq *irq = NULL;
734 	unsigned long flags;
735 	int err;
736 
737 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
738 	if (err)
739 		return err;
740 
741 	if (irq->hw)
742 		return irq_set_irqchip_state(irq->host_irq,
743 					     IRQCHIP_STATE_PENDING, true);
744 
745 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
746 	irq->pending_latch = true;
747 	vgic_queue_irq_unlock(kvm, irq, flags);
748 
749 	return 0;
750 }
751 
752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
753 {
754 	struct vgic_irq *irq;
755 	unsigned long flags;
756 	phys_addr_t db;
757 
758 	db = (u64)msi->address_hi << 32 | msi->address_lo;
759 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
760 	if (!irq)
761 		return -EWOULDBLOCK;
762 
763 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
764 	irq->pending_latch = true;
765 	vgic_queue_irq_unlock(kvm, irq, flags);
766 
767 	return 0;
768 }
769 
770 /*
771  * Queries the KVM IO bus framework to get the ITS pointer from the given
772  * doorbell address.
773  * We then call vgic_its_trigger_msi() with the decoded data.
774  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
775  */
776 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
777 {
778 	struct vgic_its *its;
779 	int ret;
780 
781 	if (!vgic_its_inject_cached_translation(kvm, msi))
782 		return 1;
783 
784 	its = vgic_msi_to_its(kvm, msi);
785 	if (IS_ERR(its))
786 		return PTR_ERR(its);
787 
788 	mutex_lock(&its->its_lock);
789 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
790 	mutex_unlock(&its->its_lock);
791 
792 	if (ret < 0)
793 		return ret;
794 
795 	/*
796 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
797 	 * if the guest has blocked the MSI. So we map any LPI mapping
798 	 * related error to that.
799 	 */
800 	if (ret)
801 		return 0;
802 	else
803 		return 1;
804 }
805 
806 /* Requires the its_lock to be held. */
807 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
808 {
809 	list_del(&ite->ite_list);
810 
811 	/* This put matches the get in vgic_add_lpi. */
812 	if (ite->irq) {
813 		if (ite->irq->hw)
814 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
815 
816 		vgic_put_irq(kvm, ite->irq);
817 	}
818 
819 	kfree(ite);
820 }
821 
822 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
823 {
824 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
825 }
826 
827 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
828 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
829 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
830 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
831 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
832 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
833 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
834 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
835 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
836 
837 /*
838  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
839  * Must be called with the its_lock mutex held.
840  */
841 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
842 				       u64 *its_cmd)
843 {
844 	u32 device_id = its_cmd_get_deviceid(its_cmd);
845 	u32 event_id = its_cmd_get_id(its_cmd);
846 	struct its_ite *ite;
847 
848 	ite = find_ite(its, device_id, event_id);
849 	if (ite && its_is_collection_mapped(ite->collection)) {
850 		/*
851 		 * Though the spec talks about removing the pending state, we
852 		 * don't bother here since we clear the ITTE anyway and the
853 		 * pending state is a property of the ITTE struct.
854 		 */
855 		vgic_its_invalidate_cache(kvm);
856 
857 		its_free_ite(kvm, ite);
858 		return 0;
859 	}
860 
861 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
862 }
863 
864 /*
865  * The MOVI command moves an ITTE to a different collection.
866  * Must be called with the its_lock mutex held.
867  */
868 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
869 				    u64 *its_cmd)
870 {
871 	u32 device_id = its_cmd_get_deviceid(its_cmd);
872 	u32 event_id = its_cmd_get_id(its_cmd);
873 	u32 coll_id = its_cmd_get_collection(its_cmd);
874 	struct kvm_vcpu *vcpu;
875 	struct its_ite *ite;
876 	struct its_collection *collection;
877 
878 	ite = find_ite(its, device_id, event_id);
879 	if (!ite)
880 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
881 
882 	if (!its_is_collection_mapped(ite->collection))
883 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
884 
885 	collection = find_collection(its, coll_id);
886 	if (!its_is_collection_mapped(collection))
887 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
888 
889 	ite->collection = collection;
890 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
891 
892 	vgic_its_invalidate_cache(kvm);
893 
894 	return update_affinity(ite->irq, vcpu);
895 }
896 
897 /*
898  * Check whether an ID can be stored into the corresponding guest table.
899  * For a direct table this is pretty easy, but gets a bit nasty for
900  * indirect tables. We check whether the resulting guest physical address
901  * is actually valid (covered by a memslot and guest accessible).
902  * For this we have to read the respective first level entry.
903  */
904 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
905 			      gpa_t *eaddr)
906 {
907 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
908 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
909 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
910 	int esz = GITS_BASER_ENTRY_SIZE(baser);
911 	int index, idx;
912 	gfn_t gfn;
913 	bool ret;
914 
915 	switch (type) {
916 	case GITS_BASER_TYPE_DEVICE:
917 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
918 			return false;
919 		break;
920 	case GITS_BASER_TYPE_COLLECTION:
921 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
922 		if (id >= BIT_ULL(16))
923 			return false;
924 		break;
925 	default:
926 		return false;
927 	}
928 
929 	if (!(baser & GITS_BASER_INDIRECT)) {
930 		phys_addr_t addr;
931 
932 		if (id >= (l1_tbl_size / esz))
933 			return false;
934 
935 		addr = base + id * esz;
936 		gfn = addr >> PAGE_SHIFT;
937 
938 		if (eaddr)
939 			*eaddr = addr;
940 
941 		goto out;
942 	}
943 
944 	/* calculate and check the index into the 1st level */
945 	index = id / (SZ_64K / esz);
946 	if (index >= (l1_tbl_size / sizeof(u64)))
947 		return false;
948 
949 	/* Each 1st level entry is represented by a 64-bit value. */
950 	if (kvm_read_guest_lock(its->dev->kvm,
951 			   base + index * sizeof(indirect_ptr),
952 			   &indirect_ptr, sizeof(indirect_ptr)))
953 		return false;
954 
955 	indirect_ptr = le64_to_cpu(indirect_ptr);
956 
957 	/* check the valid bit of the first level entry */
958 	if (!(indirect_ptr & BIT_ULL(63)))
959 		return false;
960 
961 	/* Mask the guest physical address and calculate the frame number. */
962 	indirect_ptr &= GENMASK_ULL(51, 16);
963 
964 	/* Find the address of the actual entry */
965 	index = id % (SZ_64K / esz);
966 	indirect_ptr += index * esz;
967 	gfn = indirect_ptr >> PAGE_SHIFT;
968 
969 	if (eaddr)
970 		*eaddr = indirect_ptr;
971 
972 out:
973 	idx = srcu_read_lock(&its->dev->kvm->srcu);
974 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
975 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
976 	return ret;
977 }
978 
979 static int vgic_its_alloc_collection(struct vgic_its *its,
980 				     struct its_collection **colp,
981 				     u32 coll_id)
982 {
983 	struct its_collection *collection;
984 
985 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
986 		return E_ITS_MAPC_COLLECTION_OOR;
987 
988 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
989 	if (!collection)
990 		return -ENOMEM;
991 
992 	collection->collection_id = coll_id;
993 	collection->target_addr = COLLECTION_NOT_MAPPED;
994 
995 	list_add_tail(&collection->coll_list, &its->collection_list);
996 	*colp = collection;
997 
998 	return 0;
999 }
1000 
1001 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1002 {
1003 	struct its_collection *collection;
1004 	struct its_device *device;
1005 	struct its_ite *ite;
1006 
1007 	/*
1008 	 * Clearing the mapping for that collection ID removes the
1009 	 * entry from the list. If there wasn't any before, we can
1010 	 * go home early.
1011 	 */
1012 	collection = find_collection(its, coll_id);
1013 	if (!collection)
1014 		return;
1015 
1016 	for_each_lpi_its(device, ite, its)
1017 		if (ite->collection &&
1018 		    ite->collection->collection_id == coll_id)
1019 			ite->collection = NULL;
1020 
1021 	list_del(&collection->coll_list);
1022 	kfree(collection);
1023 }
1024 
1025 /* Must be called with its_lock mutex held */
1026 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1027 					  struct its_collection *collection,
1028 					  u32 event_id)
1029 {
1030 	struct its_ite *ite;
1031 
1032 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1033 	if (!ite)
1034 		return ERR_PTR(-ENOMEM);
1035 
1036 	ite->event_id	= event_id;
1037 	ite->collection = collection;
1038 
1039 	list_add_tail(&ite->ite_list, &device->itt_head);
1040 	return ite;
1041 }
1042 
1043 /*
1044  * The MAPTI and MAPI commands map LPIs to ITTEs.
1045  * Must be called with its_lock mutex held.
1046  */
1047 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1048 				    u64 *its_cmd)
1049 {
1050 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1051 	u32 event_id = its_cmd_get_id(its_cmd);
1052 	u32 coll_id = its_cmd_get_collection(its_cmd);
1053 	struct its_ite *ite;
1054 	struct kvm_vcpu *vcpu = NULL;
1055 	struct its_device *device;
1056 	struct its_collection *collection, *new_coll = NULL;
1057 	struct vgic_irq *irq;
1058 	int lpi_nr;
1059 
1060 	device = find_its_device(its, device_id);
1061 	if (!device)
1062 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1063 
1064 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1065 		return E_ITS_MAPTI_ID_OOR;
1066 
1067 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1068 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1069 	else
1070 		lpi_nr = event_id;
1071 	if (lpi_nr < GIC_LPI_OFFSET ||
1072 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1073 		return E_ITS_MAPTI_PHYSICALID_OOR;
1074 
1075 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1076 	if (find_ite(its, device_id, event_id))
1077 		return 0;
1078 
1079 	collection = find_collection(its, coll_id);
1080 	if (!collection) {
1081 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1082 		if (ret)
1083 			return ret;
1084 		new_coll = collection;
1085 	}
1086 
1087 	ite = vgic_its_alloc_ite(device, collection, event_id);
1088 	if (IS_ERR(ite)) {
1089 		if (new_coll)
1090 			vgic_its_free_collection(its, coll_id);
1091 		return PTR_ERR(ite);
1092 	}
1093 
1094 	if (its_is_collection_mapped(collection))
1095 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1096 
1097 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1098 	if (IS_ERR(irq)) {
1099 		if (new_coll)
1100 			vgic_its_free_collection(its, coll_id);
1101 		its_free_ite(kvm, ite);
1102 		return PTR_ERR(irq);
1103 	}
1104 	ite->irq = irq;
1105 
1106 	return 0;
1107 }
1108 
1109 /* Requires the its_lock to be held. */
1110 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1111 {
1112 	struct its_ite *ite, *temp;
1113 
1114 	/*
1115 	 * The spec says that unmapping a device with still valid
1116 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1117 	 * since we cannot leave the memory unreferenced.
1118 	 */
1119 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1120 		its_free_ite(kvm, ite);
1121 
1122 	vgic_its_invalidate_cache(kvm);
1123 
1124 	list_del(&device->dev_list);
1125 	kfree(device);
1126 }
1127 
1128 /* its lock must be held */
1129 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1130 {
1131 	struct its_device *cur, *temp;
1132 
1133 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1134 		vgic_its_free_device(kvm, cur);
1135 }
1136 
1137 /* its lock must be held */
1138 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1139 {
1140 	struct its_collection *cur, *temp;
1141 
1142 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1143 		vgic_its_free_collection(its, cur->collection_id);
1144 }
1145 
1146 /* Must be called with its_lock mutex held */
1147 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1148 						u32 device_id, gpa_t itt_addr,
1149 						u8 num_eventid_bits)
1150 {
1151 	struct its_device *device;
1152 
1153 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1154 	if (!device)
1155 		return ERR_PTR(-ENOMEM);
1156 
1157 	device->device_id = device_id;
1158 	device->itt_addr = itt_addr;
1159 	device->num_eventid_bits = num_eventid_bits;
1160 	INIT_LIST_HEAD(&device->itt_head);
1161 
1162 	list_add_tail(&device->dev_list, &its->device_list);
1163 	return device;
1164 }
1165 
1166 /*
1167  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1168  * Must be called with the its_lock mutex held.
1169  */
1170 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1171 				    u64 *its_cmd)
1172 {
1173 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1174 	bool valid = its_cmd_get_validbit(its_cmd);
1175 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1176 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1177 	struct its_device *device;
1178 
1179 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1180 		return E_ITS_MAPD_DEVICE_OOR;
1181 
1182 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1183 		return E_ITS_MAPD_ITTSIZE_OOR;
1184 
1185 	device = find_its_device(its, device_id);
1186 
1187 	/*
1188 	 * The spec says that calling MAPD on an already mapped device
1189 	 * invalidates all cached data for this device. We implement this
1190 	 * by removing the mapping and re-establishing it.
1191 	 */
1192 	if (device)
1193 		vgic_its_free_device(kvm, device);
1194 
1195 	/*
1196 	 * The spec does not say whether unmapping a not-mapped device
1197 	 * is an error, so we are done in any case.
1198 	 */
1199 	if (!valid)
1200 		return 0;
1201 
1202 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1203 				       num_eventid_bits);
1204 
1205 	return PTR_ERR_OR_ZERO(device);
1206 }
1207 
1208 /*
1209  * The MAPC command maps collection IDs to redistributors.
1210  * Must be called with the its_lock mutex held.
1211  */
1212 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1213 				    u64 *its_cmd)
1214 {
1215 	u16 coll_id;
1216 	u32 target_addr;
1217 	struct its_collection *collection;
1218 	bool valid;
1219 
1220 	valid = its_cmd_get_validbit(its_cmd);
1221 	coll_id = its_cmd_get_collection(its_cmd);
1222 	target_addr = its_cmd_get_target_addr(its_cmd);
1223 
1224 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1225 		return E_ITS_MAPC_PROCNUM_OOR;
1226 
1227 	if (!valid) {
1228 		vgic_its_free_collection(its, coll_id);
1229 		vgic_its_invalidate_cache(kvm);
1230 	} else {
1231 		collection = find_collection(its, coll_id);
1232 
1233 		if (!collection) {
1234 			int ret;
1235 
1236 			ret = vgic_its_alloc_collection(its, &collection,
1237 							coll_id);
1238 			if (ret)
1239 				return ret;
1240 			collection->target_addr = target_addr;
1241 		} else {
1242 			collection->target_addr = target_addr;
1243 			update_affinity_collection(kvm, its, collection);
1244 		}
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * The CLEAR command removes the pending state for a particular LPI.
1252  * Must be called with the its_lock mutex held.
1253  */
1254 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1255 				     u64 *its_cmd)
1256 {
1257 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1258 	u32 event_id = its_cmd_get_id(its_cmd);
1259 	struct its_ite *ite;
1260 
1261 
1262 	ite = find_ite(its, device_id, event_id);
1263 	if (!ite)
1264 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1265 
1266 	ite->irq->pending_latch = false;
1267 
1268 	if (ite->irq->hw)
1269 		return irq_set_irqchip_state(ite->irq->host_irq,
1270 					     IRQCHIP_STATE_PENDING, false);
1271 
1272 	return 0;
1273 }
1274 
1275 /*
1276  * The INV command syncs the configuration bits from the memory table.
1277  * Must be called with the its_lock mutex held.
1278  */
1279 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1280 				   u64 *its_cmd)
1281 {
1282 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1283 	u32 event_id = its_cmd_get_id(its_cmd);
1284 	struct its_ite *ite;
1285 
1286 
1287 	ite = find_ite(its, device_id, event_id);
1288 	if (!ite)
1289 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1290 
1291 	return update_lpi_config(kvm, ite->irq, NULL, true);
1292 }
1293 
1294 /*
1295  * The INVALL command requests flushing of all IRQ data in this collection.
1296  * Find the VCPU mapped to that collection, then iterate over the VM's list
1297  * of mapped LPIs and update the configuration for each IRQ which targets
1298  * the specified vcpu. The configuration will be read from the in-memory
1299  * configuration table.
1300  * Must be called with the its_lock mutex held.
1301  */
1302 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1303 				      u64 *its_cmd)
1304 {
1305 	u32 coll_id = its_cmd_get_collection(its_cmd);
1306 	struct its_collection *collection;
1307 	struct kvm_vcpu *vcpu;
1308 	struct vgic_irq *irq;
1309 	u32 *intids;
1310 	int irq_count, i;
1311 
1312 	collection = find_collection(its, coll_id);
1313 	if (!its_is_collection_mapped(collection))
1314 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1315 
1316 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1317 
1318 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1319 	if (irq_count < 0)
1320 		return irq_count;
1321 
1322 	for (i = 0; i < irq_count; i++) {
1323 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1324 		if (!irq)
1325 			continue;
1326 		update_lpi_config(kvm, irq, vcpu, false);
1327 		vgic_put_irq(kvm, irq);
1328 	}
1329 
1330 	kfree(intids);
1331 
1332 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1333 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1334 
1335 	return 0;
1336 }
1337 
1338 /*
1339  * The MOVALL command moves the pending state of all IRQs targeting one
1340  * redistributor to another. We don't hold the pending state in the VCPUs,
1341  * but in the IRQs instead, so there is really not much to do for us here.
1342  * However the spec says that no IRQ must target the old redistributor
1343  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1344  * This command affects all LPIs in the system that target that redistributor.
1345  */
1346 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1347 				      u64 *its_cmd)
1348 {
1349 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1350 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1351 	struct kvm_vcpu *vcpu1, *vcpu2;
1352 	struct vgic_irq *irq;
1353 	u32 *intids;
1354 	int irq_count, i;
1355 
1356 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1357 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1358 		return E_ITS_MOVALL_PROCNUM_OOR;
1359 
1360 	if (target1_addr == target2_addr)
1361 		return 0;
1362 
1363 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1364 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1365 
1366 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1367 	if (irq_count < 0)
1368 		return irq_count;
1369 
1370 	for (i = 0; i < irq_count; i++) {
1371 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1372 
1373 		update_affinity(irq, vcpu2);
1374 
1375 		vgic_put_irq(kvm, irq);
1376 	}
1377 
1378 	vgic_its_invalidate_cache(kvm);
1379 
1380 	kfree(intids);
1381 	return 0;
1382 }
1383 
1384 /*
1385  * The INT command injects the LPI associated with that DevID/EvID pair.
1386  * Must be called with the its_lock mutex held.
1387  */
1388 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1389 				   u64 *its_cmd)
1390 {
1391 	u32 msi_data = its_cmd_get_id(its_cmd);
1392 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1393 
1394 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1395 }
1396 
1397 /*
1398  * This function is called with the its_cmd lock held, but the ITS data
1399  * structure lock dropped.
1400  */
1401 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1402 				   u64 *its_cmd)
1403 {
1404 	int ret = -ENODEV;
1405 
1406 	mutex_lock(&its->its_lock);
1407 	switch (its_cmd_get_command(its_cmd)) {
1408 	case GITS_CMD_MAPD:
1409 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1410 		break;
1411 	case GITS_CMD_MAPC:
1412 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1413 		break;
1414 	case GITS_CMD_MAPI:
1415 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1416 		break;
1417 	case GITS_CMD_MAPTI:
1418 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1419 		break;
1420 	case GITS_CMD_MOVI:
1421 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1422 		break;
1423 	case GITS_CMD_DISCARD:
1424 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1425 		break;
1426 	case GITS_CMD_CLEAR:
1427 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1428 		break;
1429 	case GITS_CMD_MOVALL:
1430 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1431 		break;
1432 	case GITS_CMD_INT:
1433 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1434 		break;
1435 	case GITS_CMD_INV:
1436 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1437 		break;
1438 	case GITS_CMD_INVALL:
1439 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1440 		break;
1441 	case GITS_CMD_SYNC:
1442 		/* we ignore this command: we are in sync all of the time */
1443 		ret = 0;
1444 		break;
1445 	}
1446 	mutex_unlock(&its->its_lock);
1447 
1448 	return ret;
1449 }
1450 
1451 static u64 vgic_sanitise_its_baser(u64 reg)
1452 {
1453 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1454 				  GITS_BASER_SHAREABILITY_SHIFT,
1455 				  vgic_sanitise_shareability);
1456 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1457 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1458 				  vgic_sanitise_inner_cacheability);
1459 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1460 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1461 				  vgic_sanitise_outer_cacheability);
1462 
1463 	/* We support only one (ITS) page size: 64K */
1464 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1465 
1466 	return reg;
1467 }
1468 
1469 static u64 vgic_sanitise_its_cbaser(u64 reg)
1470 {
1471 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1472 				  GITS_CBASER_SHAREABILITY_SHIFT,
1473 				  vgic_sanitise_shareability);
1474 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1475 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1476 				  vgic_sanitise_inner_cacheability);
1477 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1478 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1479 				  vgic_sanitise_outer_cacheability);
1480 
1481 	/* Sanitise the physical address to be 64k aligned. */
1482 	reg &= ~GENMASK_ULL(15, 12);
1483 
1484 	return reg;
1485 }
1486 
1487 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1488 					       struct vgic_its *its,
1489 					       gpa_t addr, unsigned int len)
1490 {
1491 	return extract_bytes(its->cbaser, addr & 7, len);
1492 }
1493 
1494 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1495 				       gpa_t addr, unsigned int len,
1496 				       unsigned long val)
1497 {
1498 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1499 	if (its->enabled)
1500 		return;
1501 
1502 	mutex_lock(&its->cmd_lock);
1503 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1504 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1505 	its->creadr = 0;
1506 	/*
1507 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1508 	 * it to CREADR to make sure we start with an empty command buffer.
1509 	 */
1510 	its->cwriter = its->creadr;
1511 	mutex_unlock(&its->cmd_lock);
1512 }
1513 
1514 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1515 #define ITS_CMD_SIZE			32
1516 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1517 
1518 /* Must be called with the cmd_lock held. */
1519 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1520 {
1521 	gpa_t cbaser;
1522 	u64 cmd_buf[4];
1523 
1524 	/* Commands are only processed when the ITS is enabled. */
1525 	if (!its->enabled)
1526 		return;
1527 
1528 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1529 
1530 	while (its->cwriter != its->creadr) {
1531 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1532 					      cmd_buf, ITS_CMD_SIZE);
1533 		/*
1534 		 * If kvm_read_guest() fails, this could be due to the guest
1535 		 * programming a bogus value in CBASER or something else going
1536 		 * wrong from which we cannot easily recover.
1537 		 * According to section 6.3.2 in the GICv3 spec we can just
1538 		 * ignore that command then.
1539 		 */
1540 		if (!ret)
1541 			vgic_its_handle_command(kvm, its, cmd_buf);
1542 
1543 		its->creadr += ITS_CMD_SIZE;
1544 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1545 			its->creadr = 0;
1546 	}
1547 }
1548 
1549 /*
1550  * By writing to CWRITER the guest announces new commands to be processed.
1551  * To avoid any races in the first place, we take the its_cmd lock, which
1552  * protects our ring buffer variables, so that there is only one user
1553  * per ITS handling commands at a given time.
1554  */
1555 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1556 					gpa_t addr, unsigned int len,
1557 					unsigned long val)
1558 {
1559 	u64 reg;
1560 
1561 	if (!its)
1562 		return;
1563 
1564 	mutex_lock(&its->cmd_lock);
1565 
1566 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1567 	reg = ITS_CMD_OFFSET(reg);
1568 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1569 		mutex_unlock(&its->cmd_lock);
1570 		return;
1571 	}
1572 	its->cwriter = reg;
1573 
1574 	vgic_its_process_commands(kvm, its);
1575 
1576 	mutex_unlock(&its->cmd_lock);
1577 }
1578 
1579 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1580 						struct vgic_its *its,
1581 						gpa_t addr, unsigned int len)
1582 {
1583 	return extract_bytes(its->cwriter, addr & 0x7, len);
1584 }
1585 
1586 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1587 					       struct vgic_its *its,
1588 					       gpa_t addr, unsigned int len)
1589 {
1590 	return extract_bytes(its->creadr, addr & 0x7, len);
1591 }
1592 
1593 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1594 					      struct vgic_its *its,
1595 					      gpa_t addr, unsigned int len,
1596 					      unsigned long val)
1597 {
1598 	u32 cmd_offset;
1599 	int ret = 0;
1600 
1601 	mutex_lock(&its->cmd_lock);
1602 
1603 	if (its->enabled) {
1604 		ret = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	cmd_offset = ITS_CMD_OFFSET(val);
1609 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1610 		ret = -EINVAL;
1611 		goto out;
1612 	}
1613 
1614 	its->creadr = cmd_offset;
1615 out:
1616 	mutex_unlock(&its->cmd_lock);
1617 	return ret;
1618 }
1619 
1620 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1621 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1622 					      struct vgic_its *its,
1623 					      gpa_t addr, unsigned int len)
1624 {
1625 	u64 reg;
1626 
1627 	switch (BASER_INDEX(addr)) {
1628 	case 0:
1629 		reg = its->baser_device_table;
1630 		break;
1631 	case 1:
1632 		reg = its->baser_coll_table;
1633 		break;
1634 	default:
1635 		reg = 0;
1636 		break;
1637 	}
1638 
1639 	return extract_bytes(reg, addr & 7, len);
1640 }
1641 
1642 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1643 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1644 				      struct vgic_its *its,
1645 				      gpa_t addr, unsigned int len,
1646 				      unsigned long val)
1647 {
1648 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1649 	u64 entry_size, table_type;
1650 	u64 reg, *regptr, clearbits = 0;
1651 
1652 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1653 	if (its->enabled)
1654 		return;
1655 
1656 	switch (BASER_INDEX(addr)) {
1657 	case 0:
1658 		regptr = &its->baser_device_table;
1659 		entry_size = abi->dte_esz;
1660 		table_type = GITS_BASER_TYPE_DEVICE;
1661 		break;
1662 	case 1:
1663 		regptr = &its->baser_coll_table;
1664 		entry_size = abi->cte_esz;
1665 		table_type = GITS_BASER_TYPE_COLLECTION;
1666 		clearbits = GITS_BASER_INDIRECT;
1667 		break;
1668 	default:
1669 		return;
1670 	}
1671 
1672 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1673 	reg &= ~GITS_BASER_RO_MASK;
1674 	reg &= ~clearbits;
1675 
1676 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1677 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1678 	reg = vgic_sanitise_its_baser(reg);
1679 
1680 	*regptr = reg;
1681 
1682 	if (!(reg & GITS_BASER_VALID)) {
1683 		/* Take the its_lock to prevent a race with a save/restore */
1684 		mutex_lock(&its->its_lock);
1685 		switch (table_type) {
1686 		case GITS_BASER_TYPE_DEVICE:
1687 			vgic_its_free_device_list(kvm, its);
1688 			break;
1689 		case GITS_BASER_TYPE_COLLECTION:
1690 			vgic_its_free_collection_list(kvm, its);
1691 			break;
1692 		}
1693 		mutex_unlock(&its->its_lock);
1694 	}
1695 }
1696 
1697 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1698 					     struct vgic_its *its,
1699 					     gpa_t addr, unsigned int len)
1700 {
1701 	u32 reg = 0;
1702 
1703 	mutex_lock(&its->cmd_lock);
1704 	if (its->creadr == its->cwriter)
1705 		reg |= GITS_CTLR_QUIESCENT;
1706 	if (its->enabled)
1707 		reg |= GITS_CTLR_ENABLE;
1708 	mutex_unlock(&its->cmd_lock);
1709 
1710 	return reg;
1711 }
1712 
1713 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1714 				     gpa_t addr, unsigned int len,
1715 				     unsigned long val)
1716 {
1717 	mutex_lock(&its->cmd_lock);
1718 
1719 	/*
1720 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1721 	 * device/collection BASER are invalid
1722 	 */
1723 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1724 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1725 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1726 		 !(its->cbaser & GITS_CBASER_VALID)))
1727 		goto out;
1728 
1729 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1730 	if (!its->enabled)
1731 		vgic_its_invalidate_cache(kvm);
1732 
1733 	/*
1734 	 * Try to process any pending commands. This function bails out early
1735 	 * if the ITS is disabled or no commands have been queued.
1736 	 */
1737 	vgic_its_process_commands(kvm, its);
1738 
1739 out:
1740 	mutex_unlock(&its->cmd_lock);
1741 }
1742 
1743 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1744 {								\
1745 	.reg_offset = off,					\
1746 	.len = length,						\
1747 	.access_flags = acc,					\
1748 	.its_read = rd,						\
1749 	.its_write = wr,					\
1750 }
1751 
1752 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1753 {								\
1754 	.reg_offset = off,					\
1755 	.len = length,						\
1756 	.access_flags = acc,					\
1757 	.its_read = rd,						\
1758 	.its_write = wr,					\
1759 	.uaccess_its_write = uwr,				\
1760 }
1761 
1762 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1763 			      gpa_t addr, unsigned int len, unsigned long val)
1764 {
1765 	/* Ignore */
1766 }
1767 
1768 static struct vgic_register_region its_registers[] = {
1769 	REGISTER_ITS_DESC(GITS_CTLR,
1770 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1771 		VGIC_ACCESS_32bit),
1772 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1773 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1774 		vgic_mmio_uaccess_write_its_iidr, 4,
1775 		VGIC_ACCESS_32bit),
1776 	REGISTER_ITS_DESC(GITS_TYPER,
1777 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1778 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1779 	REGISTER_ITS_DESC(GITS_CBASER,
1780 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1781 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1782 	REGISTER_ITS_DESC(GITS_CWRITER,
1783 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1784 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1785 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1786 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1787 		vgic_mmio_uaccess_write_its_creadr, 8,
1788 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1789 	REGISTER_ITS_DESC(GITS_BASER,
1790 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1791 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1792 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1793 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1794 		VGIC_ACCESS_32bit),
1795 };
1796 
1797 /* This is called on setting the LPI enable bit in the redistributor. */
1798 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1799 {
1800 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1801 		its_sync_lpi_pending_table(vcpu);
1802 }
1803 
1804 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1805 				   u64 addr)
1806 {
1807 	struct vgic_io_device *iodev = &its->iodev;
1808 	int ret;
1809 
1810 	mutex_lock(&kvm->slots_lock);
1811 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1812 		ret = -EBUSY;
1813 		goto out;
1814 	}
1815 
1816 	its->vgic_its_base = addr;
1817 	iodev->regions = its_registers;
1818 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1819 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1820 
1821 	iodev->base_addr = its->vgic_its_base;
1822 	iodev->iodev_type = IODEV_ITS;
1823 	iodev->its = its;
1824 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1825 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1826 out:
1827 	mutex_unlock(&kvm->slots_lock);
1828 
1829 	return ret;
1830 }
1831 
1832 /* Default is 16 cached LPIs per vcpu */
1833 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1834 
1835 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1836 {
1837 	struct vgic_dist *dist = &kvm->arch.vgic;
1838 	unsigned int sz;
1839 	int i;
1840 
1841 	if (!list_empty(&dist->lpi_translation_cache))
1842 		return;
1843 
1844 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1845 
1846 	for (i = 0; i < sz; i++) {
1847 		struct vgic_translation_cache_entry *cte;
1848 
1849 		/* An allocation failure is not fatal */
1850 		cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1851 		if (WARN_ON(!cte))
1852 			break;
1853 
1854 		INIT_LIST_HEAD(&cte->entry);
1855 		list_add(&cte->entry, &dist->lpi_translation_cache);
1856 	}
1857 }
1858 
1859 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1860 {
1861 	struct vgic_dist *dist = &kvm->arch.vgic;
1862 	struct vgic_translation_cache_entry *cte, *tmp;
1863 
1864 	vgic_its_invalidate_cache(kvm);
1865 
1866 	list_for_each_entry_safe(cte, tmp,
1867 				 &dist->lpi_translation_cache, entry) {
1868 		list_del(&cte->entry);
1869 		kfree(cte);
1870 	}
1871 }
1872 
1873 #define INITIAL_BASER_VALUE						  \
1874 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1875 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1876 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1877 	 GITS_BASER_PAGE_SIZE_64K)
1878 
1879 #define INITIAL_PROPBASER_VALUE						  \
1880 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1881 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1882 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1883 
1884 static int vgic_its_create(struct kvm_device *dev, u32 type)
1885 {
1886 	struct vgic_its *its;
1887 
1888 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1889 		return -ENODEV;
1890 
1891 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1892 	if (!its)
1893 		return -ENOMEM;
1894 
1895 	if (vgic_initialized(dev->kvm)) {
1896 		int ret = vgic_v4_init(dev->kvm);
1897 		if (ret < 0) {
1898 			kfree(its);
1899 			return ret;
1900 		}
1901 
1902 		vgic_lpi_translation_cache_init(dev->kvm);
1903 	}
1904 
1905 	mutex_init(&its->its_lock);
1906 	mutex_init(&its->cmd_lock);
1907 
1908 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1909 
1910 	INIT_LIST_HEAD(&its->device_list);
1911 	INIT_LIST_HEAD(&its->collection_list);
1912 
1913 	dev->kvm->arch.vgic.msis_require_devid = true;
1914 	dev->kvm->arch.vgic.has_its = true;
1915 	its->enabled = false;
1916 	its->dev = dev;
1917 
1918 	its->baser_device_table = INITIAL_BASER_VALUE			|
1919 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1920 	its->baser_coll_table = INITIAL_BASER_VALUE |
1921 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1922 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1923 
1924 	dev->private = its;
1925 
1926 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1927 }
1928 
1929 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1930 {
1931 	struct kvm *kvm = kvm_dev->kvm;
1932 	struct vgic_its *its = kvm_dev->private;
1933 
1934 	mutex_lock(&its->its_lock);
1935 
1936 	vgic_its_free_device_list(kvm, its);
1937 	vgic_its_free_collection_list(kvm, its);
1938 
1939 	mutex_unlock(&its->its_lock);
1940 	kfree(its);
1941 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1942 }
1943 
1944 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1945 				  struct kvm_device_attr *attr)
1946 {
1947 	const struct vgic_register_region *region;
1948 	gpa_t offset = attr->attr;
1949 	int align;
1950 
1951 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1952 
1953 	if (offset & align)
1954 		return -EINVAL;
1955 
1956 	region = vgic_find_mmio_region(its_registers,
1957 				       ARRAY_SIZE(its_registers),
1958 				       offset);
1959 	if (!region)
1960 		return -ENXIO;
1961 
1962 	return 0;
1963 }
1964 
1965 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1966 				     struct kvm_device_attr *attr,
1967 				     u64 *reg, bool is_write)
1968 {
1969 	const struct vgic_register_region *region;
1970 	struct vgic_its *its;
1971 	gpa_t addr, offset;
1972 	unsigned int len;
1973 	int align, ret = 0;
1974 
1975 	its = dev->private;
1976 	offset = attr->attr;
1977 
1978 	/*
1979 	 * Although the spec supports upper/lower 32-bit accesses to
1980 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1981 	 * accesses to all 64-bit wide registers. We therefore only
1982 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1983 	 * registers
1984 	 */
1985 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1986 		align = 0x3;
1987 	else
1988 		align = 0x7;
1989 
1990 	if (offset & align)
1991 		return -EINVAL;
1992 
1993 	mutex_lock(&dev->kvm->lock);
1994 
1995 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1996 		ret = -ENXIO;
1997 		goto out;
1998 	}
1999 
2000 	region = vgic_find_mmio_region(its_registers,
2001 				       ARRAY_SIZE(its_registers),
2002 				       offset);
2003 	if (!region) {
2004 		ret = -ENXIO;
2005 		goto out;
2006 	}
2007 
2008 	if (!lock_all_vcpus(dev->kvm)) {
2009 		ret = -EBUSY;
2010 		goto out;
2011 	}
2012 
2013 	addr = its->vgic_its_base + offset;
2014 
2015 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2016 
2017 	if (is_write) {
2018 		if (region->uaccess_its_write)
2019 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2020 							len, *reg);
2021 		else
2022 			region->its_write(dev->kvm, its, addr, len, *reg);
2023 	} else {
2024 		*reg = region->its_read(dev->kvm, its, addr, len);
2025 	}
2026 	unlock_all_vcpus(dev->kvm);
2027 out:
2028 	mutex_unlock(&dev->kvm->lock);
2029 	return ret;
2030 }
2031 
2032 static u32 compute_next_devid_offset(struct list_head *h,
2033 				     struct its_device *dev)
2034 {
2035 	struct its_device *next;
2036 	u32 next_offset;
2037 
2038 	if (list_is_last(&dev->dev_list, h))
2039 		return 0;
2040 	next = list_next_entry(dev, dev_list);
2041 	next_offset = next->device_id - dev->device_id;
2042 
2043 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2044 }
2045 
2046 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2047 {
2048 	struct its_ite *next;
2049 	u32 next_offset;
2050 
2051 	if (list_is_last(&ite->ite_list, h))
2052 		return 0;
2053 	next = list_next_entry(ite, ite_list);
2054 	next_offset = next->event_id - ite->event_id;
2055 
2056 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2057 }
2058 
2059 /**
2060  * entry_fn_t - Callback called on a table entry restore path
2061  * @its: its handle
2062  * @id: id of the entry
2063  * @entry: pointer to the entry
2064  * @opaque: pointer to an opaque data
2065  *
2066  * Return: < 0 on error, 0 if last element was identified, id offset to next
2067  * element otherwise
2068  */
2069 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2070 			  void *opaque);
2071 
2072 /**
2073  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2074  * to each entry
2075  *
2076  * @its: its handle
2077  * @base: base gpa of the table
2078  * @size: size of the table in bytes
2079  * @esz: entry size in bytes
2080  * @start_id: the ID of the first entry in the table
2081  * (non zero for 2d level tables)
2082  * @fn: function to apply on each entry
2083  *
2084  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2085  * (the last element may not be found on second level tables)
2086  */
2087 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2088 			  int start_id, entry_fn_t fn, void *opaque)
2089 {
2090 	struct kvm *kvm = its->dev->kvm;
2091 	unsigned long len = size;
2092 	int id = start_id;
2093 	gpa_t gpa = base;
2094 	char entry[ESZ_MAX];
2095 	int ret;
2096 
2097 	memset(entry, 0, esz);
2098 
2099 	while (len > 0) {
2100 		int next_offset;
2101 		size_t byte_offset;
2102 
2103 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2104 		if (ret)
2105 			return ret;
2106 
2107 		next_offset = fn(its, id, entry, opaque);
2108 		if (next_offset <= 0)
2109 			return next_offset;
2110 
2111 		byte_offset = next_offset * esz;
2112 		id += next_offset;
2113 		gpa += byte_offset;
2114 		len -= byte_offset;
2115 	}
2116 	return 1;
2117 }
2118 
2119 /**
2120  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2121  */
2122 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2123 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2124 {
2125 	struct kvm *kvm = its->dev->kvm;
2126 	u32 next_offset;
2127 	u64 val;
2128 
2129 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2130 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2131 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2132 		ite->collection->collection_id;
2133 	val = cpu_to_le64(val);
2134 	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2135 }
2136 
2137 /**
2138  * vgic_its_restore_ite - restore an interrupt translation entry
2139  * @event_id: id used for indexing
2140  * @ptr: pointer to the ITE entry
2141  * @opaque: pointer to the its_device
2142  */
2143 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2144 				void *ptr, void *opaque)
2145 {
2146 	struct its_device *dev = (struct its_device *)opaque;
2147 	struct its_collection *collection;
2148 	struct kvm *kvm = its->dev->kvm;
2149 	struct kvm_vcpu *vcpu = NULL;
2150 	u64 val;
2151 	u64 *p = (u64 *)ptr;
2152 	struct vgic_irq *irq;
2153 	u32 coll_id, lpi_id;
2154 	struct its_ite *ite;
2155 	u32 offset;
2156 
2157 	val = *p;
2158 
2159 	val = le64_to_cpu(val);
2160 
2161 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2162 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2163 
2164 	if (!lpi_id)
2165 		return 1; /* invalid entry, no choice but to scan next entry */
2166 
2167 	if (lpi_id < VGIC_MIN_LPI)
2168 		return -EINVAL;
2169 
2170 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2171 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2172 		return -EINVAL;
2173 
2174 	collection = find_collection(its, coll_id);
2175 	if (!collection)
2176 		return -EINVAL;
2177 
2178 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2179 	if (IS_ERR(ite))
2180 		return PTR_ERR(ite);
2181 
2182 	if (its_is_collection_mapped(collection))
2183 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2184 
2185 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2186 	if (IS_ERR(irq))
2187 		return PTR_ERR(irq);
2188 	ite->irq = irq;
2189 
2190 	return offset;
2191 }
2192 
2193 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2194 			    struct list_head *b)
2195 {
2196 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2197 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2198 
2199 	if (itea->event_id < iteb->event_id)
2200 		return -1;
2201 	else
2202 		return 1;
2203 }
2204 
2205 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2206 {
2207 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2208 	gpa_t base = device->itt_addr;
2209 	struct its_ite *ite;
2210 	int ret;
2211 	int ite_esz = abi->ite_esz;
2212 
2213 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2214 
2215 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2216 		gpa_t gpa = base + ite->event_id * ite_esz;
2217 
2218 		/*
2219 		 * If an LPI carries the HW bit, this means that this
2220 		 * interrupt is controlled by GICv4, and we do not
2221 		 * have direct access to that state. Let's simply fail
2222 		 * the save operation...
2223 		 */
2224 		if (ite->irq->hw)
2225 			return -EACCES;
2226 
2227 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2228 		if (ret)
2229 			return ret;
2230 	}
2231 	return 0;
2232 }
2233 
2234 /**
2235  * vgic_its_restore_itt - restore the ITT of a device
2236  *
2237  * @its: its handle
2238  * @dev: device handle
2239  *
2240  * Return 0 on success, < 0 on error
2241  */
2242 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2243 {
2244 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2245 	gpa_t base = dev->itt_addr;
2246 	int ret;
2247 	int ite_esz = abi->ite_esz;
2248 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2249 
2250 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2251 			     vgic_its_restore_ite, dev);
2252 
2253 	/* scan_its_table returns +1 if all ITEs are invalid */
2254 	if (ret > 0)
2255 		ret = 0;
2256 
2257 	return ret;
2258 }
2259 
2260 /**
2261  * vgic_its_save_dte - Save a device table entry at a given GPA
2262  *
2263  * @its: ITS handle
2264  * @dev: ITS device
2265  * @ptr: GPA
2266  */
2267 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2268 			     gpa_t ptr, int dte_esz)
2269 {
2270 	struct kvm *kvm = its->dev->kvm;
2271 	u64 val, itt_addr_field;
2272 	u32 next_offset;
2273 
2274 	itt_addr_field = dev->itt_addr >> 8;
2275 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2276 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2277 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2278 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2279 		(dev->num_eventid_bits - 1));
2280 	val = cpu_to_le64(val);
2281 	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2282 }
2283 
2284 /**
2285  * vgic_its_restore_dte - restore a device table entry
2286  *
2287  * @its: its handle
2288  * @id: device id the DTE corresponds to
2289  * @ptr: kernel VA where the 8 byte DTE is located
2290  * @opaque: unused
2291  *
2292  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2293  * next dte otherwise
2294  */
2295 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2296 				void *ptr, void *opaque)
2297 {
2298 	struct its_device *dev;
2299 	gpa_t itt_addr;
2300 	u8 num_eventid_bits;
2301 	u64 entry = *(u64 *)ptr;
2302 	bool valid;
2303 	u32 offset;
2304 	int ret;
2305 
2306 	entry = le64_to_cpu(entry);
2307 
2308 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2309 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2310 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2311 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2312 
2313 	if (!valid)
2314 		return 1;
2315 
2316 	/* dte entry is valid */
2317 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2318 
2319 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2320 	if (IS_ERR(dev))
2321 		return PTR_ERR(dev);
2322 
2323 	ret = vgic_its_restore_itt(its, dev);
2324 	if (ret) {
2325 		vgic_its_free_device(its->dev->kvm, dev);
2326 		return ret;
2327 	}
2328 
2329 	return offset;
2330 }
2331 
2332 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2333 			       struct list_head *b)
2334 {
2335 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2336 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2337 
2338 	if (deva->device_id < devb->device_id)
2339 		return -1;
2340 	else
2341 		return 1;
2342 }
2343 
2344 /**
2345  * vgic_its_save_device_tables - Save the device table and all ITT
2346  * into guest RAM
2347  *
2348  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2349  * returns the GPA of the device entry
2350  */
2351 static int vgic_its_save_device_tables(struct vgic_its *its)
2352 {
2353 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2354 	u64 baser = its->baser_device_table;
2355 	struct its_device *dev;
2356 	int dte_esz = abi->dte_esz;
2357 
2358 	if (!(baser & GITS_BASER_VALID))
2359 		return 0;
2360 
2361 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2362 
2363 	list_for_each_entry(dev, &its->device_list, dev_list) {
2364 		int ret;
2365 		gpa_t eaddr;
2366 
2367 		if (!vgic_its_check_id(its, baser,
2368 				       dev->device_id, &eaddr))
2369 			return -EINVAL;
2370 
2371 		ret = vgic_its_save_itt(its, dev);
2372 		if (ret)
2373 			return ret;
2374 
2375 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2376 		if (ret)
2377 			return ret;
2378 	}
2379 	return 0;
2380 }
2381 
2382 /**
2383  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2384  *
2385  * @its: its handle
2386  * @id: index of the entry in the L1 table
2387  * @addr: kernel VA
2388  * @opaque: unused
2389  *
2390  * L1 table entries are scanned by steps of 1 entry
2391  * Return < 0 if error, 0 if last dte was found when scanning the L2
2392  * table, +1 otherwise (meaning next L1 entry must be scanned)
2393  */
2394 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2395 			 void *opaque)
2396 {
2397 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2398 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2399 	u64 entry = *(u64 *)addr;
2400 	int dte_esz = abi->dte_esz;
2401 	gpa_t gpa;
2402 	int ret;
2403 
2404 	entry = le64_to_cpu(entry);
2405 
2406 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2407 		return 1;
2408 
2409 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2410 
2411 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2412 			     l2_start_id, vgic_its_restore_dte, NULL);
2413 
2414 	return ret;
2415 }
2416 
2417 /**
2418  * vgic_its_restore_device_tables - Restore the device table and all ITT
2419  * from guest RAM to internal data structs
2420  */
2421 static int vgic_its_restore_device_tables(struct vgic_its *its)
2422 {
2423 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2424 	u64 baser = its->baser_device_table;
2425 	int l1_esz, ret;
2426 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2427 	gpa_t l1_gpa;
2428 
2429 	if (!(baser & GITS_BASER_VALID))
2430 		return 0;
2431 
2432 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2433 
2434 	if (baser & GITS_BASER_INDIRECT) {
2435 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2436 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2437 				     handle_l1_dte, NULL);
2438 	} else {
2439 		l1_esz = abi->dte_esz;
2440 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2441 				     vgic_its_restore_dte, NULL);
2442 	}
2443 
2444 	/* scan_its_table returns +1 if all entries are invalid */
2445 	if (ret > 0)
2446 		ret = 0;
2447 
2448 	return ret;
2449 }
2450 
2451 static int vgic_its_save_cte(struct vgic_its *its,
2452 			     struct its_collection *collection,
2453 			     gpa_t gpa, int esz)
2454 {
2455 	u64 val;
2456 
2457 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2458 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2459 	       collection->collection_id);
2460 	val = cpu_to_le64(val);
2461 	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2462 }
2463 
2464 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2465 {
2466 	struct its_collection *collection;
2467 	struct kvm *kvm = its->dev->kvm;
2468 	u32 target_addr, coll_id;
2469 	u64 val;
2470 	int ret;
2471 
2472 	BUG_ON(esz > sizeof(val));
2473 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2474 	if (ret)
2475 		return ret;
2476 	val = le64_to_cpu(val);
2477 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2478 		return 0;
2479 
2480 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2481 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2482 
2483 	if (target_addr != COLLECTION_NOT_MAPPED &&
2484 	    target_addr >= atomic_read(&kvm->online_vcpus))
2485 		return -EINVAL;
2486 
2487 	collection = find_collection(its, coll_id);
2488 	if (collection)
2489 		return -EEXIST;
2490 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2491 	if (ret)
2492 		return ret;
2493 	collection->target_addr = target_addr;
2494 	return 1;
2495 }
2496 
2497 /**
2498  * vgic_its_save_collection_table - Save the collection table into
2499  * guest RAM
2500  */
2501 static int vgic_its_save_collection_table(struct vgic_its *its)
2502 {
2503 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2504 	u64 baser = its->baser_coll_table;
2505 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2506 	struct its_collection *collection;
2507 	u64 val;
2508 	size_t max_size, filled = 0;
2509 	int ret, cte_esz = abi->cte_esz;
2510 
2511 	if (!(baser & GITS_BASER_VALID))
2512 		return 0;
2513 
2514 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2515 
2516 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2517 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2518 		if (ret)
2519 			return ret;
2520 		gpa += cte_esz;
2521 		filled += cte_esz;
2522 	}
2523 
2524 	if (filled == max_size)
2525 		return 0;
2526 
2527 	/*
2528 	 * table is not fully filled, add a last dummy element
2529 	 * with valid bit unset
2530 	 */
2531 	val = 0;
2532 	BUG_ON(cte_esz > sizeof(val));
2533 	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2534 	return ret;
2535 }
2536 
2537 /**
2538  * vgic_its_restore_collection_table - reads the collection table
2539  * in guest memory and restores the ITS internal state. Requires the
2540  * BASER registers to be restored before.
2541  */
2542 static int vgic_its_restore_collection_table(struct vgic_its *its)
2543 {
2544 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2545 	u64 baser = its->baser_coll_table;
2546 	int cte_esz = abi->cte_esz;
2547 	size_t max_size, read = 0;
2548 	gpa_t gpa;
2549 	int ret;
2550 
2551 	if (!(baser & GITS_BASER_VALID))
2552 		return 0;
2553 
2554 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2555 
2556 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2557 
2558 	while (read < max_size) {
2559 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2560 		if (ret <= 0)
2561 			break;
2562 		gpa += cte_esz;
2563 		read += cte_esz;
2564 	}
2565 
2566 	if (ret > 0)
2567 		return 0;
2568 
2569 	return ret;
2570 }
2571 
2572 /**
2573  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2574  * according to v0 ABI
2575  */
2576 static int vgic_its_save_tables_v0(struct vgic_its *its)
2577 {
2578 	int ret;
2579 
2580 	ret = vgic_its_save_device_tables(its);
2581 	if (ret)
2582 		return ret;
2583 
2584 	return vgic_its_save_collection_table(its);
2585 }
2586 
2587 /**
2588  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2589  * to internal data structs according to V0 ABI
2590  *
2591  */
2592 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2593 {
2594 	int ret;
2595 
2596 	ret = vgic_its_restore_collection_table(its);
2597 	if (ret)
2598 		return ret;
2599 
2600 	return vgic_its_restore_device_tables(its);
2601 }
2602 
2603 static int vgic_its_commit_v0(struct vgic_its *its)
2604 {
2605 	const struct vgic_its_abi *abi;
2606 
2607 	abi = vgic_its_get_abi(its);
2608 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2609 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2610 
2611 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2612 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2613 
2614 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2615 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2616 	return 0;
2617 }
2618 
2619 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2620 {
2621 	/* We need to keep the ABI specific field values */
2622 	its->baser_coll_table &= ~GITS_BASER_VALID;
2623 	its->baser_device_table &= ~GITS_BASER_VALID;
2624 	its->cbaser = 0;
2625 	its->creadr = 0;
2626 	its->cwriter = 0;
2627 	its->enabled = 0;
2628 	vgic_its_free_device_list(kvm, its);
2629 	vgic_its_free_collection_list(kvm, its);
2630 }
2631 
2632 static int vgic_its_has_attr(struct kvm_device *dev,
2633 			     struct kvm_device_attr *attr)
2634 {
2635 	switch (attr->group) {
2636 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2637 		switch (attr->attr) {
2638 		case KVM_VGIC_ITS_ADDR_TYPE:
2639 			return 0;
2640 		}
2641 		break;
2642 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2643 		switch (attr->attr) {
2644 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2645 			return 0;
2646 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2647 			return 0;
2648 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2649 			return 0;
2650 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2651 			return 0;
2652 		}
2653 		break;
2654 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2655 		return vgic_its_has_attr_regs(dev, attr);
2656 	}
2657 	return -ENXIO;
2658 }
2659 
2660 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2661 {
2662 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2663 	int ret = 0;
2664 
2665 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2666 		return 0;
2667 
2668 	mutex_lock(&kvm->lock);
2669 	mutex_lock(&its->its_lock);
2670 
2671 	if (!lock_all_vcpus(kvm)) {
2672 		mutex_unlock(&its->its_lock);
2673 		mutex_unlock(&kvm->lock);
2674 		return -EBUSY;
2675 	}
2676 
2677 	switch (attr) {
2678 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2679 		vgic_its_reset(kvm, its);
2680 		break;
2681 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2682 		ret = abi->save_tables(its);
2683 		break;
2684 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2685 		ret = abi->restore_tables(its);
2686 		break;
2687 	}
2688 
2689 	unlock_all_vcpus(kvm);
2690 	mutex_unlock(&its->its_lock);
2691 	mutex_unlock(&kvm->lock);
2692 	return ret;
2693 }
2694 
2695 static int vgic_its_set_attr(struct kvm_device *dev,
2696 			     struct kvm_device_attr *attr)
2697 {
2698 	struct vgic_its *its = dev->private;
2699 	int ret;
2700 
2701 	switch (attr->group) {
2702 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2703 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2704 		unsigned long type = (unsigned long)attr->attr;
2705 		u64 addr;
2706 
2707 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2708 			return -ENODEV;
2709 
2710 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2711 			return -EFAULT;
2712 
2713 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2714 					addr, SZ_64K);
2715 		if (ret)
2716 			return ret;
2717 
2718 		return vgic_register_its_iodev(dev->kvm, its, addr);
2719 	}
2720 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2721 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2722 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2723 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2724 		u64 reg;
2725 
2726 		if (get_user(reg, uaddr))
2727 			return -EFAULT;
2728 
2729 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2730 	}
2731 	}
2732 	return -ENXIO;
2733 }
2734 
2735 static int vgic_its_get_attr(struct kvm_device *dev,
2736 			     struct kvm_device_attr *attr)
2737 {
2738 	switch (attr->group) {
2739 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2740 		struct vgic_its *its = dev->private;
2741 		u64 addr = its->vgic_its_base;
2742 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2743 		unsigned long type = (unsigned long)attr->attr;
2744 
2745 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2746 			return -ENODEV;
2747 
2748 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2749 			return -EFAULT;
2750 		break;
2751 	}
2752 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2753 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2754 		u64 reg;
2755 		int ret;
2756 
2757 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2758 		if (ret)
2759 			return ret;
2760 		return put_user(reg, uaddr);
2761 	}
2762 	default:
2763 		return -ENXIO;
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2770 	.name = "kvm-arm-vgic-its",
2771 	.create = vgic_its_create,
2772 	.destroy = vgic_its_destroy,
2773 	.set_attr = vgic_its_set_attr,
2774 	.get_attr = vgic_its_get_attr,
2775 	.has_attr = vgic_its_has_attr,
2776 };
2777 
2778 int kvm_vgic_register_its_device(void)
2779 {
2780 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2781 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2782 }
2783