1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static int vgic_its_save_tables_v0(struct vgic_its *its); 27 static int vgic_its_restore_tables_v0(struct vgic_its *its); 28 static int vgic_its_commit_v0(struct vgic_its *its); 29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32 /* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41 { 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92 out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116 } 117 118 struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126 }; 127 128 #define COLLECTION_NOT_MAPPED ((u32)~0) 129 130 struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135 }; 136 137 #define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140 struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146 }; 147 148 struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154 }; 155 156 /** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167 struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174 }; 175 176 #define ABI_0_ESZ 8 177 #define ESZ_MAX ABI_0_ESZ 178 179 static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188 }; 189 190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193 { 194 return &its_table_abi_versions[its->abi_rev]; 195 } 196 197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198 { 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204 } 205 206 /* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211 { 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219 } 220 221 /* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228 { 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241 } 242 243 /* To be used as an iterator this macro misses the enclosing parentheses */ 244 #define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248 #define GIC_LPI_OFFSET 8192 249 250 #define VITS_TYPER_IDBITS 16 251 #define VITS_TYPER_DEVBITS 16 252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255 /* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260 { 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269 } 270 271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274 /* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282 { 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312 } 313 314 /* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320 { 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352 } 353 354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355 { 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379 } 380 381 /* 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 383 * is targeting) to the VGIC's view, which deals with target VCPUs. 384 * Needs to be called whenever either the collection for a LPIs has 385 * changed or the collection itself got retargeted. 386 */ 387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 388 { 389 struct kvm_vcpu *vcpu; 390 391 if (!its_is_collection_mapped(ite->collection)) 392 return; 393 394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 395 update_affinity(ite->irq, vcpu); 396 } 397 398 /* 399 * Updates the target VCPU for every LPI targeting this collection. 400 * Must be called with the its_lock mutex held. 401 */ 402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 403 struct its_collection *coll) 404 { 405 struct its_device *device; 406 struct its_ite *ite; 407 408 for_each_lpi_its(device, ite, its) { 409 if (!ite->collection || coll != ite->collection) 410 continue; 411 412 update_affinity_ite(kvm, ite); 413 } 414 } 415 416 static u32 max_lpis_propbaser(u64 propbaser) 417 { 418 int nr_idbits = (propbaser & 0x1f) + 1; 419 420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 421 } 422 423 /* 424 * Sync the pending table pending bit of LPIs targeting @vcpu 425 * with our own data structures. This relies on the LPI being 426 * mapped before. 427 */ 428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 429 { 430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 431 struct vgic_irq *irq; 432 int last_byte_offset = -1; 433 int ret = 0; 434 u32 *intids; 435 int nr_irqs, i; 436 unsigned long flags; 437 u8 pendmask; 438 439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 440 if (nr_irqs < 0) 441 return nr_irqs; 442 443 for (i = 0; i < nr_irqs; i++) { 444 int byte_offset, bit_nr; 445 446 byte_offset = intids[i] / BITS_PER_BYTE; 447 bit_nr = intids[i] % BITS_PER_BYTE; 448 449 /* 450 * For contiguously allocated LPIs chances are we just read 451 * this very same byte in the last iteration. Reuse that. 452 */ 453 if (byte_offset != last_byte_offset) { 454 ret = kvm_read_guest_lock(vcpu->kvm, 455 pendbase + byte_offset, 456 &pendmask, 1); 457 if (ret) { 458 kfree(intids); 459 return ret; 460 } 461 last_byte_offset = byte_offset; 462 } 463 464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 465 raw_spin_lock_irqsave(&irq->irq_lock, flags); 466 irq->pending_latch = pendmask & (1U << bit_nr); 467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 468 vgic_put_irq(vcpu->kvm, irq); 469 } 470 471 kfree(intids); 472 473 return ret; 474 } 475 476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 477 struct vgic_its *its, 478 gpa_t addr, unsigned int len) 479 { 480 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 481 u64 reg = GITS_TYPER_PLPIS; 482 483 /* 484 * We use linear CPU numbers for redistributor addressing, 485 * so GITS_TYPER.PTA is 0. 486 * Also we force all PROPBASER registers to be the same, so 487 * CommonLPIAff is 0 as well. 488 * To avoid memory waste in the guest, we keep the number of IDBits and 489 * DevBits low - as least for the time being. 490 */ 491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 494 495 return extract_bytes(reg, addr & 7, len); 496 } 497 498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 499 struct vgic_its *its, 500 gpa_t addr, unsigned int len) 501 { 502 u32 val; 503 504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 506 return val; 507 } 508 509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 510 struct vgic_its *its, 511 gpa_t addr, unsigned int len, 512 unsigned long val) 513 { 514 u32 rev = GITS_IIDR_REV(val); 515 516 if (rev >= NR_ITS_ABIS) 517 return -EINVAL; 518 return vgic_its_set_abi(its, rev); 519 } 520 521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 522 struct vgic_its *its, 523 gpa_t addr, unsigned int len) 524 { 525 switch (addr & 0xffff) { 526 case GITS_PIDR0: 527 return 0x92; /* part number, bits[7:0] */ 528 case GITS_PIDR1: 529 return 0xb4; /* part number, bits[11:8] */ 530 case GITS_PIDR2: 531 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 532 case GITS_PIDR4: 533 return 0x40; /* This is a 64K software visible page */ 534 /* The following are the ID registers for (any) GIC. */ 535 case GITS_CIDR0: 536 return 0x0d; 537 case GITS_CIDR1: 538 return 0xf0; 539 case GITS_CIDR2: 540 return 0x05; 541 case GITS_CIDR3: 542 return 0xb1; 543 } 544 545 return 0; 546 } 547 548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 549 phys_addr_t db, 550 u32 devid, u32 eventid) 551 { 552 struct vgic_translation_cache_entry *cte; 553 554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 555 /* 556 * If we hit a NULL entry, there is nothing after this 557 * point. 558 */ 559 if (!cte->irq) 560 break; 561 562 if (cte->db != db || cte->devid != devid || 563 cte->eventid != eventid) 564 continue; 565 566 /* 567 * Move this entry to the head, as it is the most 568 * recently used. 569 */ 570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 571 list_move(&cte->entry, &dist->lpi_translation_cache); 572 573 return cte->irq; 574 } 575 576 return NULL; 577 } 578 579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 580 u32 devid, u32 eventid) 581 { 582 struct vgic_dist *dist = &kvm->arch.vgic; 583 struct vgic_irq *irq; 584 unsigned long flags; 585 586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 587 irq = __vgic_its_check_cache(dist, db, devid, eventid); 588 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 589 590 return irq; 591 } 592 593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 594 u32 devid, u32 eventid, 595 struct vgic_irq *irq) 596 { 597 struct vgic_dist *dist = &kvm->arch.vgic; 598 struct vgic_translation_cache_entry *cte; 599 unsigned long flags; 600 phys_addr_t db; 601 602 /* Do not cache a directly injected interrupt */ 603 if (irq->hw) 604 return; 605 606 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 607 608 if (unlikely(list_empty(&dist->lpi_translation_cache))) 609 goto out; 610 611 /* 612 * We could have raced with another CPU caching the same 613 * translation behind our back, so let's check it is not in 614 * already 615 */ 616 db = its->vgic_its_base + GITS_TRANSLATER; 617 if (__vgic_its_check_cache(dist, db, devid, eventid)) 618 goto out; 619 620 /* Always reuse the last entry (LRU policy) */ 621 cte = list_last_entry(&dist->lpi_translation_cache, 622 typeof(*cte), entry); 623 624 /* 625 * Caching the translation implies having an extra reference 626 * to the interrupt, so drop the potential reference on what 627 * was in the cache, and increment it on the new interrupt. 628 */ 629 if (cte->irq) 630 __vgic_put_lpi_locked(kvm, cte->irq); 631 632 vgic_get_irq_kref(irq); 633 634 cte->db = db; 635 cte->devid = devid; 636 cte->eventid = eventid; 637 cte->irq = irq; 638 639 /* Move the new translation to the head of the list */ 640 list_move(&cte->entry, &dist->lpi_translation_cache); 641 642 out: 643 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 644 } 645 646 void vgic_its_invalidate_cache(struct kvm *kvm) 647 { 648 struct vgic_dist *dist = &kvm->arch.vgic; 649 struct vgic_translation_cache_entry *cte; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 653 654 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 655 /* 656 * If we hit a NULL entry, there is nothing after this 657 * point. 658 */ 659 if (!cte->irq) 660 break; 661 662 __vgic_put_lpi_locked(kvm, cte->irq); 663 cte->irq = NULL; 664 } 665 666 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 667 } 668 669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 670 u32 devid, u32 eventid, struct vgic_irq **irq) 671 { 672 struct kvm_vcpu *vcpu; 673 struct its_ite *ite; 674 675 if (!its->enabled) 676 return -EBUSY; 677 678 ite = find_ite(its, devid, eventid); 679 if (!ite || !its_is_collection_mapped(ite->collection)) 680 return E_ITS_INT_UNMAPPED_INTERRUPT; 681 682 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 683 if (!vcpu) 684 return E_ITS_INT_UNMAPPED_INTERRUPT; 685 686 if (!vcpu->arch.vgic_cpu.lpis_enabled) 687 return -EBUSY; 688 689 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 690 691 *irq = ite->irq; 692 return 0; 693 } 694 695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 696 { 697 u64 address; 698 struct kvm_io_device *kvm_io_dev; 699 struct vgic_io_device *iodev; 700 701 if (!vgic_has_its(kvm)) 702 return ERR_PTR(-ENODEV); 703 704 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 705 return ERR_PTR(-EINVAL); 706 707 address = (u64)msi->address_hi << 32 | msi->address_lo; 708 709 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 710 if (!kvm_io_dev) 711 return ERR_PTR(-EINVAL); 712 713 if (kvm_io_dev->ops != &kvm_io_gic_ops) 714 return ERR_PTR(-EINVAL); 715 716 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 717 if (iodev->iodev_type != IODEV_ITS) 718 return ERR_PTR(-EINVAL); 719 720 return iodev->its; 721 } 722 723 /* 724 * Find the target VCPU and the LPI number for a given devid/eventid pair 725 * and make this IRQ pending, possibly injecting it. 726 * Must be called with the its_lock mutex held. 727 * Returns 0 on success, a positive error value for any ITS mapping 728 * related errors and negative error values for generic errors. 729 */ 730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 731 u32 devid, u32 eventid) 732 { 733 struct vgic_irq *irq = NULL; 734 unsigned long flags; 735 int err; 736 737 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 738 if (err) 739 return err; 740 741 if (irq->hw) 742 return irq_set_irqchip_state(irq->host_irq, 743 IRQCHIP_STATE_PENDING, true); 744 745 raw_spin_lock_irqsave(&irq->irq_lock, flags); 746 irq->pending_latch = true; 747 vgic_queue_irq_unlock(kvm, irq, flags); 748 749 return 0; 750 } 751 752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 753 { 754 struct vgic_irq *irq; 755 unsigned long flags; 756 phys_addr_t db; 757 758 db = (u64)msi->address_hi << 32 | msi->address_lo; 759 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 760 761 if (!irq) 762 return -1; 763 764 raw_spin_lock_irqsave(&irq->irq_lock, flags); 765 irq->pending_latch = true; 766 vgic_queue_irq_unlock(kvm, irq, flags); 767 768 return 0; 769 } 770 771 /* 772 * Queries the KVM IO bus framework to get the ITS pointer from the given 773 * doorbell address. 774 * We then call vgic_its_trigger_msi() with the decoded data. 775 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 776 */ 777 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 778 { 779 struct vgic_its *its; 780 int ret; 781 782 if (!vgic_its_inject_cached_translation(kvm, msi)) 783 return 1; 784 785 its = vgic_msi_to_its(kvm, msi); 786 if (IS_ERR(its)) 787 return PTR_ERR(its); 788 789 mutex_lock(&its->its_lock); 790 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 791 mutex_unlock(&its->its_lock); 792 793 if (ret < 0) 794 return ret; 795 796 /* 797 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 798 * if the guest has blocked the MSI. So we map any LPI mapping 799 * related error to that. 800 */ 801 if (ret) 802 return 0; 803 else 804 return 1; 805 } 806 807 /* Requires the its_lock to be held. */ 808 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 809 { 810 list_del(&ite->ite_list); 811 812 /* This put matches the get in vgic_add_lpi. */ 813 if (ite->irq) { 814 if (ite->irq->hw) 815 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 816 817 vgic_put_irq(kvm, ite->irq); 818 } 819 820 kfree(ite); 821 } 822 823 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 824 { 825 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 826 } 827 828 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 829 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 830 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 831 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 832 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 833 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 834 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 835 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 836 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 837 838 /* 839 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 840 * Must be called with the its_lock mutex held. 841 */ 842 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 843 u64 *its_cmd) 844 { 845 u32 device_id = its_cmd_get_deviceid(its_cmd); 846 u32 event_id = its_cmd_get_id(its_cmd); 847 struct its_ite *ite; 848 849 ite = find_ite(its, device_id, event_id); 850 if (ite && its_is_collection_mapped(ite->collection)) { 851 /* 852 * Though the spec talks about removing the pending state, we 853 * don't bother here since we clear the ITTE anyway and the 854 * pending state is a property of the ITTE struct. 855 */ 856 vgic_its_invalidate_cache(kvm); 857 858 its_free_ite(kvm, ite); 859 return 0; 860 } 861 862 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 863 } 864 865 /* 866 * The MOVI command moves an ITTE to a different collection. 867 * Must be called with the its_lock mutex held. 868 */ 869 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 870 u64 *its_cmd) 871 { 872 u32 device_id = its_cmd_get_deviceid(its_cmd); 873 u32 event_id = its_cmd_get_id(its_cmd); 874 u32 coll_id = its_cmd_get_collection(its_cmd); 875 struct kvm_vcpu *vcpu; 876 struct its_ite *ite; 877 struct its_collection *collection; 878 879 ite = find_ite(its, device_id, event_id); 880 if (!ite) 881 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 882 883 if (!its_is_collection_mapped(ite->collection)) 884 return E_ITS_MOVI_UNMAPPED_COLLECTION; 885 886 collection = find_collection(its, coll_id); 887 if (!its_is_collection_mapped(collection)) 888 return E_ITS_MOVI_UNMAPPED_COLLECTION; 889 890 ite->collection = collection; 891 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 892 893 vgic_its_invalidate_cache(kvm); 894 895 return update_affinity(ite->irq, vcpu); 896 } 897 898 /* 899 * Check whether an ID can be stored into the corresponding guest table. 900 * For a direct table this is pretty easy, but gets a bit nasty for 901 * indirect tables. We check whether the resulting guest physical address 902 * is actually valid (covered by a memslot and guest accessible). 903 * For this we have to read the respective first level entry. 904 */ 905 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 906 gpa_t *eaddr) 907 { 908 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 909 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 910 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 911 int esz = GITS_BASER_ENTRY_SIZE(baser); 912 int index, idx; 913 gfn_t gfn; 914 bool ret; 915 916 switch (type) { 917 case GITS_BASER_TYPE_DEVICE: 918 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 919 return false; 920 break; 921 case GITS_BASER_TYPE_COLLECTION: 922 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 923 if (id >= BIT_ULL(16)) 924 return false; 925 break; 926 default: 927 return false; 928 } 929 930 if (!(baser & GITS_BASER_INDIRECT)) { 931 phys_addr_t addr; 932 933 if (id >= (l1_tbl_size / esz)) 934 return false; 935 936 addr = base + id * esz; 937 gfn = addr >> PAGE_SHIFT; 938 939 if (eaddr) 940 *eaddr = addr; 941 942 goto out; 943 } 944 945 /* calculate and check the index into the 1st level */ 946 index = id / (SZ_64K / esz); 947 if (index >= (l1_tbl_size / sizeof(u64))) 948 return false; 949 950 /* Each 1st level entry is represented by a 64-bit value. */ 951 if (kvm_read_guest_lock(its->dev->kvm, 952 base + index * sizeof(indirect_ptr), 953 &indirect_ptr, sizeof(indirect_ptr))) 954 return false; 955 956 indirect_ptr = le64_to_cpu(indirect_ptr); 957 958 /* check the valid bit of the first level entry */ 959 if (!(indirect_ptr & BIT_ULL(63))) 960 return false; 961 962 /* Mask the guest physical address and calculate the frame number. */ 963 indirect_ptr &= GENMASK_ULL(51, 16); 964 965 /* Find the address of the actual entry */ 966 index = id % (SZ_64K / esz); 967 indirect_ptr += index * esz; 968 gfn = indirect_ptr >> PAGE_SHIFT; 969 970 if (eaddr) 971 *eaddr = indirect_ptr; 972 973 out: 974 idx = srcu_read_lock(&its->dev->kvm->srcu); 975 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 976 srcu_read_unlock(&its->dev->kvm->srcu, idx); 977 return ret; 978 } 979 980 static int vgic_its_alloc_collection(struct vgic_its *its, 981 struct its_collection **colp, 982 u32 coll_id) 983 { 984 struct its_collection *collection; 985 986 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 987 return E_ITS_MAPC_COLLECTION_OOR; 988 989 collection = kzalloc(sizeof(*collection), GFP_KERNEL); 990 if (!collection) 991 return -ENOMEM; 992 993 collection->collection_id = coll_id; 994 collection->target_addr = COLLECTION_NOT_MAPPED; 995 996 list_add_tail(&collection->coll_list, &its->collection_list); 997 *colp = collection; 998 999 return 0; 1000 } 1001 1002 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1003 { 1004 struct its_collection *collection; 1005 struct its_device *device; 1006 struct its_ite *ite; 1007 1008 /* 1009 * Clearing the mapping for that collection ID removes the 1010 * entry from the list. If there wasn't any before, we can 1011 * go home early. 1012 */ 1013 collection = find_collection(its, coll_id); 1014 if (!collection) 1015 return; 1016 1017 for_each_lpi_its(device, ite, its) 1018 if (ite->collection && 1019 ite->collection->collection_id == coll_id) 1020 ite->collection = NULL; 1021 1022 list_del(&collection->coll_list); 1023 kfree(collection); 1024 } 1025 1026 /* Must be called with its_lock mutex held */ 1027 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1028 struct its_collection *collection, 1029 u32 event_id) 1030 { 1031 struct its_ite *ite; 1032 1033 ite = kzalloc(sizeof(*ite), GFP_KERNEL); 1034 if (!ite) 1035 return ERR_PTR(-ENOMEM); 1036 1037 ite->event_id = event_id; 1038 ite->collection = collection; 1039 1040 list_add_tail(&ite->ite_list, &device->itt_head); 1041 return ite; 1042 } 1043 1044 /* 1045 * The MAPTI and MAPI commands map LPIs to ITTEs. 1046 * Must be called with its_lock mutex held. 1047 */ 1048 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1049 u64 *its_cmd) 1050 { 1051 u32 device_id = its_cmd_get_deviceid(its_cmd); 1052 u32 event_id = its_cmd_get_id(its_cmd); 1053 u32 coll_id = its_cmd_get_collection(its_cmd); 1054 struct its_ite *ite; 1055 struct kvm_vcpu *vcpu = NULL; 1056 struct its_device *device; 1057 struct its_collection *collection, *new_coll = NULL; 1058 struct vgic_irq *irq; 1059 int lpi_nr; 1060 1061 device = find_its_device(its, device_id); 1062 if (!device) 1063 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1064 1065 if (event_id >= BIT_ULL(device->num_eventid_bits)) 1066 return E_ITS_MAPTI_ID_OOR; 1067 1068 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1069 lpi_nr = its_cmd_get_physical_id(its_cmd); 1070 else 1071 lpi_nr = event_id; 1072 if (lpi_nr < GIC_LPI_OFFSET || 1073 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1074 return E_ITS_MAPTI_PHYSICALID_OOR; 1075 1076 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1077 if (find_ite(its, device_id, event_id)) 1078 return 0; 1079 1080 collection = find_collection(its, coll_id); 1081 if (!collection) { 1082 int ret = vgic_its_alloc_collection(its, &collection, coll_id); 1083 if (ret) 1084 return ret; 1085 new_coll = collection; 1086 } 1087 1088 ite = vgic_its_alloc_ite(device, collection, event_id); 1089 if (IS_ERR(ite)) { 1090 if (new_coll) 1091 vgic_its_free_collection(its, coll_id); 1092 return PTR_ERR(ite); 1093 } 1094 1095 if (its_is_collection_mapped(collection)) 1096 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1097 1098 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1099 if (IS_ERR(irq)) { 1100 if (new_coll) 1101 vgic_its_free_collection(its, coll_id); 1102 its_free_ite(kvm, ite); 1103 return PTR_ERR(irq); 1104 } 1105 ite->irq = irq; 1106 1107 return 0; 1108 } 1109 1110 /* Requires the its_lock to be held. */ 1111 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1112 { 1113 struct its_ite *ite, *temp; 1114 1115 /* 1116 * The spec says that unmapping a device with still valid 1117 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1118 * since we cannot leave the memory unreferenced. 1119 */ 1120 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1121 its_free_ite(kvm, ite); 1122 1123 vgic_its_invalidate_cache(kvm); 1124 1125 list_del(&device->dev_list); 1126 kfree(device); 1127 } 1128 1129 /* its lock must be held */ 1130 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1131 { 1132 struct its_device *cur, *temp; 1133 1134 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1135 vgic_its_free_device(kvm, cur); 1136 } 1137 1138 /* its lock must be held */ 1139 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1140 { 1141 struct its_collection *cur, *temp; 1142 1143 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1144 vgic_its_free_collection(its, cur->collection_id); 1145 } 1146 1147 /* Must be called with its_lock mutex held */ 1148 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1149 u32 device_id, gpa_t itt_addr, 1150 u8 num_eventid_bits) 1151 { 1152 struct its_device *device; 1153 1154 device = kzalloc(sizeof(*device), GFP_KERNEL); 1155 if (!device) 1156 return ERR_PTR(-ENOMEM); 1157 1158 device->device_id = device_id; 1159 device->itt_addr = itt_addr; 1160 device->num_eventid_bits = num_eventid_bits; 1161 INIT_LIST_HEAD(&device->itt_head); 1162 1163 list_add_tail(&device->dev_list, &its->device_list); 1164 return device; 1165 } 1166 1167 /* 1168 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1169 * Must be called with the its_lock mutex held. 1170 */ 1171 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1172 u64 *its_cmd) 1173 { 1174 u32 device_id = its_cmd_get_deviceid(its_cmd); 1175 bool valid = its_cmd_get_validbit(its_cmd); 1176 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1177 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1178 struct its_device *device; 1179 1180 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1181 return E_ITS_MAPD_DEVICE_OOR; 1182 1183 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1184 return E_ITS_MAPD_ITTSIZE_OOR; 1185 1186 device = find_its_device(its, device_id); 1187 1188 /* 1189 * The spec says that calling MAPD on an already mapped device 1190 * invalidates all cached data for this device. We implement this 1191 * by removing the mapping and re-establishing it. 1192 */ 1193 if (device) 1194 vgic_its_free_device(kvm, device); 1195 1196 /* 1197 * The spec does not say whether unmapping a not-mapped device 1198 * is an error, so we are done in any case. 1199 */ 1200 if (!valid) 1201 return 0; 1202 1203 device = vgic_its_alloc_device(its, device_id, itt_addr, 1204 num_eventid_bits); 1205 1206 return PTR_ERR_OR_ZERO(device); 1207 } 1208 1209 /* 1210 * The MAPC command maps collection IDs to redistributors. 1211 * Must be called with the its_lock mutex held. 1212 */ 1213 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1214 u64 *its_cmd) 1215 { 1216 u16 coll_id; 1217 u32 target_addr; 1218 struct its_collection *collection; 1219 bool valid; 1220 1221 valid = its_cmd_get_validbit(its_cmd); 1222 coll_id = its_cmd_get_collection(its_cmd); 1223 target_addr = its_cmd_get_target_addr(its_cmd); 1224 1225 if (target_addr >= atomic_read(&kvm->online_vcpus)) 1226 return E_ITS_MAPC_PROCNUM_OOR; 1227 1228 if (!valid) { 1229 vgic_its_free_collection(its, coll_id); 1230 vgic_its_invalidate_cache(kvm); 1231 } else { 1232 collection = find_collection(its, coll_id); 1233 1234 if (!collection) { 1235 int ret; 1236 1237 ret = vgic_its_alloc_collection(its, &collection, 1238 coll_id); 1239 if (ret) 1240 return ret; 1241 collection->target_addr = target_addr; 1242 } else { 1243 collection->target_addr = target_addr; 1244 update_affinity_collection(kvm, its, collection); 1245 } 1246 } 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * The CLEAR command removes the pending state for a particular LPI. 1253 * Must be called with the its_lock mutex held. 1254 */ 1255 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1256 u64 *its_cmd) 1257 { 1258 u32 device_id = its_cmd_get_deviceid(its_cmd); 1259 u32 event_id = its_cmd_get_id(its_cmd); 1260 struct its_ite *ite; 1261 1262 1263 ite = find_ite(its, device_id, event_id); 1264 if (!ite) 1265 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1266 1267 ite->irq->pending_latch = false; 1268 1269 if (ite->irq->hw) 1270 return irq_set_irqchip_state(ite->irq->host_irq, 1271 IRQCHIP_STATE_PENDING, false); 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * The INV command syncs the configuration bits from the memory table. 1278 * Must be called with the its_lock mutex held. 1279 */ 1280 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1281 u64 *its_cmd) 1282 { 1283 u32 device_id = its_cmd_get_deviceid(its_cmd); 1284 u32 event_id = its_cmd_get_id(its_cmd); 1285 struct its_ite *ite; 1286 1287 1288 ite = find_ite(its, device_id, event_id); 1289 if (!ite) 1290 return E_ITS_INV_UNMAPPED_INTERRUPT; 1291 1292 return update_lpi_config(kvm, ite->irq, NULL, true); 1293 } 1294 1295 /* 1296 * The INVALL command requests flushing of all IRQ data in this collection. 1297 * Find the VCPU mapped to that collection, then iterate over the VM's list 1298 * of mapped LPIs and update the configuration for each IRQ which targets 1299 * the specified vcpu. The configuration will be read from the in-memory 1300 * configuration table. 1301 * Must be called with the its_lock mutex held. 1302 */ 1303 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1304 u64 *its_cmd) 1305 { 1306 u32 coll_id = its_cmd_get_collection(its_cmd); 1307 struct its_collection *collection; 1308 struct kvm_vcpu *vcpu; 1309 struct vgic_irq *irq; 1310 u32 *intids; 1311 int irq_count, i; 1312 1313 collection = find_collection(its, coll_id); 1314 if (!its_is_collection_mapped(collection)) 1315 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1316 1317 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1318 1319 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1320 if (irq_count < 0) 1321 return irq_count; 1322 1323 for (i = 0; i < irq_count; i++) { 1324 irq = vgic_get_irq(kvm, NULL, intids[i]); 1325 if (!irq) 1326 continue; 1327 update_lpi_config(kvm, irq, vcpu, false); 1328 vgic_put_irq(kvm, irq); 1329 } 1330 1331 kfree(intids); 1332 1333 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1334 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1335 1336 return 0; 1337 } 1338 1339 /* 1340 * The MOVALL command moves the pending state of all IRQs targeting one 1341 * redistributor to another. We don't hold the pending state in the VCPUs, 1342 * but in the IRQs instead, so there is really not much to do for us here. 1343 * However the spec says that no IRQ must target the old redistributor 1344 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1345 * This command affects all LPIs in the system that target that redistributor. 1346 */ 1347 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1348 u64 *its_cmd) 1349 { 1350 u32 target1_addr = its_cmd_get_target_addr(its_cmd); 1351 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); 1352 struct kvm_vcpu *vcpu1, *vcpu2; 1353 struct vgic_irq *irq; 1354 u32 *intids; 1355 int irq_count, i; 1356 1357 if (target1_addr >= atomic_read(&kvm->online_vcpus) || 1358 target2_addr >= atomic_read(&kvm->online_vcpus)) 1359 return E_ITS_MOVALL_PROCNUM_OOR; 1360 1361 if (target1_addr == target2_addr) 1362 return 0; 1363 1364 vcpu1 = kvm_get_vcpu(kvm, target1_addr); 1365 vcpu2 = kvm_get_vcpu(kvm, target2_addr); 1366 1367 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1368 if (irq_count < 0) 1369 return irq_count; 1370 1371 for (i = 0; i < irq_count; i++) { 1372 irq = vgic_get_irq(kvm, NULL, intids[i]); 1373 1374 update_affinity(irq, vcpu2); 1375 1376 vgic_put_irq(kvm, irq); 1377 } 1378 1379 vgic_its_invalidate_cache(kvm); 1380 1381 kfree(intids); 1382 return 0; 1383 } 1384 1385 /* 1386 * The INT command injects the LPI associated with that DevID/EvID pair. 1387 * Must be called with the its_lock mutex held. 1388 */ 1389 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1390 u64 *its_cmd) 1391 { 1392 u32 msi_data = its_cmd_get_id(its_cmd); 1393 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1394 1395 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1396 } 1397 1398 /* 1399 * This function is called with the its_cmd lock held, but the ITS data 1400 * structure lock dropped. 1401 */ 1402 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1403 u64 *its_cmd) 1404 { 1405 int ret = -ENODEV; 1406 1407 mutex_lock(&its->its_lock); 1408 switch (its_cmd_get_command(its_cmd)) { 1409 case GITS_CMD_MAPD: 1410 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1411 break; 1412 case GITS_CMD_MAPC: 1413 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1414 break; 1415 case GITS_CMD_MAPI: 1416 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1417 break; 1418 case GITS_CMD_MAPTI: 1419 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1420 break; 1421 case GITS_CMD_MOVI: 1422 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1423 break; 1424 case GITS_CMD_DISCARD: 1425 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1426 break; 1427 case GITS_CMD_CLEAR: 1428 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1429 break; 1430 case GITS_CMD_MOVALL: 1431 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1432 break; 1433 case GITS_CMD_INT: 1434 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1435 break; 1436 case GITS_CMD_INV: 1437 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1438 break; 1439 case GITS_CMD_INVALL: 1440 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1441 break; 1442 case GITS_CMD_SYNC: 1443 /* we ignore this command: we are in sync all of the time */ 1444 ret = 0; 1445 break; 1446 } 1447 mutex_unlock(&its->its_lock); 1448 1449 return ret; 1450 } 1451 1452 static u64 vgic_sanitise_its_baser(u64 reg) 1453 { 1454 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1455 GITS_BASER_SHAREABILITY_SHIFT, 1456 vgic_sanitise_shareability); 1457 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1458 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1459 vgic_sanitise_inner_cacheability); 1460 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1461 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1462 vgic_sanitise_outer_cacheability); 1463 1464 /* We support only one (ITS) page size: 64K */ 1465 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1466 1467 return reg; 1468 } 1469 1470 static u64 vgic_sanitise_its_cbaser(u64 reg) 1471 { 1472 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1473 GITS_CBASER_SHAREABILITY_SHIFT, 1474 vgic_sanitise_shareability); 1475 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1476 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1477 vgic_sanitise_inner_cacheability); 1478 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1479 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1480 vgic_sanitise_outer_cacheability); 1481 1482 /* Sanitise the physical address to be 64k aligned. */ 1483 reg &= ~GENMASK_ULL(15, 12); 1484 1485 return reg; 1486 } 1487 1488 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1489 struct vgic_its *its, 1490 gpa_t addr, unsigned int len) 1491 { 1492 return extract_bytes(its->cbaser, addr & 7, len); 1493 } 1494 1495 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1496 gpa_t addr, unsigned int len, 1497 unsigned long val) 1498 { 1499 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1500 if (its->enabled) 1501 return; 1502 1503 mutex_lock(&its->cmd_lock); 1504 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1505 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1506 its->creadr = 0; 1507 /* 1508 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1509 * it to CREADR to make sure we start with an empty command buffer. 1510 */ 1511 its->cwriter = its->creadr; 1512 mutex_unlock(&its->cmd_lock); 1513 } 1514 1515 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1516 #define ITS_CMD_SIZE 32 1517 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1518 1519 /* Must be called with the cmd_lock held. */ 1520 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1521 { 1522 gpa_t cbaser; 1523 u64 cmd_buf[4]; 1524 1525 /* Commands are only processed when the ITS is enabled. */ 1526 if (!its->enabled) 1527 return; 1528 1529 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1530 1531 while (its->cwriter != its->creadr) { 1532 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1533 cmd_buf, ITS_CMD_SIZE); 1534 /* 1535 * If kvm_read_guest() fails, this could be due to the guest 1536 * programming a bogus value in CBASER or something else going 1537 * wrong from which we cannot easily recover. 1538 * According to section 6.3.2 in the GICv3 spec we can just 1539 * ignore that command then. 1540 */ 1541 if (!ret) 1542 vgic_its_handle_command(kvm, its, cmd_buf); 1543 1544 its->creadr += ITS_CMD_SIZE; 1545 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1546 its->creadr = 0; 1547 } 1548 } 1549 1550 /* 1551 * By writing to CWRITER the guest announces new commands to be processed. 1552 * To avoid any races in the first place, we take the its_cmd lock, which 1553 * protects our ring buffer variables, so that there is only one user 1554 * per ITS handling commands at a given time. 1555 */ 1556 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1557 gpa_t addr, unsigned int len, 1558 unsigned long val) 1559 { 1560 u64 reg; 1561 1562 if (!its) 1563 return; 1564 1565 mutex_lock(&its->cmd_lock); 1566 1567 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1568 reg = ITS_CMD_OFFSET(reg); 1569 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1570 mutex_unlock(&its->cmd_lock); 1571 return; 1572 } 1573 its->cwriter = reg; 1574 1575 vgic_its_process_commands(kvm, its); 1576 1577 mutex_unlock(&its->cmd_lock); 1578 } 1579 1580 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1581 struct vgic_its *its, 1582 gpa_t addr, unsigned int len) 1583 { 1584 return extract_bytes(its->cwriter, addr & 0x7, len); 1585 } 1586 1587 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1588 struct vgic_its *its, 1589 gpa_t addr, unsigned int len) 1590 { 1591 return extract_bytes(its->creadr, addr & 0x7, len); 1592 } 1593 1594 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1595 struct vgic_its *its, 1596 gpa_t addr, unsigned int len, 1597 unsigned long val) 1598 { 1599 u32 cmd_offset; 1600 int ret = 0; 1601 1602 mutex_lock(&its->cmd_lock); 1603 1604 if (its->enabled) { 1605 ret = -EBUSY; 1606 goto out; 1607 } 1608 1609 cmd_offset = ITS_CMD_OFFSET(val); 1610 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1611 ret = -EINVAL; 1612 goto out; 1613 } 1614 1615 its->creadr = cmd_offset; 1616 out: 1617 mutex_unlock(&its->cmd_lock); 1618 return ret; 1619 } 1620 1621 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1622 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1623 struct vgic_its *its, 1624 gpa_t addr, unsigned int len) 1625 { 1626 u64 reg; 1627 1628 switch (BASER_INDEX(addr)) { 1629 case 0: 1630 reg = its->baser_device_table; 1631 break; 1632 case 1: 1633 reg = its->baser_coll_table; 1634 break; 1635 default: 1636 reg = 0; 1637 break; 1638 } 1639 1640 return extract_bytes(reg, addr & 7, len); 1641 } 1642 1643 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1644 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1645 struct vgic_its *its, 1646 gpa_t addr, unsigned int len, 1647 unsigned long val) 1648 { 1649 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1650 u64 entry_size, table_type; 1651 u64 reg, *regptr, clearbits = 0; 1652 1653 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1654 if (its->enabled) 1655 return; 1656 1657 switch (BASER_INDEX(addr)) { 1658 case 0: 1659 regptr = &its->baser_device_table; 1660 entry_size = abi->dte_esz; 1661 table_type = GITS_BASER_TYPE_DEVICE; 1662 break; 1663 case 1: 1664 regptr = &its->baser_coll_table; 1665 entry_size = abi->cte_esz; 1666 table_type = GITS_BASER_TYPE_COLLECTION; 1667 clearbits = GITS_BASER_INDIRECT; 1668 break; 1669 default: 1670 return; 1671 } 1672 1673 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1674 reg &= ~GITS_BASER_RO_MASK; 1675 reg &= ~clearbits; 1676 1677 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1678 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1679 reg = vgic_sanitise_its_baser(reg); 1680 1681 *regptr = reg; 1682 1683 if (!(reg & GITS_BASER_VALID)) { 1684 /* Take the its_lock to prevent a race with a save/restore */ 1685 mutex_lock(&its->its_lock); 1686 switch (table_type) { 1687 case GITS_BASER_TYPE_DEVICE: 1688 vgic_its_free_device_list(kvm, its); 1689 break; 1690 case GITS_BASER_TYPE_COLLECTION: 1691 vgic_its_free_collection_list(kvm, its); 1692 break; 1693 } 1694 mutex_unlock(&its->its_lock); 1695 } 1696 } 1697 1698 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1699 struct vgic_its *its, 1700 gpa_t addr, unsigned int len) 1701 { 1702 u32 reg = 0; 1703 1704 mutex_lock(&its->cmd_lock); 1705 if (its->creadr == its->cwriter) 1706 reg |= GITS_CTLR_QUIESCENT; 1707 if (its->enabled) 1708 reg |= GITS_CTLR_ENABLE; 1709 mutex_unlock(&its->cmd_lock); 1710 1711 return reg; 1712 } 1713 1714 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1715 gpa_t addr, unsigned int len, 1716 unsigned long val) 1717 { 1718 mutex_lock(&its->cmd_lock); 1719 1720 /* 1721 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1722 * device/collection BASER are invalid 1723 */ 1724 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1725 (!(its->baser_device_table & GITS_BASER_VALID) || 1726 !(its->baser_coll_table & GITS_BASER_VALID) || 1727 !(its->cbaser & GITS_CBASER_VALID))) 1728 goto out; 1729 1730 its->enabled = !!(val & GITS_CTLR_ENABLE); 1731 if (!its->enabled) 1732 vgic_its_invalidate_cache(kvm); 1733 1734 /* 1735 * Try to process any pending commands. This function bails out early 1736 * if the ITS is disabled or no commands have been queued. 1737 */ 1738 vgic_its_process_commands(kvm, its); 1739 1740 out: 1741 mutex_unlock(&its->cmd_lock); 1742 } 1743 1744 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1745 { \ 1746 .reg_offset = off, \ 1747 .len = length, \ 1748 .access_flags = acc, \ 1749 .its_read = rd, \ 1750 .its_write = wr, \ 1751 } 1752 1753 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1754 { \ 1755 .reg_offset = off, \ 1756 .len = length, \ 1757 .access_flags = acc, \ 1758 .its_read = rd, \ 1759 .its_write = wr, \ 1760 .uaccess_its_write = uwr, \ 1761 } 1762 1763 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1764 gpa_t addr, unsigned int len, unsigned long val) 1765 { 1766 /* Ignore */ 1767 } 1768 1769 static struct vgic_register_region its_registers[] = { 1770 REGISTER_ITS_DESC(GITS_CTLR, 1771 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1772 VGIC_ACCESS_32bit), 1773 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1774 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1775 vgic_mmio_uaccess_write_its_iidr, 4, 1776 VGIC_ACCESS_32bit), 1777 REGISTER_ITS_DESC(GITS_TYPER, 1778 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1779 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1780 REGISTER_ITS_DESC(GITS_CBASER, 1781 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1782 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1783 REGISTER_ITS_DESC(GITS_CWRITER, 1784 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1785 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1786 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1787 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1788 vgic_mmio_uaccess_write_its_creadr, 8, 1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1790 REGISTER_ITS_DESC(GITS_BASER, 1791 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1792 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1793 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1794 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1795 VGIC_ACCESS_32bit), 1796 }; 1797 1798 /* This is called on setting the LPI enable bit in the redistributor. */ 1799 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1800 { 1801 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1802 its_sync_lpi_pending_table(vcpu); 1803 } 1804 1805 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1806 u64 addr) 1807 { 1808 struct vgic_io_device *iodev = &its->iodev; 1809 int ret; 1810 1811 mutex_lock(&kvm->slots_lock); 1812 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1813 ret = -EBUSY; 1814 goto out; 1815 } 1816 1817 its->vgic_its_base = addr; 1818 iodev->regions = its_registers; 1819 iodev->nr_regions = ARRAY_SIZE(its_registers); 1820 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1821 1822 iodev->base_addr = its->vgic_its_base; 1823 iodev->iodev_type = IODEV_ITS; 1824 iodev->its = its; 1825 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1826 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1827 out: 1828 mutex_unlock(&kvm->slots_lock); 1829 1830 return ret; 1831 } 1832 1833 /* Default is 16 cached LPIs per vcpu */ 1834 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1835 1836 void vgic_lpi_translation_cache_init(struct kvm *kvm) 1837 { 1838 struct vgic_dist *dist = &kvm->arch.vgic; 1839 unsigned int sz; 1840 int i; 1841 1842 if (!list_empty(&dist->lpi_translation_cache)) 1843 return; 1844 1845 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1846 1847 for (i = 0; i < sz; i++) { 1848 struct vgic_translation_cache_entry *cte; 1849 1850 /* An allocation failure is not fatal */ 1851 cte = kzalloc(sizeof(*cte), GFP_KERNEL); 1852 if (WARN_ON(!cte)) 1853 break; 1854 1855 INIT_LIST_HEAD(&cte->entry); 1856 list_add(&cte->entry, &dist->lpi_translation_cache); 1857 } 1858 } 1859 1860 void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1861 { 1862 struct vgic_dist *dist = &kvm->arch.vgic; 1863 struct vgic_translation_cache_entry *cte, *tmp; 1864 1865 vgic_its_invalidate_cache(kvm); 1866 1867 list_for_each_entry_safe(cte, tmp, 1868 &dist->lpi_translation_cache, entry) { 1869 list_del(&cte->entry); 1870 kfree(cte); 1871 } 1872 } 1873 1874 #define INITIAL_BASER_VALUE \ 1875 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1876 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1877 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1878 GITS_BASER_PAGE_SIZE_64K) 1879 1880 #define INITIAL_PROPBASER_VALUE \ 1881 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1882 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1883 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1884 1885 static int vgic_its_create(struct kvm_device *dev, u32 type) 1886 { 1887 struct vgic_its *its; 1888 1889 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1890 return -ENODEV; 1891 1892 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL); 1893 if (!its) 1894 return -ENOMEM; 1895 1896 if (vgic_initialized(dev->kvm)) { 1897 int ret = vgic_v4_init(dev->kvm); 1898 if (ret < 0) { 1899 kfree(its); 1900 return ret; 1901 } 1902 1903 vgic_lpi_translation_cache_init(dev->kvm); 1904 } 1905 1906 mutex_init(&its->its_lock); 1907 mutex_init(&its->cmd_lock); 1908 1909 its->vgic_its_base = VGIC_ADDR_UNDEF; 1910 1911 INIT_LIST_HEAD(&its->device_list); 1912 INIT_LIST_HEAD(&its->collection_list); 1913 1914 dev->kvm->arch.vgic.msis_require_devid = true; 1915 dev->kvm->arch.vgic.has_its = true; 1916 its->enabled = false; 1917 its->dev = dev; 1918 1919 its->baser_device_table = INITIAL_BASER_VALUE | 1920 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1921 its->baser_coll_table = INITIAL_BASER_VALUE | 1922 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1923 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1924 1925 dev->private = its; 1926 1927 return vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1928 } 1929 1930 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1931 { 1932 struct kvm *kvm = kvm_dev->kvm; 1933 struct vgic_its *its = kvm_dev->private; 1934 1935 mutex_lock(&its->its_lock); 1936 1937 vgic_its_free_device_list(kvm, its); 1938 vgic_its_free_collection_list(kvm, its); 1939 1940 mutex_unlock(&its->its_lock); 1941 kfree(its); 1942 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1943 } 1944 1945 static int vgic_its_has_attr_regs(struct kvm_device *dev, 1946 struct kvm_device_attr *attr) 1947 { 1948 const struct vgic_register_region *region; 1949 gpa_t offset = attr->attr; 1950 int align; 1951 1952 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1953 1954 if (offset & align) 1955 return -EINVAL; 1956 1957 region = vgic_find_mmio_region(its_registers, 1958 ARRAY_SIZE(its_registers), 1959 offset); 1960 if (!region) 1961 return -ENXIO; 1962 1963 return 0; 1964 } 1965 1966 static int vgic_its_attr_regs_access(struct kvm_device *dev, 1967 struct kvm_device_attr *attr, 1968 u64 *reg, bool is_write) 1969 { 1970 const struct vgic_register_region *region; 1971 struct vgic_its *its; 1972 gpa_t addr, offset; 1973 unsigned int len; 1974 int align, ret = 0; 1975 1976 its = dev->private; 1977 offset = attr->attr; 1978 1979 /* 1980 * Although the spec supports upper/lower 32-bit accesses to 1981 * 64-bit ITS registers, the userspace ABI requires 64-bit 1982 * accesses to all 64-bit wide registers. We therefore only 1983 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1984 * registers 1985 */ 1986 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1987 align = 0x3; 1988 else 1989 align = 0x7; 1990 1991 if (offset & align) 1992 return -EINVAL; 1993 1994 mutex_lock(&dev->kvm->lock); 1995 1996 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1997 ret = -ENXIO; 1998 goto out; 1999 } 2000 2001 region = vgic_find_mmio_region(its_registers, 2002 ARRAY_SIZE(its_registers), 2003 offset); 2004 if (!region) { 2005 ret = -ENXIO; 2006 goto out; 2007 } 2008 2009 if (!lock_all_vcpus(dev->kvm)) { 2010 ret = -EBUSY; 2011 goto out; 2012 } 2013 2014 addr = its->vgic_its_base + offset; 2015 2016 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2017 2018 if (is_write) { 2019 if (region->uaccess_its_write) 2020 ret = region->uaccess_its_write(dev->kvm, its, addr, 2021 len, *reg); 2022 else 2023 region->its_write(dev->kvm, its, addr, len, *reg); 2024 } else { 2025 *reg = region->its_read(dev->kvm, its, addr, len); 2026 } 2027 unlock_all_vcpus(dev->kvm); 2028 out: 2029 mutex_unlock(&dev->kvm->lock); 2030 return ret; 2031 } 2032 2033 static u32 compute_next_devid_offset(struct list_head *h, 2034 struct its_device *dev) 2035 { 2036 struct its_device *next; 2037 u32 next_offset; 2038 2039 if (list_is_last(&dev->dev_list, h)) 2040 return 0; 2041 next = list_next_entry(dev, dev_list); 2042 next_offset = next->device_id - dev->device_id; 2043 2044 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2045 } 2046 2047 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2048 { 2049 struct its_ite *next; 2050 u32 next_offset; 2051 2052 if (list_is_last(&ite->ite_list, h)) 2053 return 0; 2054 next = list_next_entry(ite, ite_list); 2055 next_offset = next->event_id - ite->event_id; 2056 2057 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2058 } 2059 2060 /** 2061 * entry_fn_t - Callback called on a table entry restore path 2062 * @its: its handle 2063 * @id: id of the entry 2064 * @entry: pointer to the entry 2065 * @opaque: pointer to an opaque data 2066 * 2067 * Return: < 0 on error, 0 if last element was identified, id offset to next 2068 * element otherwise 2069 */ 2070 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2071 void *opaque); 2072 2073 /** 2074 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2075 * to each entry 2076 * 2077 * @its: its handle 2078 * @base: base gpa of the table 2079 * @size: size of the table in bytes 2080 * @esz: entry size in bytes 2081 * @start_id: the ID of the first entry in the table 2082 * (non zero for 2d level tables) 2083 * @fn: function to apply on each entry 2084 * 2085 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2086 * (the last element may not be found on second level tables) 2087 */ 2088 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2089 int start_id, entry_fn_t fn, void *opaque) 2090 { 2091 struct kvm *kvm = its->dev->kvm; 2092 unsigned long len = size; 2093 int id = start_id; 2094 gpa_t gpa = base; 2095 char entry[ESZ_MAX]; 2096 int ret; 2097 2098 memset(entry, 0, esz); 2099 2100 while (len > 0) { 2101 int next_offset; 2102 size_t byte_offset; 2103 2104 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2105 if (ret) 2106 return ret; 2107 2108 next_offset = fn(its, id, entry, opaque); 2109 if (next_offset <= 0) 2110 return next_offset; 2111 2112 byte_offset = next_offset * esz; 2113 id += next_offset; 2114 gpa += byte_offset; 2115 len -= byte_offset; 2116 } 2117 return 1; 2118 } 2119 2120 /** 2121 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2122 */ 2123 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2124 struct its_ite *ite, gpa_t gpa, int ite_esz) 2125 { 2126 struct kvm *kvm = its->dev->kvm; 2127 u32 next_offset; 2128 u64 val; 2129 2130 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2131 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2132 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2133 ite->collection->collection_id; 2134 val = cpu_to_le64(val); 2135 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz); 2136 } 2137 2138 /** 2139 * vgic_its_restore_ite - restore an interrupt translation entry 2140 * @event_id: id used for indexing 2141 * @ptr: pointer to the ITE entry 2142 * @opaque: pointer to the its_device 2143 */ 2144 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2145 void *ptr, void *opaque) 2146 { 2147 struct its_device *dev = (struct its_device *)opaque; 2148 struct its_collection *collection; 2149 struct kvm *kvm = its->dev->kvm; 2150 struct kvm_vcpu *vcpu = NULL; 2151 u64 val; 2152 u64 *p = (u64 *)ptr; 2153 struct vgic_irq *irq; 2154 u32 coll_id, lpi_id; 2155 struct its_ite *ite; 2156 u32 offset; 2157 2158 val = *p; 2159 2160 val = le64_to_cpu(val); 2161 2162 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2163 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2164 2165 if (!lpi_id) 2166 return 1; /* invalid entry, no choice but to scan next entry */ 2167 2168 if (lpi_id < VGIC_MIN_LPI) 2169 return -EINVAL; 2170 2171 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2172 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2173 return -EINVAL; 2174 2175 collection = find_collection(its, coll_id); 2176 if (!collection) 2177 return -EINVAL; 2178 2179 ite = vgic_its_alloc_ite(dev, collection, event_id); 2180 if (IS_ERR(ite)) 2181 return PTR_ERR(ite); 2182 2183 if (its_is_collection_mapped(collection)) 2184 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 2185 2186 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2187 if (IS_ERR(irq)) 2188 return PTR_ERR(irq); 2189 ite->irq = irq; 2190 2191 return offset; 2192 } 2193 2194 static int vgic_its_ite_cmp(void *priv, struct list_head *a, 2195 struct list_head *b) 2196 { 2197 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2198 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2199 2200 if (itea->event_id < iteb->event_id) 2201 return -1; 2202 else 2203 return 1; 2204 } 2205 2206 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2207 { 2208 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2209 gpa_t base = device->itt_addr; 2210 struct its_ite *ite; 2211 int ret; 2212 int ite_esz = abi->ite_esz; 2213 2214 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2215 2216 list_for_each_entry(ite, &device->itt_head, ite_list) { 2217 gpa_t gpa = base + ite->event_id * ite_esz; 2218 2219 /* 2220 * If an LPI carries the HW bit, this means that this 2221 * interrupt is controlled by GICv4, and we do not 2222 * have direct access to that state. Let's simply fail 2223 * the save operation... 2224 */ 2225 if (ite->irq->hw) 2226 return -EACCES; 2227 2228 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2229 if (ret) 2230 return ret; 2231 } 2232 return 0; 2233 } 2234 2235 /** 2236 * vgic_its_restore_itt - restore the ITT of a device 2237 * 2238 * @its: its handle 2239 * @dev: device handle 2240 * 2241 * Return 0 on success, < 0 on error 2242 */ 2243 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2244 { 2245 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2246 gpa_t base = dev->itt_addr; 2247 int ret; 2248 int ite_esz = abi->ite_esz; 2249 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2250 2251 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2252 vgic_its_restore_ite, dev); 2253 2254 /* scan_its_table returns +1 if all ITEs are invalid */ 2255 if (ret > 0) 2256 ret = 0; 2257 2258 return ret; 2259 } 2260 2261 /** 2262 * vgic_its_save_dte - Save a device table entry at a given GPA 2263 * 2264 * @its: ITS handle 2265 * @dev: ITS device 2266 * @ptr: GPA 2267 */ 2268 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2269 gpa_t ptr, int dte_esz) 2270 { 2271 struct kvm *kvm = its->dev->kvm; 2272 u64 val, itt_addr_field; 2273 u32 next_offset; 2274 2275 itt_addr_field = dev->itt_addr >> 8; 2276 next_offset = compute_next_devid_offset(&its->device_list, dev); 2277 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2278 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2279 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2280 (dev->num_eventid_bits - 1)); 2281 val = cpu_to_le64(val); 2282 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz); 2283 } 2284 2285 /** 2286 * vgic_its_restore_dte - restore a device table entry 2287 * 2288 * @its: its handle 2289 * @id: device id the DTE corresponds to 2290 * @ptr: kernel VA where the 8 byte DTE is located 2291 * @opaque: unused 2292 * 2293 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2294 * next dte otherwise 2295 */ 2296 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2297 void *ptr, void *opaque) 2298 { 2299 struct its_device *dev; 2300 gpa_t itt_addr; 2301 u8 num_eventid_bits; 2302 u64 entry = *(u64 *)ptr; 2303 bool valid; 2304 u32 offset; 2305 int ret; 2306 2307 entry = le64_to_cpu(entry); 2308 2309 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2310 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2311 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2312 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2313 2314 if (!valid) 2315 return 1; 2316 2317 /* dte entry is valid */ 2318 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2319 2320 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2321 if (IS_ERR(dev)) 2322 return PTR_ERR(dev); 2323 2324 ret = vgic_its_restore_itt(its, dev); 2325 if (ret) { 2326 vgic_its_free_device(its->dev->kvm, dev); 2327 return ret; 2328 } 2329 2330 return offset; 2331 } 2332 2333 static int vgic_its_device_cmp(void *priv, struct list_head *a, 2334 struct list_head *b) 2335 { 2336 struct its_device *deva = container_of(a, struct its_device, dev_list); 2337 struct its_device *devb = container_of(b, struct its_device, dev_list); 2338 2339 if (deva->device_id < devb->device_id) 2340 return -1; 2341 else 2342 return 1; 2343 } 2344 2345 /** 2346 * vgic_its_save_device_tables - Save the device table and all ITT 2347 * into guest RAM 2348 * 2349 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2350 * returns the GPA of the device entry 2351 */ 2352 static int vgic_its_save_device_tables(struct vgic_its *its) 2353 { 2354 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2355 u64 baser = its->baser_device_table; 2356 struct its_device *dev; 2357 int dte_esz = abi->dte_esz; 2358 2359 if (!(baser & GITS_BASER_VALID)) 2360 return 0; 2361 2362 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2363 2364 list_for_each_entry(dev, &its->device_list, dev_list) { 2365 int ret; 2366 gpa_t eaddr; 2367 2368 if (!vgic_its_check_id(its, baser, 2369 dev->device_id, &eaddr)) 2370 return -EINVAL; 2371 2372 ret = vgic_its_save_itt(its, dev); 2373 if (ret) 2374 return ret; 2375 2376 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2377 if (ret) 2378 return ret; 2379 } 2380 return 0; 2381 } 2382 2383 /** 2384 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2385 * 2386 * @its: its handle 2387 * @id: index of the entry in the L1 table 2388 * @addr: kernel VA 2389 * @opaque: unused 2390 * 2391 * L1 table entries are scanned by steps of 1 entry 2392 * Return < 0 if error, 0 if last dte was found when scanning the L2 2393 * table, +1 otherwise (meaning next L1 entry must be scanned) 2394 */ 2395 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2396 void *opaque) 2397 { 2398 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2399 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2400 u64 entry = *(u64 *)addr; 2401 int dte_esz = abi->dte_esz; 2402 gpa_t gpa; 2403 int ret; 2404 2405 entry = le64_to_cpu(entry); 2406 2407 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2408 return 1; 2409 2410 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2411 2412 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2413 l2_start_id, vgic_its_restore_dte, NULL); 2414 2415 return ret; 2416 } 2417 2418 /** 2419 * vgic_its_restore_device_tables - Restore the device table and all ITT 2420 * from guest RAM to internal data structs 2421 */ 2422 static int vgic_its_restore_device_tables(struct vgic_its *its) 2423 { 2424 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2425 u64 baser = its->baser_device_table; 2426 int l1_esz, ret; 2427 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2428 gpa_t l1_gpa; 2429 2430 if (!(baser & GITS_BASER_VALID)) 2431 return 0; 2432 2433 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2434 2435 if (baser & GITS_BASER_INDIRECT) { 2436 l1_esz = GITS_LVL1_ENTRY_SIZE; 2437 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2438 handle_l1_dte, NULL); 2439 } else { 2440 l1_esz = abi->dte_esz; 2441 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2442 vgic_its_restore_dte, NULL); 2443 } 2444 2445 /* scan_its_table returns +1 if all entries are invalid */ 2446 if (ret > 0) 2447 ret = 0; 2448 2449 return ret; 2450 } 2451 2452 static int vgic_its_save_cte(struct vgic_its *its, 2453 struct its_collection *collection, 2454 gpa_t gpa, int esz) 2455 { 2456 u64 val; 2457 2458 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2459 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2460 collection->collection_id); 2461 val = cpu_to_le64(val); 2462 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2463 } 2464 2465 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2466 { 2467 struct its_collection *collection; 2468 struct kvm *kvm = its->dev->kvm; 2469 u32 target_addr, coll_id; 2470 u64 val; 2471 int ret; 2472 2473 BUG_ON(esz > sizeof(val)); 2474 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2475 if (ret) 2476 return ret; 2477 val = le64_to_cpu(val); 2478 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2479 return 0; 2480 2481 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2482 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2483 2484 if (target_addr != COLLECTION_NOT_MAPPED && 2485 target_addr >= atomic_read(&kvm->online_vcpus)) 2486 return -EINVAL; 2487 2488 collection = find_collection(its, coll_id); 2489 if (collection) 2490 return -EEXIST; 2491 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2492 if (ret) 2493 return ret; 2494 collection->target_addr = target_addr; 2495 return 1; 2496 } 2497 2498 /** 2499 * vgic_its_save_collection_table - Save the collection table into 2500 * guest RAM 2501 */ 2502 static int vgic_its_save_collection_table(struct vgic_its *its) 2503 { 2504 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2505 u64 baser = its->baser_coll_table; 2506 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2507 struct its_collection *collection; 2508 u64 val; 2509 size_t max_size, filled = 0; 2510 int ret, cte_esz = abi->cte_esz; 2511 2512 if (!(baser & GITS_BASER_VALID)) 2513 return 0; 2514 2515 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2516 2517 list_for_each_entry(collection, &its->collection_list, coll_list) { 2518 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2519 if (ret) 2520 return ret; 2521 gpa += cte_esz; 2522 filled += cte_esz; 2523 } 2524 2525 if (filled == max_size) 2526 return 0; 2527 2528 /* 2529 * table is not fully filled, add a last dummy element 2530 * with valid bit unset 2531 */ 2532 val = 0; 2533 BUG_ON(cte_esz > sizeof(val)); 2534 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2535 return ret; 2536 } 2537 2538 /** 2539 * vgic_its_restore_collection_table - reads the collection table 2540 * in guest memory and restores the ITS internal state. Requires the 2541 * BASER registers to be restored before. 2542 */ 2543 static int vgic_its_restore_collection_table(struct vgic_its *its) 2544 { 2545 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2546 u64 baser = its->baser_coll_table; 2547 int cte_esz = abi->cte_esz; 2548 size_t max_size, read = 0; 2549 gpa_t gpa; 2550 int ret; 2551 2552 if (!(baser & GITS_BASER_VALID)) 2553 return 0; 2554 2555 gpa = GITS_BASER_ADDR_48_to_52(baser); 2556 2557 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2558 2559 while (read < max_size) { 2560 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2561 if (ret <= 0) 2562 break; 2563 gpa += cte_esz; 2564 read += cte_esz; 2565 } 2566 2567 if (ret > 0) 2568 return 0; 2569 2570 return ret; 2571 } 2572 2573 /** 2574 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2575 * according to v0 ABI 2576 */ 2577 static int vgic_its_save_tables_v0(struct vgic_its *its) 2578 { 2579 int ret; 2580 2581 ret = vgic_its_save_device_tables(its); 2582 if (ret) 2583 return ret; 2584 2585 return vgic_its_save_collection_table(its); 2586 } 2587 2588 /** 2589 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2590 * to internal data structs according to V0 ABI 2591 * 2592 */ 2593 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2594 { 2595 int ret; 2596 2597 ret = vgic_its_restore_collection_table(its); 2598 if (ret) 2599 return ret; 2600 2601 return vgic_its_restore_device_tables(its); 2602 } 2603 2604 static int vgic_its_commit_v0(struct vgic_its *its) 2605 { 2606 const struct vgic_its_abi *abi; 2607 2608 abi = vgic_its_get_abi(its); 2609 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2610 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2611 2612 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2613 << GITS_BASER_ENTRY_SIZE_SHIFT); 2614 2615 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2616 << GITS_BASER_ENTRY_SIZE_SHIFT); 2617 return 0; 2618 } 2619 2620 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2621 { 2622 /* We need to keep the ABI specific field values */ 2623 its->baser_coll_table &= ~GITS_BASER_VALID; 2624 its->baser_device_table &= ~GITS_BASER_VALID; 2625 its->cbaser = 0; 2626 its->creadr = 0; 2627 its->cwriter = 0; 2628 its->enabled = 0; 2629 vgic_its_free_device_list(kvm, its); 2630 vgic_its_free_collection_list(kvm, its); 2631 } 2632 2633 static int vgic_its_has_attr(struct kvm_device *dev, 2634 struct kvm_device_attr *attr) 2635 { 2636 switch (attr->group) { 2637 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2638 switch (attr->attr) { 2639 case KVM_VGIC_ITS_ADDR_TYPE: 2640 return 0; 2641 } 2642 break; 2643 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2644 switch (attr->attr) { 2645 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2646 return 0; 2647 case KVM_DEV_ARM_ITS_CTRL_RESET: 2648 return 0; 2649 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2650 return 0; 2651 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2652 return 0; 2653 } 2654 break; 2655 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2656 return vgic_its_has_attr_regs(dev, attr); 2657 } 2658 return -ENXIO; 2659 } 2660 2661 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2662 { 2663 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2664 int ret = 0; 2665 2666 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2667 return 0; 2668 2669 mutex_lock(&kvm->lock); 2670 mutex_lock(&its->its_lock); 2671 2672 if (!lock_all_vcpus(kvm)) { 2673 mutex_unlock(&its->its_lock); 2674 mutex_unlock(&kvm->lock); 2675 return -EBUSY; 2676 } 2677 2678 switch (attr) { 2679 case KVM_DEV_ARM_ITS_CTRL_RESET: 2680 vgic_its_reset(kvm, its); 2681 break; 2682 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2683 ret = abi->save_tables(its); 2684 break; 2685 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2686 ret = abi->restore_tables(its); 2687 break; 2688 } 2689 2690 unlock_all_vcpus(kvm); 2691 mutex_unlock(&its->its_lock); 2692 mutex_unlock(&kvm->lock); 2693 return ret; 2694 } 2695 2696 static int vgic_its_set_attr(struct kvm_device *dev, 2697 struct kvm_device_attr *attr) 2698 { 2699 struct vgic_its *its = dev->private; 2700 int ret; 2701 2702 switch (attr->group) { 2703 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2704 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2705 unsigned long type = (unsigned long)attr->attr; 2706 u64 addr; 2707 2708 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2709 return -ENODEV; 2710 2711 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2712 return -EFAULT; 2713 2714 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base, 2715 addr, SZ_64K); 2716 if (ret) 2717 return ret; 2718 2719 return vgic_register_its_iodev(dev->kvm, its, addr); 2720 } 2721 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2722 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2723 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2724 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2725 u64 reg; 2726 2727 if (get_user(reg, uaddr)) 2728 return -EFAULT; 2729 2730 return vgic_its_attr_regs_access(dev, attr, ®, true); 2731 } 2732 } 2733 return -ENXIO; 2734 } 2735 2736 static int vgic_its_get_attr(struct kvm_device *dev, 2737 struct kvm_device_attr *attr) 2738 { 2739 switch (attr->group) { 2740 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2741 struct vgic_its *its = dev->private; 2742 u64 addr = its->vgic_its_base; 2743 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2744 unsigned long type = (unsigned long)attr->attr; 2745 2746 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2747 return -ENODEV; 2748 2749 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2750 return -EFAULT; 2751 break; 2752 } 2753 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2754 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2755 u64 reg; 2756 int ret; 2757 2758 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2759 if (ret) 2760 return ret; 2761 return put_user(reg, uaddr); 2762 } 2763 default: 2764 return -ENXIO; 2765 } 2766 2767 return 0; 2768 } 2769 2770 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2771 .name = "kvm-arm-vgic-its", 2772 .create = vgic_its_create, 2773 .destroy = vgic_its_destroy, 2774 .set_attr = vgic_its_set_attr, 2775 .get_attr = vgic_its_get_attr, 2776 .has_attr = vgic_its_has_attr, 2777 }; 2778 2779 int kvm_vgic_register_its_device(void) 2780 { 2781 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2782 KVM_DEV_TYPE_ARM_VGIC_ITS); 2783 } 2784