1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static int vgic_its_save_tables_v0(struct vgic_its *its); 27 static int vgic_its_restore_tables_v0(struct vgic_its *its); 28 static int vgic_its_commit_v0(struct vgic_its *its); 29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32 /* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41 { 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92 out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116 } 117 118 struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126 }; 127 128 #define COLLECTION_NOT_MAPPED ((u32)~0) 129 130 struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135 }; 136 137 #define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140 struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146 }; 147 148 struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154 }; 155 156 /** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167 struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174 }; 175 176 #define ABI_0_ESZ 8 177 #define ESZ_MAX ABI_0_ESZ 178 179 static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188 }; 189 190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193 { 194 return &its_table_abi_versions[its->abi_rev]; 195 } 196 197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198 { 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204 } 205 206 /* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211 { 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219 } 220 221 /* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228 { 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241 } 242 243 /* To be used as an iterator this macro misses the enclosing parentheses */ 244 #define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248 #define GIC_LPI_OFFSET 8192 249 250 #define VITS_TYPER_IDBITS 16 251 #define VITS_TYPER_DEVBITS 16 252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255 /* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260 { 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269 } 270 271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274 /* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282 { 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312 } 313 314 /* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320 { 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352 } 353 354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355 { 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379 } 380 381 /* 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 383 * is targeting) to the VGIC's view, which deals with target VCPUs. 384 * Needs to be called whenever either the collection for a LPIs has 385 * changed or the collection itself got retargeted. 386 */ 387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 388 { 389 struct kvm_vcpu *vcpu; 390 391 if (!its_is_collection_mapped(ite->collection)) 392 return; 393 394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 395 update_affinity(ite->irq, vcpu); 396 } 397 398 /* 399 * Updates the target VCPU for every LPI targeting this collection. 400 * Must be called with the its_lock mutex held. 401 */ 402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 403 struct its_collection *coll) 404 { 405 struct its_device *device; 406 struct its_ite *ite; 407 408 for_each_lpi_its(device, ite, its) { 409 if (ite->collection != coll) 410 continue; 411 412 update_affinity_ite(kvm, ite); 413 } 414 } 415 416 static u32 max_lpis_propbaser(u64 propbaser) 417 { 418 int nr_idbits = (propbaser & 0x1f) + 1; 419 420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 421 } 422 423 /* 424 * Sync the pending table pending bit of LPIs targeting @vcpu 425 * with our own data structures. This relies on the LPI being 426 * mapped before. 427 */ 428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 429 { 430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 431 struct vgic_irq *irq; 432 int last_byte_offset = -1; 433 int ret = 0; 434 u32 *intids; 435 int nr_irqs, i; 436 unsigned long flags; 437 u8 pendmask; 438 439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 440 if (nr_irqs < 0) 441 return nr_irqs; 442 443 for (i = 0; i < nr_irqs; i++) { 444 int byte_offset, bit_nr; 445 446 byte_offset = intids[i] / BITS_PER_BYTE; 447 bit_nr = intids[i] % BITS_PER_BYTE; 448 449 /* 450 * For contiguously allocated LPIs chances are we just read 451 * this very same byte in the last iteration. Reuse that. 452 */ 453 if (byte_offset != last_byte_offset) { 454 ret = kvm_read_guest_lock(vcpu->kvm, 455 pendbase + byte_offset, 456 &pendmask, 1); 457 if (ret) { 458 kfree(intids); 459 return ret; 460 } 461 last_byte_offset = byte_offset; 462 } 463 464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 465 if (!irq) 466 continue; 467 468 raw_spin_lock_irqsave(&irq->irq_lock, flags); 469 irq->pending_latch = pendmask & (1U << bit_nr); 470 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 471 vgic_put_irq(vcpu->kvm, irq); 472 } 473 474 kfree(intids); 475 476 return ret; 477 } 478 479 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 480 struct vgic_its *its, 481 gpa_t addr, unsigned int len) 482 { 483 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 484 u64 reg = GITS_TYPER_PLPIS; 485 486 /* 487 * We use linear CPU numbers for redistributor addressing, 488 * so GITS_TYPER.PTA is 0. 489 * Also we force all PROPBASER registers to be the same, so 490 * CommonLPIAff is 0 as well. 491 * To avoid memory waste in the guest, we keep the number of IDBits and 492 * DevBits low - as least for the time being. 493 */ 494 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 495 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 496 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 497 498 return extract_bytes(reg, addr & 7, len); 499 } 500 501 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 502 struct vgic_its *its, 503 gpa_t addr, unsigned int len) 504 { 505 u32 val; 506 507 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 508 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 509 return val; 510 } 511 512 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 513 struct vgic_its *its, 514 gpa_t addr, unsigned int len, 515 unsigned long val) 516 { 517 u32 rev = GITS_IIDR_REV(val); 518 519 if (rev >= NR_ITS_ABIS) 520 return -EINVAL; 521 return vgic_its_set_abi(its, rev); 522 } 523 524 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 525 struct vgic_its *its, 526 gpa_t addr, unsigned int len) 527 { 528 switch (addr & 0xffff) { 529 case GITS_PIDR0: 530 return 0x92; /* part number, bits[7:0] */ 531 case GITS_PIDR1: 532 return 0xb4; /* part number, bits[11:8] */ 533 case GITS_PIDR2: 534 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 535 case GITS_PIDR4: 536 return 0x40; /* This is a 64K software visible page */ 537 /* The following are the ID registers for (any) GIC. */ 538 case GITS_CIDR0: 539 return 0x0d; 540 case GITS_CIDR1: 541 return 0xf0; 542 case GITS_CIDR2: 543 return 0x05; 544 case GITS_CIDR3: 545 return 0xb1; 546 } 547 548 return 0; 549 } 550 551 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 552 phys_addr_t db, 553 u32 devid, u32 eventid) 554 { 555 struct vgic_translation_cache_entry *cte; 556 557 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 558 /* 559 * If we hit a NULL entry, there is nothing after this 560 * point. 561 */ 562 if (!cte->irq) 563 break; 564 565 if (cte->db != db || cte->devid != devid || 566 cte->eventid != eventid) 567 continue; 568 569 /* 570 * Move this entry to the head, as it is the most 571 * recently used. 572 */ 573 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 574 list_move(&cte->entry, &dist->lpi_translation_cache); 575 576 return cte->irq; 577 } 578 579 return NULL; 580 } 581 582 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 583 u32 devid, u32 eventid) 584 { 585 struct vgic_dist *dist = &kvm->arch.vgic; 586 struct vgic_irq *irq; 587 unsigned long flags; 588 589 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 590 591 irq = __vgic_its_check_cache(dist, db, devid, eventid); 592 if (irq) 593 vgic_get_irq_kref(irq); 594 595 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 596 597 return irq; 598 } 599 600 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 601 u32 devid, u32 eventid, 602 struct vgic_irq *irq) 603 { 604 struct vgic_dist *dist = &kvm->arch.vgic; 605 struct vgic_translation_cache_entry *cte; 606 unsigned long flags; 607 phys_addr_t db; 608 609 /* Do not cache a directly injected interrupt */ 610 if (irq->hw) 611 return; 612 613 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 614 615 if (unlikely(list_empty(&dist->lpi_translation_cache))) 616 goto out; 617 618 /* 619 * We could have raced with another CPU caching the same 620 * translation behind our back, so let's check it is not in 621 * already 622 */ 623 db = its->vgic_its_base + GITS_TRANSLATER; 624 if (__vgic_its_check_cache(dist, db, devid, eventid)) 625 goto out; 626 627 /* Always reuse the last entry (LRU policy) */ 628 cte = list_last_entry(&dist->lpi_translation_cache, 629 typeof(*cte), entry); 630 631 /* 632 * Caching the translation implies having an extra reference 633 * to the interrupt, so drop the potential reference on what 634 * was in the cache, and increment it on the new interrupt. 635 */ 636 if (cte->irq) 637 __vgic_put_lpi_locked(kvm, cte->irq); 638 639 vgic_get_irq_kref(irq); 640 641 cte->db = db; 642 cte->devid = devid; 643 cte->eventid = eventid; 644 cte->irq = irq; 645 646 /* Move the new translation to the head of the list */ 647 list_move(&cte->entry, &dist->lpi_translation_cache); 648 649 out: 650 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 651 } 652 653 void vgic_its_invalidate_cache(struct kvm *kvm) 654 { 655 struct vgic_dist *dist = &kvm->arch.vgic; 656 struct vgic_translation_cache_entry *cte; 657 unsigned long flags; 658 659 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 660 661 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 662 /* 663 * If we hit a NULL entry, there is nothing after this 664 * point. 665 */ 666 if (!cte->irq) 667 break; 668 669 __vgic_put_lpi_locked(kvm, cte->irq); 670 cte->irq = NULL; 671 } 672 673 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 674 } 675 676 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 677 u32 devid, u32 eventid, struct vgic_irq **irq) 678 { 679 struct kvm_vcpu *vcpu; 680 struct its_ite *ite; 681 682 if (!its->enabled) 683 return -EBUSY; 684 685 ite = find_ite(its, devid, eventid); 686 if (!ite || !its_is_collection_mapped(ite->collection)) 687 return E_ITS_INT_UNMAPPED_INTERRUPT; 688 689 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 690 if (!vcpu) 691 return E_ITS_INT_UNMAPPED_INTERRUPT; 692 693 if (!vgic_lpis_enabled(vcpu)) 694 return -EBUSY; 695 696 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 697 698 *irq = ite->irq; 699 return 0; 700 } 701 702 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 703 { 704 u64 address; 705 struct kvm_io_device *kvm_io_dev; 706 struct vgic_io_device *iodev; 707 708 if (!vgic_has_its(kvm)) 709 return ERR_PTR(-ENODEV); 710 711 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 712 return ERR_PTR(-EINVAL); 713 714 address = (u64)msi->address_hi << 32 | msi->address_lo; 715 716 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 717 if (!kvm_io_dev) 718 return ERR_PTR(-EINVAL); 719 720 if (kvm_io_dev->ops != &kvm_io_gic_ops) 721 return ERR_PTR(-EINVAL); 722 723 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 724 if (iodev->iodev_type != IODEV_ITS) 725 return ERR_PTR(-EINVAL); 726 727 return iodev->its; 728 } 729 730 /* 731 * Find the target VCPU and the LPI number for a given devid/eventid pair 732 * and make this IRQ pending, possibly injecting it. 733 * Must be called with the its_lock mutex held. 734 * Returns 0 on success, a positive error value for any ITS mapping 735 * related errors and negative error values for generic errors. 736 */ 737 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 738 u32 devid, u32 eventid) 739 { 740 struct vgic_irq *irq = NULL; 741 unsigned long flags; 742 int err; 743 744 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 745 if (err) 746 return err; 747 748 if (irq->hw) 749 return irq_set_irqchip_state(irq->host_irq, 750 IRQCHIP_STATE_PENDING, true); 751 752 raw_spin_lock_irqsave(&irq->irq_lock, flags); 753 irq->pending_latch = true; 754 vgic_queue_irq_unlock(kvm, irq, flags); 755 756 return 0; 757 } 758 759 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 760 { 761 struct vgic_irq *irq; 762 unsigned long flags; 763 phys_addr_t db; 764 765 db = (u64)msi->address_hi << 32 | msi->address_lo; 766 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 767 if (!irq) 768 return -EWOULDBLOCK; 769 770 raw_spin_lock_irqsave(&irq->irq_lock, flags); 771 irq->pending_latch = true; 772 vgic_queue_irq_unlock(kvm, irq, flags); 773 vgic_put_irq(kvm, irq); 774 775 return 0; 776 } 777 778 /* 779 * Queries the KVM IO bus framework to get the ITS pointer from the given 780 * doorbell address. 781 * We then call vgic_its_trigger_msi() with the decoded data. 782 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 783 */ 784 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 785 { 786 struct vgic_its *its; 787 int ret; 788 789 if (!vgic_its_inject_cached_translation(kvm, msi)) 790 return 1; 791 792 its = vgic_msi_to_its(kvm, msi); 793 if (IS_ERR(its)) 794 return PTR_ERR(its); 795 796 mutex_lock(&its->its_lock); 797 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 798 mutex_unlock(&its->its_lock); 799 800 if (ret < 0) 801 return ret; 802 803 /* 804 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 805 * if the guest has blocked the MSI. So we map any LPI mapping 806 * related error to that. 807 */ 808 if (ret) 809 return 0; 810 else 811 return 1; 812 } 813 814 /* Requires the its_lock to be held. */ 815 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 816 { 817 list_del(&ite->ite_list); 818 819 /* This put matches the get in vgic_add_lpi. */ 820 if (ite->irq) { 821 if (ite->irq->hw) 822 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 823 824 vgic_put_irq(kvm, ite->irq); 825 } 826 827 kfree(ite); 828 } 829 830 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 831 { 832 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 833 } 834 835 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 836 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 837 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 838 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 839 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 840 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 841 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 842 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 843 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 844 845 /* 846 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 847 * Must be called with the its_lock mutex held. 848 */ 849 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 850 u64 *its_cmd) 851 { 852 u32 device_id = its_cmd_get_deviceid(its_cmd); 853 u32 event_id = its_cmd_get_id(its_cmd); 854 struct its_ite *ite; 855 856 ite = find_ite(its, device_id, event_id); 857 if (ite && its_is_collection_mapped(ite->collection)) { 858 struct its_device *device = find_its_device(its, device_id); 859 int ite_esz = vgic_its_get_abi(its)->ite_esz; 860 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz; 861 /* 862 * Though the spec talks about removing the pending state, we 863 * don't bother here since we clear the ITTE anyway and the 864 * pending state is a property of the ITTE struct. 865 */ 866 vgic_its_invalidate_cache(kvm); 867 868 its_free_ite(kvm, ite); 869 870 return vgic_its_write_entry_lock(its, gpa, 0, ite_esz); 871 } 872 873 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 874 } 875 876 /* 877 * The MOVI command moves an ITTE to a different collection. 878 * Must be called with the its_lock mutex held. 879 */ 880 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 881 u64 *its_cmd) 882 { 883 u32 device_id = its_cmd_get_deviceid(its_cmd); 884 u32 event_id = its_cmd_get_id(its_cmd); 885 u32 coll_id = its_cmd_get_collection(its_cmd); 886 struct kvm_vcpu *vcpu; 887 struct its_ite *ite; 888 struct its_collection *collection; 889 890 ite = find_ite(its, device_id, event_id); 891 if (!ite) 892 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 893 894 if (!its_is_collection_mapped(ite->collection)) 895 return E_ITS_MOVI_UNMAPPED_COLLECTION; 896 897 collection = find_collection(its, coll_id); 898 if (!its_is_collection_mapped(collection)) 899 return E_ITS_MOVI_UNMAPPED_COLLECTION; 900 901 ite->collection = collection; 902 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 903 904 vgic_its_invalidate_cache(kvm); 905 906 return update_affinity(ite->irq, vcpu); 907 } 908 909 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 910 { 911 gfn_t gfn = gpa >> PAGE_SHIFT; 912 int idx; 913 bool ret; 914 915 idx = srcu_read_lock(&its->dev->kvm->srcu); 916 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 917 srcu_read_unlock(&its->dev->kvm->srcu, idx); 918 return ret; 919 } 920 921 /* 922 * Check whether an ID can be stored into the corresponding guest table. 923 * For a direct table this is pretty easy, but gets a bit nasty for 924 * indirect tables. We check whether the resulting guest physical address 925 * is actually valid (covered by a memslot and guest accessible). 926 * For this we have to read the respective first level entry. 927 */ 928 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 929 gpa_t *eaddr) 930 { 931 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 932 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 933 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 934 int esz = GITS_BASER_ENTRY_SIZE(baser); 935 int index; 936 937 switch (type) { 938 case GITS_BASER_TYPE_DEVICE: 939 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 940 return false; 941 break; 942 case GITS_BASER_TYPE_COLLECTION: 943 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 944 if (id >= BIT_ULL(16)) 945 return false; 946 break; 947 default: 948 return false; 949 } 950 951 if (!(baser & GITS_BASER_INDIRECT)) { 952 phys_addr_t addr; 953 954 if (id >= (l1_tbl_size / esz)) 955 return false; 956 957 addr = base + id * esz; 958 959 if (eaddr) 960 *eaddr = addr; 961 962 return __is_visible_gfn_locked(its, addr); 963 } 964 965 /* calculate and check the index into the 1st level */ 966 index = id / (SZ_64K / esz); 967 if (index >= (l1_tbl_size / sizeof(u64))) 968 return false; 969 970 /* Each 1st level entry is represented by a 64-bit value. */ 971 if (kvm_read_guest_lock(its->dev->kvm, 972 base + index * sizeof(indirect_ptr), 973 &indirect_ptr, sizeof(indirect_ptr))) 974 return false; 975 976 indirect_ptr = le64_to_cpu(indirect_ptr); 977 978 /* check the valid bit of the first level entry */ 979 if (!(indirect_ptr & BIT_ULL(63))) 980 return false; 981 982 /* Mask the guest physical address and calculate the frame number. */ 983 indirect_ptr &= GENMASK_ULL(51, 16); 984 985 /* Find the address of the actual entry */ 986 index = id % (SZ_64K / esz); 987 indirect_ptr += index * esz; 988 989 if (eaddr) 990 *eaddr = indirect_ptr; 991 992 return __is_visible_gfn_locked(its, indirect_ptr); 993 } 994 995 /* 996 * Check whether an event ID can be stored in the corresponding Interrupt 997 * Translation Table, which starts at device->itt_addr. 998 */ 999 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 1000 u32 event_id) 1001 { 1002 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1003 int ite_esz = abi->ite_esz; 1004 gpa_t gpa; 1005 1006 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 1007 if (event_id >= BIT_ULL(device->num_eventid_bits)) 1008 return false; 1009 1010 gpa = device->itt_addr + event_id * ite_esz; 1011 return __is_visible_gfn_locked(its, gpa); 1012 } 1013 1014 /* 1015 * Add a new collection into the ITS collection table. 1016 * Returns 0 on success, and a negative error value for generic errors. 1017 */ 1018 static int vgic_its_alloc_collection(struct vgic_its *its, 1019 struct its_collection **colp, 1020 u32 coll_id) 1021 { 1022 struct its_collection *collection; 1023 1024 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 1025 if (!collection) 1026 return -ENOMEM; 1027 1028 collection->collection_id = coll_id; 1029 collection->target_addr = COLLECTION_NOT_MAPPED; 1030 1031 list_add_tail(&collection->coll_list, &its->collection_list); 1032 *colp = collection; 1033 1034 return 0; 1035 } 1036 1037 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1038 { 1039 struct its_collection *collection; 1040 struct its_device *device; 1041 struct its_ite *ite; 1042 1043 /* 1044 * Clearing the mapping for that collection ID removes the 1045 * entry from the list. If there wasn't any before, we can 1046 * go home early. 1047 */ 1048 collection = find_collection(its, coll_id); 1049 if (!collection) 1050 return; 1051 1052 for_each_lpi_its(device, ite, its) 1053 if (ite->collection && 1054 ite->collection->collection_id == coll_id) 1055 ite->collection = NULL; 1056 1057 list_del(&collection->coll_list); 1058 kfree(collection); 1059 } 1060 1061 /* Must be called with its_lock mutex held */ 1062 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1063 struct its_collection *collection, 1064 u32 event_id) 1065 { 1066 struct its_ite *ite; 1067 1068 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 1069 if (!ite) 1070 return ERR_PTR(-ENOMEM); 1071 1072 ite->event_id = event_id; 1073 ite->collection = collection; 1074 1075 list_add_tail(&ite->ite_list, &device->itt_head); 1076 return ite; 1077 } 1078 1079 /* 1080 * The MAPTI and MAPI commands map LPIs to ITTEs. 1081 * Must be called with its_lock mutex held. 1082 */ 1083 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1084 u64 *its_cmd) 1085 { 1086 u32 device_id = its_cmd_get_deviceid(its_cmd); 1087 u32 event_id = its_cmd_get_id(its_cmd); 1088 u32 coll_id = its_cmd_get_collection(its_cmd); 1089 struct its_ite *ite; 1090 struct kvm_vcpu *vcpu = NULL; 1091 struct its_device *device; 1092 struct its_collection *collection, *new_coll = NULL; 1093 struct vgic_irq *irq; 1094 int lpi_nr; 1095 1096 device = find_its_device(its, device_id); 1097 if (!device) 1098 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1099 1100 if (!vgic_its_check_event_id(its, device, event_id)) 1101 return E_ITS_MAPTI_ID_OOR; 1102 1103 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1104 lpi_nr = its_cmd_get_physical_id(its_cmd); 1105 else 1106 lpi_nr = event_id; 1107 if (lpi_nr < GIC_LPI_OFFSET || 1108 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1109 return E_ITS_MAPTI_PHYSICALID_OOR; 1110 1111 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1112 if (find_ite(its, device_id, event_id)) 1113 return 0; 1114 1115 collection = find_collection(its, coll_id); 1116 if (!collection) { 1117 int ret; 1118 1119 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1120 return E_ITS_MAPC_COLLECTION_OOR; 1121 1122 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1123 if (ret) 1124 return ret; 1125 new_coll = collection; 1126 } 1127 1128 ite = vgic_its_alloc_ite(device, collection, event_id); 1129 if (IS_ERR(ite)) { 1130 if (new_coll) 1131 vgic_its_free_collection(its, coll_id); 1132 return PTR_ERR(ite); 1133 } 1134 1135 if (its_is_collection_mapped(collection)) 1136 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1137 1138 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1139 if (IS_ERR(irq)) { 1140 if (new_coll) 1141 vgic_its_free_collection(its, coll_id); 1142 its_free_ite(kvm, ite); 1143 return PTR_ERR(irq); 1144 } 1145 ite->irq = irq; 1146 1147 return 0; 1148 } 1149 1150 /* Requires the its_lock to be held. */ 1151 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1152 { 1153 struct its_ite *ite, *temp; 1154 1155 /* 1156 * The spec says that unmapping a device with still valid 1157 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1158 * since we cannot leave the memory unreferenced. 1159 */ 1160 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1161 its_free_ite(kvm, ite); 1162 1163 vgic_its_invalidate_cache(kvm); 1164 1165 list_del(&device->dev_list); 1166 kfree(device); 1167 } 1168 1169 /* its lock must be held */ 1170 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1171 { 1172 struct its_device *cur, *temp; 1173 1174 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1175 vgic_its_free_device(kvm, cur); 1176 } 1177 1178 /* its lock must be held */ 1179 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1180 { 1181 struct its_collection *cur, *temp; 1182 1183 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1184 vgic_its_free_collection(its, cur->collection_id); 1185 } 1186 1187 /* Must be called with its_lock mutex held */ 1188 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1189 u32 device_id, gpa_t itt_addr, 1190 u8 num_eventid_bits) 1191 { 1192 struct its_device *device; 1193 1194 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1195 if (!device) 1196 return ERR_PTR(-ENOMEM); 1197 1198 device->device_id = device_id; 1199 device->itt_addr = itt_addr; 1200 device->num_eventid_bits = num_eventid_bits; 1201 INIT_LIST_HEAD(&device->itt_head); 1202 1203 list_add_tail(&device->dev_list, &its->device_list); 1204 return device; 1205 } 1206 1207 /* 1208 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1209 * Must be called with the its_lock mutex held. 1210 */ 1211 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1212 u64 *its_cmd) 1213 { 1214 u32 device_id = its_cmd_get_deviceid(its_cmd); 1215 bool valid = its_cmd_get_validbit(its_cmd); 1216 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1217 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1218 int dte_esz = vgic_its_get_abi(its)->dte_esz; 1219 struct its_device *device; 1220 gpa_t gpa; 1221 1222 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa)) 1223 return E_ITS_MAPD_DEVICE_OOR; 1224 1225 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1226 return E_ITS_MAPD_ITTSIZE_OOR; 1227 1228 device = find_its_device(its, device_id); 1229 1230 /* 1231 * The spec says that calling MAPD on an already mapped device 1232 * invalidates all cached data for this device. We implement this 1233 * by removing the mapping and re-establishing it. 1234 */ 1235 if (device) 1236 vgic_its_free_device(kvm, device); 1237 1238 /* 1239 * The spec does not say whether unmapping a not-mapped device 1240 * is an error, so we are done in any case. 1241 */ 1242 if (!valid) 1243 return vgic_its_write_entry_lock(its, gpa, 0, dte_esz); 1244 1245 device = vgic_its_alloc_device(its, device_id, itt_addr, 1246 num_eventid_bits); 1247 1248 return PTR_ERR_OR_ZERO(device); 1249 } 1250 1251 /* 1252 * The MAPC command maps collection IDs to redistributors. 1253 * Must be called with the its_lock mutex held. 1254 */ 1255 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1256 u64 *its_cmd) 1257 { 1258 u16 coll_id; 1259 u32 target_addr; 1260 struct its_collection *collection; 1261 bool valid; 1262 1263 valid = its_cmd_get_validbit(its_cmd); 1264 coll_id = its_cmd_get_collection(its_cmd); 1265 target_addr = its_cmd_get_target_addr(its_cmd); 1266 1267 if (target_addr >= atomic_read(&kvm->online_vcpus)) 1268 return E_ITS_MAPC_PROCNUM_OOR; 1269 1270 if (!valid) { 1271 vgic_its_free_collection(its, coll_id); 1272 vgic_its_invalidate_cache(kvm); 1273 } else { 1274 collection = find_collection(its, coll_id); 1275 1276 if (!collection) { 1277 int ret; 1278 1279 if (!vgic_its_check_id(its, its->baser_coll_table, 1280 coll_id, NULL)) 1281 return E_ITS_MAPC_COLLECTION_OOR; 1282 1283 ret = vgic_its_alloc_collection(its, &collection, 1284 coll_id); 1285 if (ret) 1286 return ret; 1287 collection->target_addr = target_addr; 1288 } else { 1289 collection->target_addr = target_addr; 1290 update_affinity_collection(kvm, its, collection); 1291 } 1292 } 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * The CLEAR command removes the pending state for a particular LPI. 1299 * Must be called with the its_lock mutex held. 1300 */ 1301 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1302 u64 *its_cmd) 1303 { 1304 u32 device_id = its_cmd_get_deviceid(its_cmd); 1305 u32 event_id = its_cmd_get_id(its_cmd); 1306 struct its_ite *ite; 1307 1308 1309 ite = find_ite(its, device_id, event_id); 1310 if (!ite) 1311 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1312 1313 ite->irq->pending_latch = false; 1314 1315 if (ite->irq->hw) 1316 return irq_set_irqchip_state(ite->irq->host_irq, 1317 IRQCHIP_STATE_PENDING, false); 1318 1319 return 0; 1320 } 1321 1322 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1323 { 1324 return update_lpi_config(kvm, irq, NULL, true); 1325 } 1326 1327 /* 1328 * The INV command syncs the configuration bits from the memory table. 1329 * Must be called with the its_lock mutex held. 1330 */ 1331 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1332 u64 *its_cmd) 1333 { 1334 u32 device_id = its_cmd_get_deviceid(its_cmd); 1335 u32 event_id = its_cmd_get_id(its_cmd); 1336 struct its_ite *ite; 1337 1338 1339 ite = find_ite(its, device_id, event_id); 1340 if (!ite) 1341 return E_ITS_INV_UNMAPPED_INTERRUPT; 1342 1343 return vgic_its_inv_lpi(kvm, ite->irq); 1344 } 1345 1346 /** 1347 * vgic_its_invall - invalidate all LPIs targetting a given vcpu 1348 * @vcpu: the vcpu for which the RD is targetted by an invalidation 1349 * 1350 * Contrary to the INVALL command, this targets a RD instead of a 1351 * collection, and we don't need to hold the its_lock, since no ITS is 1352 * involved here. 1353 */ 1354 int vgic_its_invall(struct kvm_vcpu *vcpu) 1355 { 1356 struct kvm *kvm = vcpu->kvm; 1357 int irq_count, i = 0; 1358 u32 *intids; 1359 1360 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1361 if (irq_count < 0) 1362 return irq_count; 1363 1364 for (i = 0; i < irq_count; i++) { 1365 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]); 1366 if (!irq) 1367 continue; 1368 update_lpi_config(kvm, irq, vcpu, false); 1369 vgic_put_irq(kvm, irq); 1370 } 1371 1372 kfree(intids); 1373 1374 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1375 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * The INVALL command requests flushing of all IRQ data in this collection. 1382 * Find the VCPU mapped to that collection, then iterate over the VM's list 1383 * of mapped LPIs and update the configuration for each IRQ which targets 1384 * the specified vcpu. The configuration will be read from the in-memory 1385 * configuration table. 1386 * Must be called with the its_lock mutex held. 1387 */ 1388 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1389 u64 *its_cmd) 1390 { 1391 u32 coll_id = its_cmd_get_collection(its_cmd); 1392 struct its_collection *collection; 1393 struct kvm_vcpu *vcpu; 1394 1395 collection = find_collection(its, coll_id); 1396 if (!its_is_collection_mapped(collection)) 1397 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1398 1399 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1400 vgic_its_invall(vcpu); 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * The MOVALL command moves the pending state of all IRQs targeting one 1407 * redistributor to another. We don't hold the pending state in the VCPUs, 1408 * but in the IRQs instead, so there is really not much to do for us here. 1409 * However the spec says that no IRQ must target the old redistributor 1410 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1411 * This command affects all LPIs in the system that target that redistributor. 1412 */ 1413 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1414 u64 *its_cmd) 1415 { 1416 u32 target1_addr = its_cmd_get_target_addr(its_cmd); 1417 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); 1418 struct kvm_vcpu *vcpu1, *vcpu2; 1419 struct vgic_irq *irq; 1420 u32 *intids; 1421 int irq_count, i; 1422 1423 if (target1_addr >= atomic_read(&kvm->online_vcpus) || 1424 target2_addr >= atomic_read(&kvm->online_vcpus)) 1425 return E_ITS_MOVALL_PROCNUM_OOR; 1426 1427 if (target1_addr == target2_addr) 1428 return 0; 1429 1430 vcpu1 = kvm_get_vcpu(kvm, target1_addr); 1431 vcpu2 = kvm_get_vcpu(kvm, target2_addr); 1432 1433 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1434 if (irq_count < 0) 1435 return irq_count; 1436 1437 for (i = 0; i < irq_count; i++) { 1438 irq = vgic_get_irq(kvm, NULL, intids[i]); 1439 if (!irq) 1440 continue; 1441 1442 update_affinity(irq, vcpu2); 1443 1444 vgic_put_irq(kvm, irq); 1445 } 1446 1447 vgic_its_invalidate_cache(kvm); 1448 1449 kfree(intids); 1450 return 0; 1451 } 1452 1453 /* 1454 * The INT command injects the LPI associated with that DevID/EvID pair. 1455 * Must be called with the its_lock mutex held. 1456 */ 1457 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1458 u64 *its_cmd) 1459 { 1460 u32 msi_data = its_cmd_get_id(its_cmd); 1461 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1462 1463 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1464 } 1465 1466 /* 1467 * This function is called with the its_cmd lock held, but the ITS data 1468 * structure lock dropped. 1469 */ 1470 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1471 u64 *its_cmd) 1472 { 1473 int ret = -ENODEV; 1474 1475 mutex_lock(&its->its_lock); 1476 switch (its_cmd_get_command(its_cmd)) { 1477 case GITS_CMD_MAPD: 1478 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1479 break; 1480 case GITS_CMD_MAPC: 1481 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1482 break; 1483 case GITS_CMD_MAPI: 1484 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1485 break; 1486 case GITS_CMD_MAPTI: 1487 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1488 break; 1489 case GITS_CMD_MOVI: 1490 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1491 break; 1492 case GITS_CMD_DISCARD: 1493 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1494 break; 1495 case GITS_CMD_CLEAR: 1496 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1497 break; 1498 case GITS_CMD_MOVALL: 1499 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1500 break; 1501 case GITS_CMD_INT: 1502 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1503 break; 1504 case GITS_CMD_INV: 1505 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1506 break; 1507 case GITS_CMD_INVALL: 1508 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1509 break; 1510 case GITS_CMD_SYNC: 1511 /* we ignore this command: we are in sync all of the time */ 1512 ret = 0; 1513 break; 1514 } 1515 mutex_unlock(&its->its_lock); 1516 1517 return ret; 1518 } 1519 1520 static u64 vgic_sanitise_its_baser(u64 reg) 1521 { 1522 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1523 GITS_BASER_SHAREABILITY_SHIFT, 1524 vgic_sanitise_shareability); 1525 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1526 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1527 vgic_sanitise_inner_cacheability); 1528 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1529 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1530 vgic_sanitise_outer_cacheability); 1531 1532 /* We support only one (ITS) page size: 64K */ 1533 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1534 1535 return reg; 1536 } 1537 1538 static u64 vgic_sanitise_its_cbaser(u64 reg) 1539 { 1540 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1541 GITS_CBASER_SHAREABILITY_SHIFT, 1542 vgic_sanitise_shareability); 1543 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1544 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1545 vgic_sanitise_inner_cacheability); 1546 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1547 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1548 vgic_sanitise_outer_cacheability); 1549 1550 /* Sanitise the physical address to be 64k aligned. */ 1551 reg &= ~GENMASK_ULL(15, 12); 1552 1553 return reg; 1554 } 1555 1556 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1557 struct vgic_its *its, 1558 gpa_t addr, unsigned int len) 1559 { 1560 return extract_bytes(its->cbaser, addr & 7, len); 1561 } 1562 1563 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1564 gpa_t addr, unsigned int len, 1565 unsigned long val) 1566 { 1567 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1568 if (its->enabled) 1569 return; 1570 1571 mutex_lock(&its->cmd_lock); 1572 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1573 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1574 its->creadr = 0; 1575 /* 1576 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1577 * it to CREADR to make sure we start with an empty command buffer. 1578 */ 1579 its->cwriter = its->creadr; 1580 mutex_unlock(&its->cmd_lock); 1581 } 1582 1583 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1584 #define ITS_CMD_SIZE 32 1585 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1586 1587 /* Must be called with the cmd_lock held. */ 1588 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1589 { 1590 gpa_t cbaser; 1591 u64 cmd_buf[4]; 1592 1593 /* Commands are only processed when the ITS is enabled. */ 1594 if (!its->enabled) 1595 return; 1596 1597 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1598 1599 while (its->cwriter != its->creadr) { 1600 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1601 cmd_buf, ITS_CMD_SIZE); 1602 /* 1603 * If kvm_read_guest() fails, this could be due to the guest 1604 * programming a bogus value in CBASER or something else going 1605 * wrong from which we cannot easily recover. 1606 * According to section 6.3.2 in the GICv3 spec we can just 1607 * ignore that command then. 1608 */ 1609 if (!ret) 1610 vgic_its_handle_command(kvm, its, cmd_buf); 1611 1612 its->creadr += ITS_CMD_SIZE; 1613 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1614 its->creadr = 0; 1615 } 1616 } 1617 1618 /* 1619 * By writing to CWRITER the guest announces new commands to be processed. 1620 * To avoid any races in the first place, we take the its_cmd lock, which 1621 * protects our ring buffer variables, so that there is only one user 1622 * per ITS handling commands at a given time. 1623 */ 1624 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1625 gpa_t addr, unsigned int len, 1626 unsigned long val) 1627 { 1628 u64 reg; 1629 1630 if (!its) 1631 return; 1632 1633 mutex_lock(&its->cmd_lock); 1634 1635 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1636 reg = ITS_CMD_OFFSET(reg); 1637 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1638 mutex_unlock(&its->cmd_lock); 1639 return; 1640 } 1641 its->cwriter = reg; 1642 1643 vgic_its_process_commands(kvm, its); 1644 1645 mutex_unlock(&its->cmd_lock); 1646 } 1647 1648 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1649 struct vgic_its *its, 1650 gpa_t addr, unsigned int len) 1651 { 1652 return extract_bytes(its->cwriter, addr & 0x7, len); 1653 } 1654 1655 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1656 struct vgic_its *its, 1657 gpa_t addr, unsigned int len) 1658 { 1659 return extract_bytes(its->creadr, addr & 0x7, len); 1660 } 1661 1662 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1663 struct vgic_its *its, 1664 gpa_t addr, unsigned int len, 1665 unsigned long val) 1666 { 1667 u32 cmd_offset; 1668 int ret = 0; 1669 1670 mutex_lock(&its->cmd_lock); 1671 1672 if (its->enabled) { 1673 ret = -EBUSY; 1674 goto out; 1675 } 1676 1677 cmd_offset = ITS_CMD_OFFSET(val); 1678 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1679 ret = -EINVAL; 1680 goto out; 1681 } 1682 1683 its->creadr = cmd_offset; 1684 out: 1685 mutex_unlock(&its->cmd_lock); 1686 return ret; 1687 } 1688 1689 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1690 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1691 struct vgic_its *its, 1692 gpa_t addr, unsigned int len) 1693 { 1694 u64 reg; 1695 1696 switch (BASER_INDEX(addr)) { 1697 case 0: 1698 reg = its->baser_device_table; 1699 break; 1700 case 1: 1701 reg = its->baser_coll_table; 1702 break; 1703 default: 1704 reg = 0; 1705 break; 1706 } 1707 1708 return extract_bytes(reg, addr & 7, len); 1709 } 1710 1711 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1712 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1713 struct vgic_its *its, 1714 gpa_t addr, unsigned int len, 1715 unsigned long val) 1716 { 1717 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1718 u64 entry_size, table_type; 1719 u64 reg, *regptr, clearbits = 0; 1720 1721 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1722 if (its->enabled) 1723 return; 1724 1725 switch (BASER_INDEX(addr)) { 1726 case 0: 1727 regptr = &its->baser_device_table; 1728 entry_size = abi->dte_esz; 1729 table_type = GITS_BASER_TYPE_DEVICE; 1730 break; 1731 case 1: 1732 regptr = &its->baser_coll_table; 1733 entry_size = abi->cte_esz; 1734 table_type = GITS_BASER_TYPE_COLLECTION; 1735 clearbits = GITS_BASER_INDIRECT; 1736 break; 1737 default: 1738 return; 1739 } 1740 1741 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1742 reg &= ~GITS_BASER_RO_MASK; 1743 reg &= ~clearbits; 1744 1745 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1746 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1747 reg = vgic_sanitise_its_baser(reg); 1748 1749 *regptr = reg; 1750 1751 if (!(reg & GITS_BASER_VALID)) { 1752 /* Take the its_lock to prevent a race with a save/restore */ 1753 mutex_lock(&its->its_lock); 1754 switch (table_type) { 1755 case GITS_BASER_TYPE_DEVICE: 1756 vgic_its_free_device_list(kvm, its); 1757 break; 1758 case GITS_BASER_TYPE_COLLECTION: 1759 vgic_its_free_collection_list(kvm, its); 1760 break; 1761 } 1762 mutex_unlock(&its->its_lock); 1763 } 1764 } 1765 1766 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1767 struct vgic_its *its, 1768 gpa_t addr, unsigned int len) 1769 { 1770 u32 reg = 0; 1771 1772 mutex_lock(&its->cmd_lock); 1773 if (its->creadr == its->cwriter) 1774 reg |= GITS_CTLR_QUIESCENT; 1775 if (its->enabled) 1776 reg |= GITS_CTLR_ENABLE; 1777 mutex_unlock(&its->cmd_lock); 1778 1779 return reg; 1780 } 1781 1782 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1783 gpa_t addr, unsigned int len, 1784 unsigned long val) 1785 { 1786 mutex_lock(&its->cmd_lock); 1787 1788 /* 1789 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1790 * device/collection BASER are invalid 1791 */ 1792 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1793 (!(its->baser_device_table & GITS_BASER_VALID) || 1794 !(its->baser_coll_table & GITS_BASER_VALID) || 1795 !(its->cbaser & GITS_CBASER_VALID))) 1796 goto out; 1797 1798 its->enabled = !!(val & GITS_CTLR_ENABLE); 1799 if (!its->enabled) 1800 vgic_its_invalidate_cache(kvm); 1801 1802 /* 1803 * Try to process any pending commands. This function bails out early 1804 * if the ITS is disabled or no commands have been queued. 1805 */ 1806 vgic_its_process_commands(kvm, its); 1807 1808 out: 1809 mutex_unlock(&its->cmd_lock); 1810 } 1811 1812 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1813 { \ 1814 .reg_offset = off, \ 1815 .len = length, \ 1816 .access_flags = acc, \ 1817 .its_read = rd, \ 1818 .its_write = wr, \ 1819 } 1820 1821 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1822 { \ 1823 .reg_offset = off, \ 1824 .len = length, \ 1825 .access_flags = acc, \ 1826 .its_read = rd, \ 1827 .its_write = wr, \ 1828 .uaccess_its_write = uwr, \ 1829 } 1830 1831 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1832 gpa_t addr, unsigned int len, unsigned long val) 1833 { 1834 /* Ignore */ 1835 } 1836 1837 static struct vgic_register_region its_registers[] = { 1838 REGISTER_ITS_DESC(GITS_CTLR, 1839 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1840 VGIC_ACCESS_32bit), 1841 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1842 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1843 vgic_mmio_uaccess_write_its_iidr, 4, 1844 VGIC_ACCESS_32bit), 1845 REGISTER_ITS_DESC(GITS_TYPER, 1846 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1847 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1848 REGISTER_ITS_DESC(GITS_CBASER, 1849 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1850 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1851 REGISTER_ITS_DESC(GITS_CWRITER, 1852 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1853 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1854 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1855 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1856 vgic_mmio_uaccess_write_its_creadr, 8, 1857 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1858 REGISTER_ITS_DESC(GITS_BASER, 1859 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1860 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1861 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1862 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1863 VGIC_ACCESS_32bit), 1864 }; 1865 1866 /* This is called on setting the LPI enable bit in the redistributor. */ 1867 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1868 { 1869 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1870 its_sync_lpi_pending_table(vcpu); 1871 } 1872 1873 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1874 u64 addr) 1875 { 1876 struct vgic_io_device *iodev = &its->iodev; 1877 int ret; 1878 1879 mutex_lock(&kvm->slots_lock); 1880 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1881 ret = -EBUSY; 1882 goto out; 1883 } 1884 1885 its->vgic_its_base = addr; 1886 iodev->regions = its_registers; 1887 iodev->nr_regions = ARRAY_SIZE(its_registers); 1888 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1889 1890 iodev->base_addr = its->vgic_its_base; 1891 iodev->iodev_type = IODEV_ITS; 1892 iodev->its = its; 1893 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1894 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1895 out: 1896 mutex_unlock(&kvm->slots_lock); 1897 1898 return ret; 1899 } 1900 1901 /* Default is 16 cached LPIs per vcpu */ 1902 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1903 1904 void vgic_lpi_translation_cache_init(struct kvm *kvm) 1905 { 1906 struct vgic_dist *dist = &kvm->arch.vgic; 1907 unsigned int sz; 1908 int i; 1909 1910 if (!list_empty(&dist->lpi_translation_cache)) 1911 return; 1912 1913 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1914 1915 for (i = 0; i < sz; i++) { 1916 struct vgic_translation_cache_entry *cte; 1917 1918 /* An allocation failure is not fatal */ 1919 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT); 1920 if (WARN_ON(!cte)) 1921 break; 1922 1923 INIT_LIST_HEAD(&cte->entry); 1924 list_add(&cte->entry, &dist->lpi_translation_cache); 1925 } 1926 } 1927 1928 void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1929 { 1930 struct vgic_dist *dist = &kvm->arch.vgic; 1931 struct vgic_translation_cache_entry *cte, *tmp; 1932 1933 vgic_its_invalidate_cache(kvm); 1934 1935 list_for_each_entry_safe(cte, tmp, 1936 &dist->lpi_translation_cache, entry) { 1937 list_del(&cte->entry); 1938 kfree(cte); 1939 } 1940 } 1941 1942 #define INITIAL_BASER_VALUE \ 1943 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1944 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1945 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1946 GITS_BASER_PAGE_SIZE_64K) 1947 1948 #define INITIAL_PROPBASER_VALUE \ 1949 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1950 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1951 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1952 1953 static int vgic_its_create(struct kvm_device *dev, u32 type) 1954 { 1955 int ret; 1956 struct vgic_its *its; 1957 1958 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1959 return -ENODEV; 1960 1961 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1962 if (!its) 1963 return -ENOMEM; 1964 1965 mutex_lock(&dev->kvm->arch.config_lock); 1966 1967 if (vgic_initialized(dev->kvm)) { 1968 ret = vgic_v4_init(dev->kvm); 1969 if (ret < 0) { 1970 mutex_unlock(&dev->kvm->arch.config_lock); 1971 kfree(its); 1972 return ret; 1973 } 1974 1975 vgic_lpi_translation_cache_init(dev->kvm); 1976 } 1977 1978 mutex_init(&its->its_lock); 1979 mutex_init(&its->cmd_lock); 1980 1981 /* Yep, even more trickery for lock ordering... */ 1982 #ifdef CONFIG_LOCKDEP 1983 mutex_lock(&its->cmd_lock); 1984 mutex_lock(&its->its_lock); 1985 mutex_unlock(&its->its_lock); 1986 mutex_unlock(&its->cmd_lock); 1987 #endif 1988 1989 its->vgic_its_base = VGIC_ADDR_UNDEF; 1990 1991 INIT_LIST_HEAD(&its->device_list); 1992 INIT_LIST_HEAD(&its->collection_list); 1993 1994 dev->kvm->arch.vgic.msis_require_devid = true; 1995 dev->kvm->arch.vgic.has_its = true; 1996 its->enabled = false; 1997 its->dev = dev; 1998 1999 its->baser_device_table = INITIAL_BASER_VALUE | 2000 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 2001 its->baser_coll_table = INITIAL_BASER_VALUE | 2002 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 2003 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 2004 2005 dev->private = its; 2006 2007 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 2008 2009 mutex_unlock(&dev->kvm->arch.config_lock); 2010 2011 return ret; 2012 } 2013 2014 static void vgic_its_destroy(struct kvm_device *kvm_dev) 2015 { 2016 struct kvm *kvm = kvm_dev->kvm; 2017 struct vgic_its *its = kvm_dev->private; 2018 2019 mutex_lock(&its->its_lock); 2020 2021 vgic_its_free_device_list(kvm, its); 2022 vgic_its_free_collection_list(kvm, its); 2023 2024 mutex_unlock(&its->its_lock); 2025 kfree(its); 2026 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 2027 } 2028 2029 static int vgic_its_has_attr_regs(struct kvm_device *dev, 2030 struct kvm_device_attr *attr) 2031 { 2032 const struct vgic_register_region *region; 2033 gpa_t offset = attr->attr; 2034 int align; 2035 2036 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 2037 2038 if (offset & align) 2039 return -EINVAL; 2040 2041 region = vgic_find_mmio_region(its_registers, 2042 ARRAY_SIZE(its_registers), 2043 offset); 2044 if (!region) 2045 return -ENXIO; 2046 2047 return 0; 2048 } 2049 2050 static int vgic_its_attr_regs_access(struct kvm_device *dev, 2051 struct kvm_device_attr *attr, 2052 u64 *reg, bool is_write) 2053 { 2054 const struct vgic_register_region *region; 2055 struct vgic_its *its; 2056 gpa_t addr, offset; 2057 unsigned int len; 2058 int align, ret = 0; 2059 2060 its = dev->private; 2061 offset = attr->attr; 2062 2063 /* 2064 * Although the spec supports upper/lower 32-bit accesses to 2065 * 64-bit ITS registers, the userspace ABI requires 64-bit 2066 * accesses to all 64-bit wide registers. We therefore only 2067 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 2068 * registers 2069 */ 2070 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 2071 align = 0x3; 2072 else 2073 align = 0x7; 2074 2075 if (offset & align) 2076 return -EINVAL; 2077 2078 mutex_lock(&dev->kvm->lock); 2079 2080 if (!lock_all_vcpus(dev->kvm)) { 2081 mutex_unlock(&dev->kvm->lock); 2082 return -EBUSY; 2083 } 2084 2085 mutex_lock(&dev->kvm->arch.config_lock); 2086 2087 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 2088 ret = -ENXIO; 2089 goto out; 2090 } 2091 2092 region = vgic_find_mmio_region(its_registers, 2093 ARRAY_SIZE(its_registers), 2094 offset); 2095 if (!region) { 2096 ret = -ENXIO; 2097 goto out; 2098 } 2099 2100 addr = its->vgic_its_base + offset; 2101 2102 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2103 2104 if (is_write) { 2105 if (region->uaccess_its_write) 2106 ret = region->uaccess_its_write(dev->kvm, its, addr, 2107 len, *reg); 2108 else 2109 region->its_write(dev->kvm, its, addr, len, *reg); 2110 } else { 2111 *reg = region->its_read(dev->kvm, its, addr, len); 2112 } 2113 out: 2114 mutex_unlock(&dev->kvm->arch.config_lock); 2115 unlock_all_vcpus(dev->kvm); 2116 mutex_unlock(&dev->kvm->lock); 2117 return ret; 2118 } 2119 2120 static u32 compute_next_devid_offset(struct list_head *h, 2121 struct its_device *dev) 2122 { 2123 struct its_device *next; 2124 u32 next_offset; 2125 2126 if (list_is_last(&dev->dev_list, h)) 2127 return 0; 2128 next = list_next_entry(dev, dev_list); 2129 next_offset = next->device_id - dev->device_id; 2130 2131 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2132 } 2133 2134 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2135 { 2136 struct its_ite *next; 2137 u32 next_offset; 2138 2139 if (list_is_last(&ite->ite_list, h)) 2140 return 0; 2141 next = list_next_entry(ite, ite_list); 2142 next_offset = next->event_id - ite->event_id; 2143 2144 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2145 } 2146 2147 /** 2148 * entry_fn_t - Callback called on a table entry restore path 2149 * @its: its handle 2150 * @id: id of the entry 2151 * @entry: pointer to the entry 2152 * @opaque: pointer to an opaque data 2153 * 2154 * Return: < 0 on error, 0 if last element was identified, id offset to next 2155 * element otherwise 2156 */ 2157 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2158 void *opaque); 2159 2160 /** 2161 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2162 * to each entry 2163 * 2164 * @its: its handle 2165 * @base: base gpa of the table 2166 * @size: size of the table in bytes 2167 * @esz: entry size in bytes 2168 * @start_id: the ID of the first entry in the table 2169 * (non zero for 2d level tables) 2170 * @fn: function to apply on each entry 2171 * 2172 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2173 * (the last element may not be found on second level tables) 2174 */ 2175 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2176 int start_id, entry_fn_t fn, void *opaque) 2177 { 2178 struct kvm *kvm = its->dev->kvm; 2179 unsigned long len = size; 2180 int id = start_id; 2181 gpa_t gpa = base; 2182 char entry[ESZ_MAX]; 2183 int ret; 2184 2185 memset(entry, 0, esz); 2186 2187 while (true) { 2188 int next_offset; 2189 size_t byte_offset; 2190 2191 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2192 if (ret) 2193 return ret; 2194 2195 next_offset = fn(its, id, entry, opaque); 2196 if (next_offset <= 0) 2197 return next_offset; 2198 2199 byte_offset = next_offset * esz; 2200 if (byte_offset >= len) 2201 break; 2202 2203 id += next_offset; 2204 gpa += byte_offset; 2205 len -= byte_offset; 2206 } 2207 return 1; 2208 } 2209 2210 /** 2211 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2212 */ 2213 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2214 struct its_ite *ite, gpa_t gpa, int ite_esz) 2215 { 2216 u32 next_offset; 2217 u64 val; 2218 2219 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2220 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2221 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2222 ite->collection->collection_id; 2223 val = cpu_to_le64(val); 2224 2225 return vgic_its_write_entry_lock(its, gpa, val, ite_esz); 2226 } 2227 2228 /** 2229 * vgic_its_restore_ite - restore an interrupt translation entry 2230 * @event_id: id used for indexing 2231 * @ptr: pointer to the ITE entry 2232 * @opaque: pointer to the its_device 2233 */ 2234 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2235 void *ptr, void *opaque) 2236 { 2237 struct its_device *dev = opaque; 2238 struct its_collection *collection; 2239 struct kvm *kvm = its->dev->kvm; 2240 struct kvm_vcpu *vcpu = NULL; 2241 u64 val; 2242 u64 *p = (u64 *)ptr; 2243 struct vgic_irq *irq; 2244 u32 coll_id, lpi_id; 2245 struct its_ite *ite; 2246 u32 offset; 2247 2248 val = *p; 2249 2250 val = le64_to_cpu(val); 2251 2252 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2253 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2254 2255 if (!lpi_id) 2256 return 1; /* invalid entry, no choice but to scan next entry */ 2257 2258 if (lpi_id < VGIC_MIN_LPI) 2259 return -EINVAL; 2260 2261 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2262 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2263 return -EINVAL; 2264 2265 collection = find_collection(its, coll_id); 2266 if (!collection) 2267 return -EINVAL; 2268 2269 if (!vgic_its_check_event_id(its, dev, event_id)) 2270 return -EINVAL; 2271 2272 ite = vgic_its_alloc_ite(dev, collection, event_id); 2273 if (IS_ERR(ite)) 2274 return PTR_ERR(ite); 2275 2276 if (its_is_collection_mapped(collection)) 2277 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 2278 2279 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2280 if (IS_ERR(irq)) { 2281 its_free_ite(kvm, ite); 2282 return PTR_ERR(irq); 2283 } 2284 ite->irq = irq; 2285 2286 return offset; 2287 } 2288 2289 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2290 const struct list_head *b) 2291 { 2292 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2293 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2294 2295 if (itea->event_id < iteb->event_id) 2296 return -1; 2297 else 2298 return 1; 2299 } 2300 2301 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2302 { 2303 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2304 gpa_t base = device->itt_addr; 2305 struct its_ite *ite; 2306 int ret; 2307 int ite_esz = abi->ite_esz; 2308 2309 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2310 2311 list_for_each_entry(ite, &device->itt_head, ite_list) { 2312 gpa_t gpa = base + ite->event_id * ite_esz; 2313 2314 /* 2315 * If an LPI carries the HW bit, this means that this 2316 * interrupt is controlled by GICv4, and we do not 2317 * have direct access to that state without GICv4.1. 2318 * Let's simply fail the save operation... 2319 */ 2320 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2321 return -EACCES; 2322 2323 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2324 if (ret) 2325 return ret; 2326 } 2327 return 0; 2328 } 2329 2330 /** 2331 * vgic_its_restore_itt - restore the ITT of a device 2332 * 2333 * @its: its handle 2334 * @dev: device handle 2335 * 2336 * Return 0 on success, < 0 on error 2337 */ 2338 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2339 { 2340 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2341 gpa_t base = dev->itt_addr; 2342 int ret; 2343 int ite_esz = abi->ite_esz; 2344 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2345 2346 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2347 vgic_its_restore_ite, dev); 2348 2349 /* scan_its_table returns +1 if all ITEs are invalid */ 2350 if (ret > 0) 2351 ret = 0; 2352 2353 return ret; 2354 } 2355 2356 /** 2357 * vgic_its_save_dte - Save a device table entry at a given GPA 2358 * 2359 * @its: ITS handle 2360 * @dev: ITS device 2361 * @ptr: GPA 2362 */ 2363 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2364 gpa_t ptr, int dte_esz) 2365 { 2366 u64 val, itt_addr_field; 2367 u32 next_offset; 2368 2369 itt_addr_field = dev->itt_addr >> 8; 2370 next_offset = compute_next_devid_offset(&its->device_list, dev); 2371 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2372 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2373 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2374 (dev->num_eventid_bits - 1)); 2375 val = cpu_to_le64(val); 2376 2377 return vgic_its_write_entry_lock(its, ptr, val, dte_esz); 2378 } 2379 2380 /** 2381 * vgic_its_restore_dte - restore a device table entry 2382 * 2383 * @its: its handle 2384 * @id: device id the DTE corresponds to 2385 * @ptr: kernel VA where the 8 byte DTE is located 2386 * @opaque: unused 2387 * 2388 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2389 * next dte otherwise 2390 */ 2391 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2392 void *ptr, void *opaque) 2393 { 2394 struct its_device *dev; 2395 u64 baser = its->baser_device_table; 2396 gpa_t itt_addr; 2397 u8 num_eventid_bits; 2398 u64 entry = *(u64 *)ptr; 2399 bool valid; 2400 u32 offset; 2401 int ret; 2402 2403 entry = le64_to_cpu(entry); 2404 2405 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2406 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2407 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2408 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2409 2410 if (!valid) 2411 return 1; 2412 2413 /* dte entry is valid */ 2414 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2415 2416 if (!vgic_its_check_id(its, baser, id, NULL)) 2417 return -EINVAL; 2418 2419 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2420 if (IS_ERR(dev)) 2421 return PTR_ERR(dev); 2422 2423 ret = vgic_its_restore_itt(its, dev); 2424 if (ret) { 2425 vgic_its_free_device(its->dev->kvm, dev); 2426 return ret; 2427 } 2428 2429 return offset; 2430 } 2431 2432 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2433 const struct list_head *b) 2434 { 2435 struct its_device *deva = container_of(a, struct its_device, dev_list); 2436 struct its_device *devb = container_of(b, struct its_device, dev_list); 2437 2438 if (deva->device_id < devb->device_id) 2439 return -1; 2440 else 2441 return 1; 2442 } 2443 2444 /** 2445 * vgic_its_save_device_tables - Save the device table and all ITT 2446 * into guest RAM 2447 * 2448 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2449 * returns the GPA of the device entry 2450 */ 2451 static int vgic_its_save_device_tables(struct vgic_its *its) 2452 { 2453 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2454 u64 baser = its->baser_device_table; 2455 struct its_device *dev; 2456 int dte_esz = abi->dte_esz; 2457 2458 if (!(baser & GITS_BASER_VALID)) 2459 return 0; 2460 2461 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2462 2463 list_for_each_entry(dev, &its->device_list, dev_list) { 2464 int ret; 2465 gpa_t eaddr; 2466 2467 if (!vgic_its_check_id(its, baser, 2468 dev->device_id, &eaddr)) 2469 return -EINVAL; 2470 2471 ret = vgic_its_save_itt(its, dev); 2472 if (ret) 2473 return ret; 2474 2475 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2476 if (ret) 2477 return ret; 2478 } 2479 return 0; 2480 } 2481 2482 /** 2483 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2484 * 2485 * @its: its handle 2486 * @id: index of the entry in the L1 table 2487 * @addr: kernel VA 2488 * @opaque: unused 2489 * 2490 * L1 table entries are scanned by steps of 1 entry 2491 * Return < 0 if error, 0 if last dte was found when scanning the L2 2492 * table, +1 otherwise (meaning next L1 entry must be scanned) 2493 */ 2494 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2495 void *opaque) 2496 { 2497 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2498 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2499 u64 entry = *(u64 *)addr; 2500 int dte_esz = abi->dte_esz; 2501 gpa_t gpa; 2502 int ret; 2503 2504 entry = le64_to_cpu(entry); 2505 2506 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2507 return 1; 2508 2509 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2510 2511 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2512 l2_start_id, vgic_its_restore_dte, NULL); 2513 2514 return ret; 2515 } 2516 2517 /** 2518 * vgic_its_restore_device_tables - Restore the device table and all ITT 2519 * from guest RAM to internal data structs 2520 */ 2521 static int vgic_its_restore_device_tables(struct vgic_its *its) 2522 { 2523 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2524 u64 baser = its->baser_device_table; 2525 int l1_esz, ret; 2526 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2527 gpa_t l1_gpa; 2528 2529 if (!(baser & GITS_BASER_VALID)) 2530 return 0; 2531 2532 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2533 2534 if (baser & GITS_BASER_INDIRECT) { 2535 l1_esz = GITS_LVL1_ENTRY_SIZE; 2536 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2537 handle_l1_dte, NULL); 2538 } else { 2539 l1_esz = abi->dte_esz; 2540 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2541 vgic_its_restore_dte, NULL); 2542 } 2543 2544 /* scan_its_table returns +1 if all entries are invalid */ 2545 if (ret > 0) 2546 ret = 0; 2547 2548 if (ret < 0) 2549 vgic_its_free_device_list(its->dev->kvm, its); 2550 2551 return ret; 2552 } 2553 2554 static int vgic_its_save_cte(struct vgic_its *its, 2555 struct its_collection *collection, 2556 gpa_t gpa, int esz) 2557 { 2558 u64 val; 2559 2560 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2561 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2562 collection->collection_id); 2563 val = cpu_to_le64(val); 2564 2565 return vgic_its_write_entry_lock(its, gpa, val, esz); 2566 } 2567 2568 /* 2569 * Restore a collection entry into the ITS collection table. 2570 * Return +1 on success, 0 if the entry was invalid (which should be 2571 * interpreted as end-of-table), and a negative error value for generic errors. 2572 */ 2573 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2574 { 2575 struct its_collection *collection; 2576 struct kvm *kvm = its->dev->kvm; 2577 u32 target_addr, coll_id; 2578 u64 val; 2579 int ret; 2580 2581 ret = vgic_its_read_entry_lock(its, gpa, &val, esz); 2582 if (ret) 2583 return ret; 2584 val = le64_to_cpu(val); 2585 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2586 return 0; 2587 2588 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2589 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2590 2591 if (target_addr != COLLECTION_NOT_MAPPED && 2592 target_addr >= atomic_read(&kvm->online_vcpus)) 2593 return -EINVAL; 2594 2595 collection = find_collection(its, coll_id); 2596 if (collection) 2597 return -EEXIST; 2598 2599 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2600 return -EINVAL; 2601 2602 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2603 if (ret) 2604 return ret; 2605 collection->target_addr = target_addr; 2606 return 1; 2607 } 2608 2609 /** 2610 * vgic_its_save_collection_table - Save the collection table into 2611 * guest RAM 2612 */ 2613 static int vgic_its_save_collection_table(struct vgic_its *its) 2614 { 2615 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2616 u64 baser = its->baser_coll_table; 2617 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2618 struct its_collection *collection; 2619 size_t max_size, filled = 0; 2620 int ret, cte_esz = abi->cte_esz; 2621 2622 if (!(baser & GITS_BASER_VALID)) 2623 return 0; 2624 2625 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2626 2627 list_for_each_entry(collection, &its->collection_list, coll_list) { 2628 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2629 if (ret) 2630 return ret; 2631 gpa += cte_esz; 2632 filled += cte_esz; 2633 } 2634 2635 if (filled == max_size) 2636 return 0; 2637 2638 /* 2639 * table is not fully filled, add a last dummy element 2640 * with valid bit unset 2641 */ 2642 return vgic_its_write_entry_lock(its, gpa, 0, cte_esz); 2643 } 2644 2645 /** 2646 * vgic_its_restore_collection_table - reads the collection table 2647 * in guest memory and restores the ITS internal state. Requires the 2648 * BASER registers to be restored before. 2649 */ 2650 static int vgic_its_restore_collection_table(struct vgic_its *its) 2651 { 2652 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2653 u64 baser = its->baser_coll_table; 2654 int cte_esz = abi->cte_esz; 2655 size_t max_size, read = 0; 2656 gpa_t gpa; 2657 int ret; 2658 2659 if (!(baser & GITS_BASER_VALID)) 2660 return 0; 2661 2662 gpa = GITS_BASER_ADDR_48_to_52(baser); 2663 2664 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2665 2666 while (read < max_size) { 2667 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2668 if (ret <= 0) 2669 break; 2670 gpa += cte_esz; 2671 read += cte_esz; 2672 } 2673 2674 if (ret > 0) 2675 return 0; 2676 2677 if (ret < 0) 2678 vgic_its_free_collection_list(its->dev->kvm, its); 2679 2680 return ret; 2681 } 2682 2683 /** 2684 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2685 * according to v0 ABI 2686 */ 2687 static int vgic_its_save_tables_v0(struct vgic_its *its) 2688 { 2689 int ret; 2690 2691 ret = vgic_its_save_device_tables(its); 2692 if (ret) 2693 return ret; 2694 2695 return vgic_its_save_collection_table(its); 2696 } 2697 2698 /** 2699 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2700 * to internal data structs according to V0 ABI 2701 * 2702 */ 2703 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2704 { 2705 int ret; 2706 2707 ret = vgic_its_restore_collection_table(its); 2708 if (ret) 2709 return ret; 2710 2711 ret = vgic_its_restore_device_tables(its); 2712 if (ret) 2713 vgic_its_free_collection_list(its->dev->kvm, its); 2714 return ret; 2715 } 2716 2717 static int vgic_its_commit_v0(struct vgic_its *its) 2718 { 2719 const struct vgic_its_abi *abi; 2720 2721 abi = vgic_its_get_abi(its); 2722 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2723 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2724 2725 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2726 << GITS_BASER_ENTRY_SIZE_SHIFT); 2727 2728 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2729 << GITS_BASER_ENTRY_SIZE_SHIFT); 2730 return 0; 2731 } 2732 2733 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2734 { 2735 /* We need to keep the ABI specific field values */ 2736 its->baser_coll_table &= ~GITS_BASER_VALID; 2737 its->baser_device_table &= ~GITS_BASER_VALID; 2738 its->cbaser = 0; 2739 its->creadr = 0; 2740 its->cwriter = 0; 2741 its->enabled = 0; 2742 vgic_its_free_device_list(kvm, its); 2743 vgic_its_free_collection_list(kvm, its); 2744 } 2745 2746 static int vgic_its_has_attr(struct kvm_device *dev, 2747 struct kvm_device_attr *attr) 2748 { 2749 switch (attr->group) { 2750 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2751 switch (attr->attr) { 2752 case KVM_VGIC_ITS_ADDR_TYPE: 2753 return 0; 2754 } 2755 break; 2756 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2757 switch (attr->attr) { 2758 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2759 return 0; 2760 case KVM_DEV_ARM_ITS_CTRL_RESET: 2761 return 0; 2762 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2763 return 0; 2764 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2765 return 0; 2766 } 2767 break; 2768 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2769 return vgic_its_has_attr_regs(dev, attr); 2770 } 2771 return -ENXIO; 2772 } 2773 2774 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2775 { 2776 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2777 int ret = 0; 2778 2779 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2780 return 0; 2781 2782 mutex_lock(&kvm->lock); 2783 2784 if (!lock_all_vcpus(kvm)) { 2785 mutex_unlock(&kvm->lock); 2786 return -EBUSY; 2787 } 2788 2789 mutex_lock(&kvm->arch.config_lock); 2790 mutex_lock(&its->its_lock); 2791 2792 switch (attr) { 2793 case KVM_DEV_ARM_ITS_CTRL_RESET: 2794 vgic_its_reset(kvm, its); 2795 break; 2796 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2797 ret = abi->save_tables(its); 2798 break; 2799 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2800 ret = abi->restore_tables(its); 2801 break; 2802 } 2803 2804 mutex_unlock(&its->its_lock); 2805 mutex_unlock(&kvm->arch.config_lock); 2806 unlock_all_vcpus(kvm); 2807 mutex_unlock(&kvm->lock); 2808 return ret; 2809 } 2810 2811 /* 2812 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2813 * without the running VCPU when dirty ring is enabled. 2814 * 2815 * The running VCPU is required to track dirty guest pages when dirty ring 2816 * is enabled. Otherwise, the backup bitmap should be used to track the 2817 * dirty guest pages. When vgic/its tables are being saved, the backup 2818 * bitmap is used to track the dirty guest pages due to the missed running 2819 * VCPU in the period. 2820 */ 2821 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2822 { 2823 struct vgic_dist *dist = &kvm->arch.vgic; 2824 2825 return dist->table_write_in_progress; 2826 } 2827 2828 static int vgic_its_set_attr(struct kvm_device *dev, 2829 struct kvm_device_attr *attr) 2830 { 2831 struct vgic_its *its = dev->private; 2832 int ret; 2833 2834 switch (attr->group) { 2835 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2836 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2837 unsigned long type = (unsigned long)attr->attr; 2838 u64 addr; 2839 2840 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2841 return -ENODEV; 2842 2843 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2844 return -EFAULT; 2845 2846 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2847 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2848 if (ret) 2849 return ret; 2850 2851 return vgic_register_its_iodev(dev->kvm, its, addr); 2852 } 2853 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2854 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2855 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2856 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2857 u64 reg; 2858 2859 if (get_user(reg, uaddr)) 2860 return -EFAULT; 2861 2862 return vgic_its_attr_regs_access(dev, attr, ®, true); 2863 } 2864 } 2865 return -ENXIO; 2866 } 2867 2868 static int vgic_its_get_attr(struct kvm_device *dev, 2869 struct kvm_device_attr *attr) 2870 { 2871 switch (attr->group) { 2872 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2873 struct vgic_its *its = dev->private; 2874 u64 addr = its->vgic_its_base; 2875 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2876 unsigned long type = (unsigned long)attr->attr; 2877 2878 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2879 return -ENODEV; 2880 2881 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2882 return -EFAULT; 2883 break; 2884 } 2885 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2886 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2887 u64 reg; 2888 int ret; 2889 2890 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2891 if (ret) 2892 return ret; 2893 return put_user(reg, uaddr); 2894 } 2895 default: 2896 return -ENXIO; 2897 } 2898 2899 return 0; 2900 } 2901 2902 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2903 .name = "kvm-arm-vgic-its", 2904 .create = vgic_its_create, 2905 .destroy = vgic_its_destroy, 2906 .set_attr = vgic_its_set_attr, 2907 .get_attr = vgic_its_get_attr, 2908 .has_attr = vgic_its_has_attr, 2909 }; 2910 2911 int kvm_vgic_register_its_device(void) 2912 { 2913 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2914 KVM_DEV_TYPE_ARM_VGIC_ITS); 2915 } 2916