xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-its.c (revision 71a15258f3c92eb1c4ae98bbfca9459f4723d5d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 *
100 	 * Should any of these fail, behave as if we couldn't create the LPI
101 	 * by dropping the refcount and returning the error.
102 	 */
103 	ret = update_lpi_config(kvm, irq, NULL, false);
104 	if (ret) {
105 		vgic_put_irq(kvm, irq);
106 		return ERR_PTR(ret);
107 	}
108 
109 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 	if (ret) {
111 		vgic_put_irq(kvm, irq);
112 		return ERR_PTR(ret);
113 	}
114 
115 	return irq;
116 }
117 
118 struct its_device {
119 	struct list_head dev_list;
120 
121 	/* the head for the list of ITTEs */
122 	struct list_head itt_head;
123 	u32 num_eventid_bits;
124 	gpa_t itt_addr;
125 	u32 device_id;
126 };
127 
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129 
130 struct its_collection {
131 	struct list_head coll_list;
132 
133 	u32 collection_id;
134 	u32 target_addr;
135 };
136 
137 #define its_is_collection_mapped(coll) ((coll) && \
138 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139 
140 struct its_ite {
141 	struct list_head ite_list;
142 
143 	struct vgic_irq *irq;
144 	struct its_collection *collection;
145 	u32 event_id;
146 };
147 
148 struct vgic_translation_cache_entry {
149 	struct list_head	entry;
150 	phys_addr_t		db;
151 	u32			devid;
152 	u32			eventid;
153 	struct vgic_irq		*irq;
154 };
155 
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168 	int cte_esz;
169 	int dte_esz;
170 	int ite_esz;
171 	int (*save_tables)(struct vgic_its *its);
172 	int (*restore_tables)(struct vgic_its *its);
173 	int (*commit)(struct vgic_its *its);
174 };
175 
176 #define ABI_0_ESZ	8
177 #define ESZ_MAX		ABI_0_ESZ
178 
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 	[0] = {
181 	 .cte_esz = ABI_0_ESZ,
182 	 .dte_esz = ABI_0_ESZ,
183 	 .ite_esz = ABI_0_ESZ,
184 	 .save_tables = vgic_its_save_tables_v0,
185 	 .restore_tables = vgic_its_restore_tables_v0,
186 	 .commit = vgic_its_commit_v0,
187 	},
188 };
189 
190 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191 
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 	return &its_table_abi_versions[its->abi_rev];
195 }
196 
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 	const struct vgic_its_abi *abi;
200 
201 	its->abi_rev = rev;
202 	abi = vgic_its_get_abi(its);
203 	return abi->commit(its);
204 }
205 
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 	struct its_device *device;
213 
214 	list_for_each_entry(device, &its->device_list, dev_list)
215 		if (device_id == device->device_id)
216 			return device;
217 
218 	return NULL;
219 }
220 
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 				  u32 event_id)
228 {
229 	struct its_device *device;
230 	struct its_ite *ite;
231 
232 	device = find_its_device(its, device_id);
233 	if (device == NULL)
234 		return NULL;
235 
236 	list_for_each_entry(ite, &device->itt_head, ite_list)
237 		if (ite->event_id == event_id)
238 			return ite;
239 
240 	return NULL;
241 }
242 
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247 
248 #define GIC_LPI_OFFSET 8192
249 
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254 
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 	struct its_collection *collection;
262 
263 	list_for_each_entry(collection, &its->collection_list, coll_list) {
264 		if (coll_id == collection->collection_id)
265 			return collection;
266 	}
267 
268 	return NULL;
269 }
270 
271 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273 
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 	u8 prop;
285 	int ret;
286 	unsigned long flags;
287 
288 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 				  &prop, 1);
290 
291 	if (ret)
292 		return ret;
293 
294 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295 
296 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 		irq->priority = LPI_PROP_PRIORITY(prop);
298 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299 
300 		if (!irq->hw) {
301 			vgic_queue_irq_unlock(kvm, irq, flags);
302 			return 0;
303 		}
304 	}
305 
306 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307 
308 	if (irq->hw)
309 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310 
311 	return 0;
312 }
313 
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 	struct vgic_dist *dist = &kvm->arch.vgic;
322 	struct vgic_irq *irq;
323 	unsigned long flags;
324 	u32 *intids;
325 	int irq_count, i = 0;
326 
327 	/*
328 	 * There is an obvious race between allocating the array and LPIs
329 	 * being mapped/unmapped. If we ended up here as a result of a
330 	 * command, we're safe (locks are held, preventing another
331 	 * command). If coming from another path (such as enabling LPIs),
332 	 * we must be careful not to overrun the array.
333 	 */
334 	irq_count = READ_ONCE(dist->lpi_list_count);
335 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336 	if (!intids)
337 		return -ENOMEM;
338 
339 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 		if (i == irq_count)
342 			break;
343 		/* We don't need to "get" the IRQ, as we hold the list lock. */
344 		if (vcpu && irq->target_vcpu != vcpu)
345 			continue;
346 		intids[i++] = irq->intid;
347 	}
348 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349 
350 	*intid_ptr = intids;
351 	return i;
352 }
353 
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 	int ret = 0;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 	irq->target_vcpu = vcpu;
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	if (irq->hw) {
364 		struct its_vlpi_map map;
365 
366 		ret = its_get_vlpi(irq->host_irq, &map);
367 		if (ret)
368 			return ret;
369 
370 		if (map.vpe)
371 			atomic_dec(&map.vpe->vlpi_count);
372 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 		atomic_inc(&map.vpe->vlpi_count);
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383  * is targeting) to the VGIC's view, which deals with target VCPUs.
384  * Needs to be called whenever either the collection for a LPIs has
385  * changed or the collection itself got retargeted.
386  */
387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 	struct kvm_vcpu *vcpu;
390 
391 	if (!its_is_collection_mapped(ite->collection))
392 		return;
393 
394 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 	update_affinity(ite->irq, vcpu);
396 }
397 
398 /*
399  * Updates the target VCPU for every LPI targeting this collection.
400  * Must be called with the its_lock mutex held.
401  */
402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 				       struct its_collection *coll)
404 {
405 	struct its_device *device;
406 	struct its_ite *ite;
407 
408 	for_each_lpi_its(device, ite, its) {
409 		if (ite->collection != coll)
410 			continue;
411 
412 		update_affinity_ite(kvm, ite);
413 	}
414 }
415 
416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 	int nr_idbits = (propbaser & 0x1f) + 1;
419 
420 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422 
423 /*
424  * Sync the pending table pending bit of LPIs targeting @vcpu
425  * with our own data structures. This relies on the LPI being
426  * mapped before.
427  */
428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 	struct vgic_irq *irq;
432 	int last_byte_offset = -1;
433 	int ret = 0;
434 	u32 *intids;
435 	int nr_irqs, i;
436 	unsigned long flags;
437 	u8 pendmask;
438 
439 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 	if (nr_irqs < 0)
441 		return nr_irqs;
442 
443 	for (i = 0; i < nr_irqs; i++) {
444 		int byte_offset, bit_nr;
445 
446 		byte_offset = intids[i] / BITS_PER_BYTE;
447 		bit_nr = intids[i] % BITS_PER_BYTE;
448 
449 		/*
450 		 * For contiguously allocated LPIs chances are we just read
451 		 * this very same byte in the last iteration. Reuse that.
452 		 */
453 		if (byte_offset != last_byte_offset) {
454 			ret = kvm_read_guest_lock(vcpu->kvm,
455 						  pendbase + byte_offset,
456 						  &pendmask, 1);
457 			if (ret) {
458 				kfree(intids);
459 				return ret;
460 			}
461 			last_byte_offset = byte_offset;
462 		}
463 
464 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 		if (!irq)
466 			continue;
467 
468 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
469 		irq->pending_latch = pendmask & (1U << bit_nr);
470 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
471 		vgic_put_irq(vcpu->kvm, irq);
472 	}
473 
474 	kfree(intids);
475 
476 	return ret;
477 }
478 
479 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
480 					      struct vgic_its *its,
481 					      gpa_t addr, unsigned int len)
482 {
483 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
484 	u64 reg = GITS_TYPER_PLPIS;
485 
486 	/*
487 	 * We use linear CPU numbers for redistributor addressing,
488 	 * so GITS_TYPER.PTA is 0.
489 	 * Also we force all PROPBASER registers to be the same, so
490 	 * CommonLPIAff is 0 as well.
491 	 * To avoid memory waste in the guest, we keep the number of IDBits and
492 	 * DevBits low - as least for the time being.
493 	 */
494 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
495 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
496 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
497 
498 	return extract_bytes(reg, addr & 7, len);
499 }
500 
501 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
502 					     struct vgic_its *its,
503 					     gpa_t addr, unsigned int len)
504 {
505 	u32 val;
506 
507 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
508 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
509 	return val;
510 }
511 
512 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
513 					    struct vgic_its *its,
514 					    gpa_t addr, unsigned int len,
515 					    unsigned long val)
516 {
517 	u32 rev = GITS_IIDR_REV(val);
518 
519 	if (rev >= NR_ITS_ABIS)
520 		return -EINVAL;
521 	return vgic_its_set_abi(its, rev);
522 }
523 
524 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
525 					       struct vgic_its *its,
526 					       gpa_t addr, unsigned int len)
527 {
528 	switch (addr & 0xffff) {
529 	case GITS_PIDR0:
530 		return 0x92;	/* part number, bits[7:0] */
531 	case GITS_PIDR1:
532 		return 0xb4;	/* part number, bits[11:8] */
533 	case GITS_PIDR2:
534 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
535 	case GITS_PIDR4:
536 		return 0x40;	/* This is a 64K software visible page */
537 	/* The following are the ID registers for (any) GIC. */
538 	case GITS_CIDR0:
539 		return 0x0d;
540 	case GITS_CIDR1:
541 		return 0xf0;
542 	case GITS_CIDR2:
543 		return 0x05;
544 	case GITS_CIDR3:
545 		return 0xb1;
546 	}
547 
548 	return 0;
549 }
550 
551 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
552 					       phys_addr_t db,
553 					       u32 devid, u32 eventid)
554 {
555 	struct vgic_translation_cache_entry *cte;
556 
557 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
558 		/*
559 		 * If we hit a NULL entry, there is nothing after this
560 		 * point.
561 		 */
562 		if (!cte->irq)
563 			break;
564 
565 		if (cte->db != db || cte->devid != devid ||
566 		    cte->eventid != eventid)
567 			continue;
568 
569 		/*
570 		 * Move this entry to the head, as it is the most
571 		 * recently used.
572 		 */
573 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
574 			list_move(&cte->entry, &dist->lpi_translation_cache);
575 
576 		return cte->irq;
577 	}
578 
579 	return NULL;
580 }
581 
582 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
583 					     u32 devid, u32 eventid)
584 {
585 	struct vgic_dist *dist = &kvm->arch.vgic;
586 	struct vgic_irq *irq;
587 	unsigned long flags;
588 
589 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
590 
591 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
592 	if (irq)
593 		vgic_get_irq_kref(irq);
594 
595 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
596 
597 	return irq;
598 }
599 
600 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
601 				       u32 devid, u32 eventid,
602 				       struct vgic_irq *irq)
603 {
604 	struct vgic_dist *dist = &kvm->arch.vgic;
605 	struct vgic_translation_cache_entry *cte;
606 	unsigned long flags;
607 	phys_addr_t db;
608 
609 	/* Do not cache a directly injected interrupt */
610 	if (irq->hw)
611 		return;
612 
613 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
614 
615 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
616 		goto out;
617 
618 	/*
619 	 * We could have raced with another CPU caching the same
620 	 * translation behind our back, so let's check it is not in
621 	 * already
622 	 */
623 	db = its->vgic_its_base + GITS_TRANSLATER;
624 	if (__vgic_its_check_cache(dist, db, devid, eventid))
625 		goto out;
626 
627 	/* Always reuse the last entry (LRU policy) */
628 	cte = list_last_entry(&dist->lpi_translation_cache,
629 			      typeof(*cte), entry);
630 
631 	/*
632 	 * Caching the translation implies having an extra reference
633 	 * to the interrupt, so drop the potential reference on what
634 	 * was in the cache, and increment it on the new interrupt.
635 	 */
636 	if (cte->irq)
637 		__vgic_put_lpi_locked(kvm, cte->irq);
638 
639 	vgic_get_irq_kref(irq);
640 
641 	cte->db		= db;
642 	cte->devid	= devid;
643 	cte->eventid	= eventid;
644 	cte->irq	= irq;
645 
646 	/* Move the new translation to the head of the list */
647 	list_move(&cte->entry, &dist->lpi_translation_cache);
648 
649 out:
650 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
651 }
652 
653 void vgic_its_invalidate_cache(struct kvm *kvm)
654 {
655 	struct vgic_dist *dist = &kvm->arch.vgic;
656 	struct vgic_translation_cache_entry *cte;
657 	unsigned long flags;
658 
659 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
660 
661 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
662 		/*
663 		 * If we hit a NULL entry, there is nothing after this
664 		 * point.
665 		 */
666 		if (!cte->irq)
667 			break;
668 
669 		__vgic_put_lpi_locked(kvm, cte->irq);
670 		cte->irq = NULL;
671 	}
672 
673 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
674 }
675 
676 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
677 			 u32 devid, u32 eventid, struct vgic_irq **irq)
678 {
679 	struct kvm_vcpu *vcpu;
680 	struct its_ite *ite;
681 
682 	if (!its->enabled)
683 		return -EBUSY;
684 
685 	ite = find_ite(its, devid, eventid);
686 	if (!ite || !its_is_collection_mapped(ite->collection))
687 		return E_ITS_INT_UNMAPPED_INTERRUPT;
688 
689 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
690 	if (!vcpu)
691 		return E_ITS_INT_UNMAPPED_INTERRUPT;
692 
693 	if (!vgic_lpis_enabled(vcpu))
694 		return -EBUSY;
695 
696 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
697 
698 	*irq = ite->irq;
699 	return 0;
700 }
701 
702 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
703 {
704 	u64 address;
705 	struct kvm_io_device *kvm_io_dev;
706 	struct vgic_io_device *iodev;
707 
708 	if (!vgic_has_its(kvm))
709 		return ERR_PTR(-ENODEV);
710 
711 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
712 		return ERR_PTR(-EINVAL);
713 
714 	address = (u64)msi->address_hi << 32 | msi->address_lo;
715 
716 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
717 	if (!kvm_io_dev)
718 		return ERR_PTR(-EINVAL);
719 
720 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
721 		return ERR_PTR(-EINVAL);
722 
723 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
724 	if (iodev->iodev_type != IODEV_ITS)
725 		return ERR_PTR(-EINVAL);
726 
727 	return iodev->its;
728 }
729 
730 /*
731  * Find the target VCPU and the LPI number for a given devid/eventid pair
732  * and make this IRQ pending, possibly injecting it.
733  * Must be called with the its_lock mutex held.
734  * Returns 0 on success, a positive error value for any ITS mapping
735  * related errors and negative error values for generic errors.
736  */
737 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
738 				u32 devid, u32 eventid)
739 {
740 	struct vgic_irq *irq = NULL;
741 	unsigned long flags;
742 	int err;
743 
744 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
745 	if (err)
746 		return err;
747 
748 	if (irq->hw)
749 		return irq_set_irqchip_state(irq->host_irq,
750 					     IRQCHIP_STATE_PENDING, true);
751 
752 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
753 	irq->pending_latch = true;
754 	vgic_queue_irq_unlock(kvm, irq, flags);
755 
756 	return 0;
757 }
758 
759 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
760 {
761 	struct vgic_irq *irq;
762 	unsigned long flags;
763 	phys_addr_t db;
764 
765 	db = (u64)msi->address_hi << 32 | msi->address_lo;
766 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
767 	if (!irq)
768 		return -EWOULDBLOCK;
769 
770 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
771 	irq->pending_latch = true;
772 	vgic_queue_irq_unlock(kvm, irq, flags);
773 	vgic_put_irq(kvm, irq);
774 
775 	return 0;
776 }
777 
778 /*
779  * Queries the KVM IO bus framework to get the ITS pointer from the given
780  * doorbell address.
781  * We then call vgic_its_trigger_msi() with the decoded data.
782  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
783  */
784 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
785 {
786 	struct vgic_its *its;
787 	int ret;
788 
789 	if (!vgic_its_inject_cached_translation(kvm, msi))
790 		return 1;
791 
792 	its = vgic_msi_to_its(kvm, msi);
793 	if (IS_ERR(its))
794 		return PTR_ERR(its);
795 
796 	mutex_lock(&its->its_lock);
797 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
798 	mutex_unlock(&its->its_lock);
799 
800 	if (ret < 0)
801 		return ret;
802 
803 	/*
804 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
805 	 * if the guest has blocked the MSI. So we map any LPI mapping
806 	 * related error to that.
807 	 */
808 	if (ret)
809 		return 0;
810 	else
811 		return 1;
812 }
813 
814 /* Requires the its_lock to be held. */
815 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
816 {
817 	list_del(&ite->ite_list);
818 
819 	/* This put matches the get in vgic_add_lpi. */
820 	if (ite->irq) {
821 		if (ite->irq->hw)
822 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
823 
824 		vgic_put_irq(kvm, ite->irq);
825 	}
826 
827 	kfree(ite);
828 }
829 
830 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
831 {
832 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
833 }
834 
835 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
836 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
837 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
838 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
839 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
840 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
841 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
842 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
843 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
844 
845 /*
846  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
847  * Must be called with the its_lock mutex held.
848  */
849 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
850 				       u64 *its_cmd)
851 {
852 	u32 device_id = its_cmd_get_deviceid(its_cmd);
853 	u32 event_id = its_cmd_get_id(its_cmd);
854 	struct its_ite *ite;
855 
856 	ite = find_ite(its, device_id, event_id);
857 	if (ite && its_is_collection_mapped(ite->collection)) {
858 		struct its_device *device = find_its_device(its, device_id);
859 		int ite_esz = vgic_its_get_abi(its)->ite_esz;
860 		gpa_t gpa = device->itt_addr + ite->event_id * ite_esz;
861 		/*
862 		 * Though the spec talks about removing the pending state, we
863 		 * don't bother here since we clear the ITTE anyway and the
864 		 * pending state is a property of the ITTE struct.
865 		 */
866 		vgic_its_invalidate_cache(kvm);
867 
868 		its_free_ite(kvm, ite);
869 
870 		return vgic_its_write_entry_lock(its, gpa, 0, ite_esz);
871 	}
872 
873 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
874 }
875 
876 /*
877  * The MOVI command moves an ITTE to a different collection.
878  * Must be called with the its_lock mutex held.
879  */
880 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
881 				    u64 *its_cmd)
882 {
883 	u32 device_id = its_cmd_get_deviceid(its_cmd);
884 	u32 event_id = its_cmd_get_id(its_cmd);
885 	u32 coll_id = its_cmd_get_collection(its_cmd);
886 	struct kvm_vcpu *vcpu;
887 	struct its_ite *ite;
888 	struct its_collection *collection;
889 
890 	ite = find_ite(its, device_id, event_id);
891 	if (!ite)
892 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
893 
894 	if (!its_is_collection_mapped(ite->collection))
895 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
896 
897 	collection = find_collection(its, coll_id);
898 	if (!its_is_collection_mapped(collection))
899 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
900 
901 	ite->collection = collection;
902 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
903 
904 	vgic_its_invalidate_cache(kvm);
905 
906 	return update_affinity(ite->irq, vcpu);
907 }
908 
909 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
910 {
911 	gfn_t gfn = gpa >> PAGE_SHIFT;
912 	int idx;
913 	bool ret;
914 
915 	idx = srcu_read_lock(&its->dev->kvm->srcu);
916 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
917 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
918 	return ret;
919 }
920 
921 /*
922  * Check whether an ID can be stored into the corresponding guest table.
923  * For a direct table this is pretty easy, but gets a bit nasty for
924  * indirect tables. We check whether the resulting guest physical address
925  * is actually valid (covered by a memslot and guest accessible).
926  * For this we have to read the respective first level entry.
927  */
928 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
929 			      gpa_t *eaddr)
930 {
931 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
932 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
933 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
934 	int esz = GITS_BASER_ENTRY_SIZE(baser);
935 	int index;
936 
937 	switch (type) {
938 	case GITS_BASER_TYPE_DEVICE:
939 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
940 			return false;
941 		break;
942 	case GITS_BASER_TYPE_COLLECTION:
943 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
944 		if (id >= BIT_ULL(16))
945 			return false;
946 		break;
947 	default:
948 		return false;
949 	}
950 
951 	if (!(baser & GITS_BASER_INDIRECT)) {
952 		phys_addr_t addr;
953 
954 		if (id >= (l1_tbl_size / esz))
955 			return false;
956 
957 		addr = base + id * esz;
958 
959 		if (eaddr)
960 			*eaddr = addr;
961 
962 		return __is_visible_gfn_locked(its, addr);
963 	}
964 
965 	/* calculate and check the index into the 1st level */
966 	index = id / (SZ_64K / esz);
967 	if (index >= (l1_tbl_size / sizeof(u64)))
968 		return false;
969 
970 	/* Each 1st level entry is represented by a 64-bit value. */
971 	if (kvm_read_guest_lock(its->dev->kvm,
972 			   base + index * sizeof(indirect_ptr),
973 			   &indirect_ptr, sizeof(indirect_ptr)))
974 		return false;
975 
976 	indirect_ptr = le64_to_cpu(indirect_ptr);
977 
978 	/* check the valid bit of the first level entry */
979 	if (!(indirect_ptr & BIT_ULL(63)))
980 		return false;
981 
982 	/* Mask the guest physical address and calculate the frame number. */
983 	indirect_ptr &= GENMASK_ULL(51, 16);
984 
985 	/* Find the address of the actual entry */
986 	index = id % (SZ_64K / esz);
987 	indirect_ptr += index * esz;
988 
989 	if (eaddr)
990 		*eaddr = indirect_ptr;
991 
992 	return __is_visible_gfn_locked(its, indirect_ptr);
993 }
994 
995 /*
996  * Check whether an event ID can be stored in the corresponding Interrupt
997  * Translation Table, which starts at device->itt_addr.
998  */
999 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
1000 		u32 event_id)
1001 {
1002 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1003 	int ite_esz = abi->ite_esz;
1004 	gpa_t gpa;
1005 
1006 	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1007 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1008 		return false;
1009 
1010 	gpa = device->itt_addr + event_id * ite_esz;
1011 	return __is_visible_gfn_locked(its, gpa);
1012 }
1013 
1014 /*
1015  * Add a new collection into the ITS collection table.
1016  * Returns 0 on success, and a negative error value for generic errors.
1017  */
1018 static int vgic_its_alloc_collection(struct vgic_its *its,
1019 				     struct its_collection **colp,
1020 				     u32 coll_id)
1021 {
1022 	struct its_collection *collection;
1023 
1024 	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1025 	if (!collection)
1026 		return -ENOMEM;
1027 
1028 	collection->collection_id = coll_id;
1029 	collection->target_addr = COLLECTION_NOT_MAPPED;
1030 
1031 	list_add_tail(&collection->coll_list, &its->collection_list);
1032 	*colp = collection;
1033 
1034 	return 0;
1035 }
1036 
1037 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1038 {
1039 	struct its_collection *collection;
1040 	struct its_device *device;
1041 	struct its_ite *ite;
1042 
1043 	/*
1044 	 * Clearing the mapping for that collection ID removes the
1045 	 * entry from the list. If there wasn't any before, we can
1046 	 * go home early.
1047 	 */
1048 	collection = find_collection(its, coll_id);
1049 	if (!collection)
1050 		return;
1051 
1052 	for_each_lpi_its(device, ite, its)
1053 		if (ite->collection &&
1054 		    ite->collection->collection_id == coll_id)
1055 			ite->collection = NULL;
1056 
1057 	list_del(&collection->coll_list);
1058 	kfree(collection);
1059 }
1060 
1061 /* Must be called with its_lock mutex held */
1062 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1063 					  struct its_collection *collection,
1064 					  u32 event_id)
1065 {
1066 	struct its_ite *ite;
1067 
1068 	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1069 	if (!ite)
1070 		return ERR_PTR(-ENOMEM);
1071 
1072 	ite->event_id	= event_id;
1073 	ite->collection = collection;
1074 
1075 	list_add_tail(&ite->ite_list, &device->itt_head);
1076 	return ite;
1077 }
1078 
1079 /*
1080  * The MAPTI and MAPI commands map LPIs to ITTEs.
1081  * Must be called with its_lock mutex held.
1082  */
1083 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1084 				    u64 *its_cmd)
1085 {
1086 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1087 	u32 event_id = its_cmd_get_id(its_cmd);
1088 	u32 coll_id = its_cmd_get_collection(its_cmd);
1089 	struct its_ite *ite;
1090 	struct kvm_vcpu *vcpu = NULL;
1091 	struct its_device *device;
1092 	struct its_collection *collection, *new_coll = NULL;
1093 	struct vgic_irq *irq;
1094 	int lpi_nr;
1095 
1096 	device = find_its_device(its, device_id);
1097 	if (!device)
1098 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1099 
1100 	if (!vgic_its_check_event_id(its, device, event_id))
1101 		return E_ITS_MAPTI_ID_OOR;
1102 
1103 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1104 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1105 	else
1106 		lpi_nr = event_id;
1107 	if (lpi_nr < GIC_LPI_OFFSET ||
1108 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1109 		return E_ITS_MAPTI_PHYSICALID_OOR;
1110 
1111 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1112 	if (find_ite(its, device_id, event_id))
1113 		return 0;
1114 
1115 	collection = find_collection(its, coll_id);
1116 	if (!collection) {
1117 		int ret;
1118 
1119 		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1120 			return E_ITS_MAPC_COLLECTION_OOR;
1121 
1122 		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1123 		if (ret)
1124 			return ret;
1125 		new_coll = collection;
1126 	}
1127 
1128 	ite = vgic_its_alloc_ite(device, collection, event_id);
1129 	if (IS_ERR(ite)) {
1130 		if (new_coll)
1131 			vgic_its_free_collection(its, coll_id);
1132 		return PTR_ERR(ite);
1133 	}
1134 
1135 	if (its_is_collection_mapped(collection))
1136 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1137 
1138 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1139 	if (IS_ERR(irq)) {
1140 		if (new_coll)
1141 			vgic_its_free_collection(its, coll_id);
1142 		its_free_ite(kvm, ite);
1143 		return PTR_ERR(irq);
1144 	}
1145 	ite->irq = irq;
1146 
1147 	return 0;
1148 }
1149 
1150 /* Requires the its_lock to be held. */
1151 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1152 {
1153 	struct its_ite *ite, *temp;
1154 
1155 	/*
1156 	 * The spec says that unmapping a device with still valid
1157 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1158 	 * since we cannot leave the memory unreferenced.
1159 	 */
1160 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1161 		its_free_ite(kvm, ite);
1162 
1163 	vgic_its_invalidate_cache(kvm);
1164 
1165 	list_del(&device->dev_list);
1166 	kfree(device);
1167 }
1168 
1169 /* its lock must be held */
1170 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1171 {
1172 	struct its_device *cur, *temp;
1173 
1174 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1175 		vgic_its_free_device(kvm, cur);
1176 }
1177 
1178 /* its lock must be held */
1179 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1180 {
1181 	struct its_collection *cur, *temp;
1182 
1183 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1184 		vgic_its_free_collection(its, cur->collection_id);
1185 }
1186 
1187 /* Must be called with its_lock mutex held */
1188 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1189 						u32 device_id, gpa_t itt_addr,
1190 						u8 num_eventid_bits)
1191 {
1192 	struct its_device *device;
1193 
1194 	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1195 	if (!device)
1196 		return ERR_PTR(-ENOMEM);
1197 
1198 	device->device_id = device_id;
1199 	device->itt_addr = itt_addr;
1200 	device->num_eventid_bits = num_eventid_bits;
1201 	INIT_LIST_HEAD(&device->itt_head);
1202 
1203 	list_add_tail(&device->dev_list, &its->device_list);
1204 	return device;
1205 }
1206 
1207 /*
1208  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1209  * Must be called with the its_lock mutex held.
1210  */
1211 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1212 				    u64 *its_cmd)
1213 {
1214 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1215 	bool valid = its_cmd_get_validbit(its_cmd);
1216 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1217 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1218 	int dte_esz = vgic_its_get_abi(its)->dte_esz;
1219 	struct its_device *device;
1220 	gpa_t gpa;
1221 
1222 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa))
1223 		return E_ITS_MAPD_DEVICE_OOR;
1224 
1225 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1226 		return E_ITS_MAPD_ITTSIZE_OOR;
1227 
1228 	device = find_its_device(its, device_id);
1229 
1230 	/*
1231 	 * The spec says that calling MAPD on an already mapped device
1232 	 * invalidates all cached data for this device. We implement this
1233 	 * by removing the mapping and re-establishing it.
1234 	 */
1235 	if (device)
1236 		vgic_its_free_device(kvm, device);
1237 
1238 	/*
1239 	 * The spec does not say whether unmapping a not-mapped device
1240 	 * is an error, so we are done in any case.
1241 	 */
1242 	if (!valid)
1243 		return vgic_its_write_entry_lock(its, gpa, 0, dte_esz);
1244 
1245 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1246 				       num_eventid_bits);
1247 
1248 	return PTR_ERR_OR_ZERO(device);
1249 }
1250 
1251 /*
1252  * The MAPC command maps collection IDs to redistributors.
1253  * Must be called with the its_lock mutex held.
1254  */
1255 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1256 				    u64 *its_cmd)
1257 {
1258 	u16 coll_id;
1259 	u32 target_addr;
1260 	struct its_collection *collection;
1261 	bool valid;
1262 
1263 	valid = its_cmd_get_validbit(its_cmd);
1264 	coll_id = its_cmd_get_collection(its_cmd);
1265 	target_addr = its_cmd_get_target_addr(its_cmd);
1266 
1267 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1268 		return E_ITS_MAPC_PROCNUM_OOR;
1269 
1270 	if (!valid) {
1271 		vgic_its_free_collection(its, coll_id);
1272 		vgic_its_invalidate_cache(kvm);
1273 	} else {
1274 		collection = find_collection(its, coll_id);
1275 
1276 		if (!collection) {
1277 			int ret;
1278 
1279 			if (!vgic_its_check_id(its, its->baser_coll_table,
1280 						coll_id, NULL))
1281 				return E_ITS_MAPC_COLLECTION_OOR;
1282 
1283 			ret = vgic_its_alloc_collection(its, &collection,
1284 							coll_id);
1285 			if (ret)
1286 				return ret;
1287 			collection->target_addr = target_addr;
1288 		} else {
1289 			collection->target_addr = target_addr;
1290 			update_affinity_collection(kvm, its, collection);
1291 		}
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * The CLEAR command removes the pending state for a particular LPI.
1299  * Must be called with the its_lock mutex held.
1300  */
1301 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1302 				     u64 *its_cmd)
1303 {
1304 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1305 	u32 event_id = its_cmd_get_id(its_cmd);
1306 	struct its_ite *ite;
1307 
1308 
1309 	ite = find_ite(its, device_id, event_id);
1310 	if (!ite)
1311 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1312 
1313 	ite->irq->pending_latch = false;
1314 
1315 	if (ite->irq->hw)
1316 		return irq_set_irqchip_state(ite->irq->host_irq,
1317 					     IRQCHIP_STATE_PENDING, false);
1318 
1319 	return 0;
1320 }
1321 
1322 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1323 {
1324 	return update_lpi_config(kvm, irq, NULL, true);
1325 }
1326 
1327 /*
1328  * The INV command syncs the configuration bits from the memory table.
1329  * Must be called with the its_lock mutex held.
1330  */
1331 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1332 				   u64 *its_cmd)
1333 {
1334 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1335 	u32 event_id = its_cmd_get_id(its_cmd);
1336 	struct its_ite *ite;
1337 
1338 
1339 	ite = find_ite(its, device_id, event_id);
1340 	if (!ite)
1341 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1342 
1343 	return vgic_its_inv_lpi(kvm, ite->irq);
1344 }
1345 
1346 /**
1347  * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1348  * @vcpu: the vcpu for which the RD is targetted by an invalidation
1349  *
1350  * Contrary to the INVALL command, this targets a RD instead of a
1351  * collection, and we don't need to hold the its_lock, since no ITS is
1352  * involved here.
1353  */
1354 int vgic_its_invall(struct kvm_vcpu *vcpu)
1355 {
1356 	struct kvm *kvm = vcpu->kvm;
1357 	int irq_count, i = 0;
1358 	u32 *intids;
1359 
1360 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1361 	if (irq_count < 0)
1362 		return irq_count;
1363 
1364 	for (i = 0; i < irq_count; i++) {
1365 		struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1366 		if (!irq)
1367 			continue;
1368 		update_lpi_config(kvm, irq, vcpu, false);
1369 		vgic_put_irq(kvm, irq);
1370 	}
1371 
1372 	kfree(intids);
1373 
1374 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1375 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * The INVALL command requests flushing of all IRQ data in this collection.
1382  * Find the VCPU mapped to that collection, then iterate over the VM's list
1383  * of mapped LPIs and update the configuration for each IRQ which targets
1384  * the specified vcpu. The configuration will be read from the in-memory
1385  * configuration table.
1386  * Must be called with the its_lock mutex held.
1387  */
1388 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1389 				      u64 *its_cmd)
1390 {
1391 	u32 coll_id = its_cmd_get_collection(its_cmd);
1392 	struct its_collection *collection;
1393 	struct kvm_vcpu *vcpu;
1394 
1395 	collection = find_collection(its, coll_id);
1396 	if (!its_is_collection_mapped(collection))
1397 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1398 
1399 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1400 	vgic_its_invall(vcpu);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * The MOVALL command moves the pending state of all IRQs targeting one
1407  * redistributor to another. We don't hold the pending state in the VCPUs,
1408  * but in the IRQs instead, so there is really not much to do for us here.
1409  * However the spec says that no IRQ must target the old redistributor
1410  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1411  * This command affects all LPIs in the system that target that redistributor.
1412  */
1413 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1414 				      u64 *its_cmd)
1415 {
1416 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1417 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1418 	struct kvm_vcpu *vcpu1, *vcpu2;
1419 	struct vgic_irq *irq;
1420 	u32 *intids;
1421 	int irq_count, i;
1422 
1423 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1424 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1425 		return E_ITS_MOVALL_PROCNUM_OOR;
1426 
1427 	if (target1_addr == target2_addr)
1428 		return 0;
1429 
1430 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1431 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1432 
1433 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1434 	if (irq_count < 0)
1435 		return irq_count;
1436 
1437 	for (i = 0; i < irq_count; i++) {
1438 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1439 		if (!irq)
1440 			continue;
1441 
1442 		update_affinity(irq, vcpu2);
1443 
1444 		vgic_put_irq(kvm, irq);
1445 	}
1446 
1447 	vgic_its_invalidate_cache(kvm);
1448 
1449 	kfree(intids);
1450 	return 0;
1451 }
1452 
1453 /*
1454  * The INT command injects the LPI associated with that DevID/EvID pair.
1455  * Must be called with the its_lock mutex held.
1456  */
1457 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1458 				   u64 *its_cmd)
1459 {
1460 	u32 msi_data = its_cmd_get_id(its_cmd);
1461 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1462 
1463 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1464 }
1465 
1466 /*
1467  * This function is called with the its_cmd lock held, but the ITS data
1468  * structure lock dropped.
1469  */
1470 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1471 				   u64 *its_cmd)
1472 {
1473 	int ret = -ENODEV;
1474 
1475 	mutex_lock(&its->its_lock);
1476 	switch (its_cmd_get_command(its_cmd)) {
1477 	case GITS_CMD_MAPD:
1478 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1479 		break;
1480 	case GITS_CMD_MAPC:
1481 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1482 		break;
1483 	case GITS_CMD_MAPI:
1484 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1485 		break;
1486 	case GITS_CMD_MAPTI:
1487 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1488 		break;
1489 	case GITS_CMD_MOVI:
1490 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1491 		break;
1492 	case GITS_CMD_DISCARD:
1493 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1494 		break;
1495 	case GITS_CMD_CLEAR:
1496 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1497 		break;
1498 	case GITS_CMD_MOVALL:
1499 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1500 		break;
1501 	case GITS_CMD_INT:
1502 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1503 		break;
1504 	case GITS_CMD_INV:
1505 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1506 		break;
1507 	case GITS_CMD_INVALL:
1508 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1509 		break;
1510 	case GITS_CMD_SYNC:
1511 		/* we ignore this command: we are in sync all of the time */
1512 		ret = 0;
1513 		break;
1514 	}
1515 	mutex_unlock(&its->its_lock);
1516 
1517 	return ret;
1518 }
1519 
1520 static u64 vgic_sanitise_its_baser(u64 reg)
1521 {
1522 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1523 				  GITS_BASER_SHAREABILITY_SHIFT,
1524 				  vgic_sanitise_shareability);
1525 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1526 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1527 				  vgic_sanitise_inner_cacheability);
1528 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1529 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1530 				  vgic_sanitise_outer_cacheability);
1531 
1532 	/* We support only one (ITS) page size: 64K */
1533 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1534 
1535 	return reg;
1536 }
1537 
1538 static u64 vgic_sanitise_its_cbaser(u64 reg)
1539 {
1540 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1541 				  GITS_CBASER_SHAREABILITY_SHIFT,
1542 				  vgic_sanitise_shareability);
1543 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1544 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1545 				  vgic_sanitise_inner_cacheability);
1546 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1547 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1548 				  vgic_sanitise_outer_cacheability);
1549 
1550 	/* Sanitise the physical address to be 64k aligned. */
1551 	reg &= ~GENMASK_ULL(15, 12);
1552 
1553 	return reg;
1554 }
1555 
1556 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1557 					       struct vgic_its *its,
1558 					       gpa_t addr, unsigned int len)
1559 {
1560 	return extract_bytes(its->cbaser, addr & 7, len);
1561 }
1562 
1563 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1564 				       gpa_t addr, unsigned int len,
1565 				       unsigned long val)
1566 {
1567 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1568 	if (its->enabled)
1569 		return;
1570 
1571 	mutex_lock(&its->cmd_lock);
1572 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1573 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1574 	its->creadr = 0;
1575 	/*
1576 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1577 	 * it to CREADR to make sure we start with an empty command buffer.
1578 	 */
1579 	its->cwriter = its->creadr;
1580 	mutex_unlock(&its->cmd_lock);
1581 }
1582 
1583 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1584 #define ITS_CMD_SIZE			32
1585 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1586 
1587 /* Must be called with the cmd_lock held. */
1588 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1589 {
1590 	gpa_t cbaser;
1591 	u64 cmd_buf[4];
1592 
1593 	/* Commands are only processed when the ITS is enabled. */
1594 	if (!its->enabled)
1595 		return;
1596 
1597 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1598 
1599 	while (its->cwriter != its->creadr) {
1600 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1601 					      cmd_buf, ITS_CMD_SIZE);
1602 		/*
1603 		 * If kvm_read_guest() fails, this could be due to the guest
1604 		 * programming a bogus value in CBASER or something else going
1605 		 * wrong from which we cannot easily recover.
1606 		 * According to section 6.3.2 in the GICv3 spec we can just
1607 		 * ignore that command then.
1608 		 */
1609 		if (!ret)
1610 			vgic_its_handle_command(kvm, its, cmd_buf);
1611 
1612 		its->creadr += ITS_CMD_SIZE;
1613 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1614 			its->creadr = 0;
1615 	}
1616 }
1617 
1618 /*
1619  * By writing to CWRITER the guest announces new commands to be processed.
1620  * To avoid any races in the first place, we take the its_cmd lock, which
1621  * protects our ring buffer variables, so that there is only one user
1622  * per ITS handling commands at a given time.
1623  */
1624 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1625 					gpa_t addr, unsigned int len,
1626 					unsigned long val)
1627 {
1628 	u64 reg;
1629 
1630 	if (!its)
1631 		return;
1632 
1633 	mutex_lock(&its->cmd_lock);
1634 
1635 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1636 	reg = ITS_CMD_OFFSET(reg);
1637 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1638 		mutex_unlock(&its->cmd_lock);
1639 		return;
1640 	}
1641 	its->cwriter = reg;
1642 
1643 	vgic_its_process_commands(kvm, its);
1644 
1645 	mutex_unlock(&its->cmd_lock);
1646 }
1647 
1648 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1649 						struct vgic_its *its,
1650 						gpa_t addr, unsigned int len)
1651 {
1652 	return extract_bytes(its->cwriter, addr & 0x7, len);
1653 }
1654 
1655 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1656 					       struct vgic_its *its,
1657 					       gpa_t addr, unsigned int len)
1658 {
1659 	return extract_bytes(its->creadr, addr & 0x7, len);
1660 }
1661 
1662 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1663 					      struct vgic_its *its,
1664 					      gpa_t addr, unsigned int len,
1665 					      unsigned long val)
1666 {
1667 	u32 cmd_offset;
1668 	int ret = 0;
1669 
1670 	mutex_lock(&its->cmd_lock);
1671 
1672 	if (its->enabled) {
1673 		ret = -EBUSY;
1674 		goto out;
1675 	}
1676 
1677 	cmd_offset = ITS_CMD_OFFSET(val);
1678 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1679 		ret = -EINVAL;
1680 		goto out;
1681 	}
1682 
1683 	its->creadr = cmd_offset;
1684 out:
1685 	mutex_unlock(&its->cmd_lock);
1686 	return ret;
1687 }
1688 
1689 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1690 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1691 					      struct vgic_its *its,
1692 					      gpa_t addr, unsigned int len)
1693 {
1694 	u64 reg;
1695 
1696 	switch (BASER_INDEX(addr)) {
1697 	case 0:
1698 		reg = its->baser_device_table;
1699 		break;
1700 	case 1:
1701 		reg = its->baser_coll_table;
1702 		break;
1703 	default:
1704 		reg = 0;
1705 		break;
1706 	}
1707 
1708 	return extract_bytes(reg, addr & 7, len);
1709 }
1710 
1711 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1712 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1713 				      struct vgic_its *its,
1714 				      gpa_t addr, unsigned int len,
1715 				      unsigned long val)
1716 {
1717 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1718 	u64 entry_size, table_type;
1719 	u64 reg, *regptr, clearbits = 0;
1720 
1721 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1722 	if (its->enabled)
1723 		return;
1724 
1725 	switch (BASER_INDEX(addr)) {
1726 	case 0:
1727 		regptr = &its->baser_device_table;
1728 		entry_size = abi->dte_esz;
1729 		table_type = GITS_BASER_TYPE_DEVICE;
1730 		break;
1731 	case 1:
1732 		regptr = &its->baser_coll_table;
1733 		entry_size = abi->cte_esz;
1734 		table_type = GITS_BASER_TYPE_COLLECTION;
1735 		clearbits = GITS_BASER_INDIRECT;
1736 		break;
1737 	default:
1738 		return;
1739 	}
1740 
1741 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1742 	reg &= ~GITS_BASER_RO_MASK;
1743 	reg &= ~clearbits;
1744 
1745 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1746 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1747 	reg = vgic_sanitise_its_baser(reg);
1748 
1749 	*regptr = reg;
1750 
1751 	if (!(reg & GITS_BASER_VALID)) {
1752 		/* Take the its_lock to prevent a race with a save/restore */
1753 		mutex_lock(&its->its_lock);
1754 		switch (table_type) {
1755 		case GITS_BASER_TYPE_DEVICE:
1756 			vgic_its_free_device_list(kvm, its);
1757 			break;
1758 		case GITS_BASER_TYPE_COLLECTION:
1759 			vgic_its_free_collection_list(kvm, its);
1760 			break;
1761 		}
1762 		mutex_unlock(&its->its_lock);
1763 	}
1764 }
1765 
1766 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1767 					     struct vgic_its *its,
1768 					     gpa_t addr, unsigned int len)
1769 {
1770 	u32 reg = 0;
1771 
1772 	mutex_lock(&its->cmd_lock);
1773 	if (its->creadr == its->cwriter)
1774 		reg |= GITS_CTLR_QUIESCENT;
1775 	if (its->enabled)
1776 		reg |= GITS_CTLR_ENABLE;
1777 	mutex_unlock(&its->cmd_lock);
1778 
1779 	return reg;
1780 }
1781 
1782 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1783 				     gpa_t addr, unsigned int len,
1784 				     unsigned long val)
1785 {
1786 	mutex_lock(&its->cmd_lock);
1787 
1788 	/*
1789 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1790 	 * device/collection BASER are invalid
1791 	 */
1792 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1793 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1794 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1795 		 !(its->cbaser & GITS_CBASER_VALID)))
1796 		goto out;
1797 
1798 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1799 	if (!its->enabled)
1800 		vgic_its_invalidate_cache(kvm);
1801 
1802 	/*
1803 	 * Try to process any pending commands. This function bails out early
1804 	 * if the ITS is disabled or no commands have been queued.
1805 	 */
1806 	vgic_its_process_commands(kvm, its);
1807 
1808 out:
1809 	mutex_unlock(&its->cmd_lock);
1810 }
1811 
1812 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1813 {								\
1814 	.reg_offset = off,					\
1815 	.len = length,						\
1816 	.access_flags = acc,					\
1817 	.its_read = rd,						\
1818 	.its_write = wr,					\
1819 }
1820 
1821 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1822 {								\
1823 	.reg_offset = off,					\
1824 	.len = length,						\
1825 	.access_flags = acc,					\
1826 	.its_read = rd,						\
1827 	.its_write = wr,					\
1828 	.uaccess_its_write = uwr,				\
1829 }
1830 
1831 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1832 			      gpa_t addr, unsigned int len, unsigned long val)
1833 {
1834 	/* Ignore */
1835 }
1836 
1837 static struct vgic_register_region its_registers[] = {
1838 	REGISTER_ITS_DESC(GITS_CTLR,
1839 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1840 		VGIC_ACCESS_32bit),
1841 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1842 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1843 		vgic_mmio_uaccess_write_its_iidr, 4,
1844 		VGIC_ACCESS_32bit),
1845 	REGISTER_ITS_DESC(GITS_TYPER,
1846 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1847 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1848 	REGISTER_ITS_DESC(GITS_CBASER,
1849 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1850 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1851 	REGISTER_ITS_DESC(GITS_CWRITER,
1852 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1853 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1854 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1855 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1856 		vgic_mmio_uaccess_write_its_creadr, 8,
1857 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1858 	REGISTER_ITS_DESC(GITS_BASER,
1859 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1860 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1861 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1862 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1863 		VGIC_ACCESS_32bit),
1864 };
1865 
1866 /* This is called on setting the LPI enable bit in the redistributor. */
1867 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1868 {
1869 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1870 		its_sync_lpi_pending_table(vcpu);
1871 }
1872 
1873 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1874 				   u64 addr)
1875 {
1876 	struct vgic_io_device *iodev = &its->iodev;
1877 	int ret;
1878 
1879 	mutex_lock(&kvm->slots_lock);
1880 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1881 		ret = -EBUSY;
1882 		goto out;
1883 	}
1884 
1885 	its->vgic_its_base = addr;
1886 	iodev->regions = its_registers;
1887 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1888 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1889 
1890 	iodev->base_addr = its->vgic_its_base;
1891 	iodev->iodev_type = IODEV_ITS;
1892 	iodev->its = its;
1893 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1894 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1895 out:
1896 	mutex_unlock(&kvm->slots_lock);
1897 
1898 	return ret;
1899 }
1900 
1901 /* Default is 16 cached LPIs per vcpu */
1902 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1903 
1904 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1905 {
1906 	struct vgic_dist *dist = &kvm->arch.vgic;
1907 	unsigned int sz;
1908 	int i;
1909 
1910 	if (!list_empty(&dist->lpi_translation_cache))
1911 		return;
1912 
1913 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1914 
1915 	for (i = 0; i < sz; i++) {
1916 		struct vgic_translation_cache_entry *cte;
1917 
1918 		/* An allocation failure is not fatal */
1919 		cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1920 		if (WARN_ON(!cte))
1921 			break;
1922 
1923 		INIT_LIST_HEAD(&cte->entry);
1924 		list_add(&cte->entry, &dist->lpi_translation_cache);
1925 	}
1926 }
1927 
1928 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1929 {
1930 	struct vgic_dist *dist = &kvm->arch.vgic;
1931 	struct vgic_translation_cache_entry *cte, *tmp;
1932 
1933 	vgic_its_invalidate_cache(kvm);
1934 
1935 	list_for_each_entry_safe(cte, tmp,
1936 				 &dist->lpi_translation_cache, entry) {
1937 		list_del(&cte->entry);
1938 		kfree(cte);
1939 	}
1940 }
1941 
1942 #define INITIAL_BASER_VALUE						  \
1943 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1944 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1945 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1946 	 GITS_BASER_PAGE_SIZE_64K)
1947 
1948 #define INITIAL_PROPBASER_VALUE						  \
1949 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1950 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1951 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1952 
1953 static int vgic_its_create(struct kvm_device *dev, u32 type)
1954 {
1955 	int ret;
1956 	struct vgic_its *its;
1957 
1958 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1959 		return -ENODEV;
1960 
1961 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1962 	if (!its)
1963 		return -ENOMEM;
1964 
1965 	mutex_lock(&dev->kvm->arch.config_lock);
1966 
1967 	if (vgic_initialized(dev->kvm)) {
1968 		ret = vgic_v4_init(dev->kvm);
1969 		if (ret < 0) {
1970 			mutex_unlock(&dev->kvm->arch.config_lock);
1971 			kfree(its);
1972 			return ret;
1973 		}
1974 
1975 		vgic_lpi_translation_cache_init(dev->kvm);
1976 	}
1977 
1978 	mutex_init(&its->its_lock);
1979 	mutex_init(&its->cmd_lock);
1980 
1981 	/* Yep, even more trickery for lock ordering... */
1982 #ifdef CONFIG_LOCKDEP
1983 	mutex_lock(&its->cmd_lock);
1984 	mutex_lock(&its->its_lock);
1985 	mutex_unlock(&its->its_lock);
1986 	mutex_unlock(&its->cmd_lock);
1987 #endif
1988 
1989 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1990 
1991 	INIT_LIST_HEAD(&its->device_list);
1992 	INIT_LIST_HEAD(&its->collection_list);
1993 
1994 	dev->kvm->arch.vgic.msis_require_devid = true;
1995 	dev->kvm->arch.vgic.has_its = true;
1996 	its->enabled = false;
1997 	its->dev = dev;
1998 
1999 	its->baser_device_table = INITIAL_BASER_VALUE			|
2000 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
2001 	its->baser_coll_table = INITIAL_BASER_VALUE |
2002 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
2003 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
2004 
2005 	dev->private = its;
2006 
2007 	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2008 
2009 	mutex_unlock(&dev->kvm->arch.config_lock);
2010 
2011 	return ret;
2012 }
2013 
2014 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2015 {
2016 	struct kvm *kvm = kvm_dev->kvm;
2017 	struct vgic_its *its = kvm_dev->private;
2018 
2019 	mutex_lock(&its->its_lock);
2020 
2021 	vgic_its_free_device_list(kvm, its);
2022 	vgic_its_free_collection_list(kvm, its);
2023 
2024 	mutex_unlock(&its->its_lock);
2025 	kfree(its);
2026 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2027 }
2028 
2029 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2030 				  struct kvm_device_attr *attr)
2031 {
2032 	const struct vgic_register_region *region;
2033 	gpa_t offset = attr->attr;
2034 	int align;
2035 
2036 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2037 
2038 	if (offset & align)
2039 		return -EINVAL;
2040 
2041 	region = vgic_find_mmio_region(its_registers,
2042 				       ARRAY_SIZE(its_registers),
2043 				       offset);
2044 	if (!region)
2045 		return -ENXIO;
2046 
2047 	return 0;
2048 }
2049 
2050 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2051 				     struct kvm_device_attr *attr,
2052 				     u64 *reg, bool is_write)
2053 {
2054 	const struct vgic_register_region *region;
2055 	struct vgic_its *its;
2056 	gpa_t addr, offset;
2057 	unsigned int len;
2058 	int align, ret = 0;
2059 
2060 	its = dev->private;
2061 	offset = attr->attr;
2062 
2063 	/*
2064 	 * Although the spec supports upper/lower 32-bit accesses to
2065 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
2066 	 * accesses to all 64-bit wide registers. We therefore only
2067 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2068 	 * registers
2069 	 */
2070 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2071 		align = 0x3;
2072 	else
2073 		align = 0x7;
2074 
2075 	if (offset & align)
2076 		return -EINVAL;
2077 
2078 	mutex_lock(&dev->kvm->lock);
2079 
2080 	if (!lock_all_vcpus(dev->kvm)) {
2081 		mutex_unlock(&dev->kvm->lock);
2082 		return -EBUSY;
2083 	}
2084 
2085 	mutex_lock(&dev->kvm->arch.config_lock);
2086 
2087 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2088 		ret = -ENXIO;
2089 		goto out;
2090 	}
2091 
2092 	region = vgic_find_mmio_region(its_registers,
2093 				       ARRAY_SIZE(its_registers),
2094 				       offset);
2095 	if (!region) {
2096 		ret = -ENXIO;
2097 		goto out;
2098 	}
2099 
2100 	addr = its->vgic_its_base + offset;
2101 
2102 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2103 
2104 	if (is_write) {
2105 		if (region->uaccess_its_write)
2106 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2107 							len, *reg);
2108 		else
2109 			region->its_write(dev->kvm, its, addr, len, *reg);
2110 	} else {
2111 		*reg = region->its_read(dev->kvm, its, addr, len);
2112 	}
2113 out:
2114 	mutex_unlock(&dev->kvm->arch.config_lock);
2115 	unlock_all_vcpus(dev->kvm);
2116 	mutex_unlock(&dev->kvm->lock);
2117 	return ret;
2118 }
2119 
2120 static u32 compute_next_devid_offset(struct list_head *h,
2121 				     struct its_device *dev)
2122 {
2123 	struct its_device *next;
2124 	u32 next_offset;
2125 
2126 	if (list_is_last(&dev->dev_list, h))
2127 		return 0;
2128 	next = list_next_entry(dev, dev_list);
2129 	next_offset = next->device_id - dev->device_id;
2130 
2131 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2132 }
2133 
2134 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2135 {
2136 	struct its_ite *next;
2137 	u32 next_offset;
2138 
2139 	if (list_is_last(&ite->ite_list, h))
2140 		return 0;
2141 	next = list_next_entry(ite, ite_list);
2142 	next_offset = next->event_id - ite->event_id;
2143 
2144 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2145 }
2146 
2147 /**
2148  * entry_fn_t - Callback called on a table entry restore path
2149  * @its: its handle
2150  * @id: id of the entry
2151  * @entry: pointer to the entry
2152  * @opaque: pointer to an opaque data
2153  *
2154  * Return: < 0 on error, 0 if last element was identified, id offset to next
2155  * element otherwise
2156  */
2157 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2158 			  void *opaque);
2159 
2160 /**
2161  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2162  * to each entry
2163  *
2164  * @its: its handle
2165  * @base: base gpa of the table
2166  * @size: size of the table in bytes
2167  * @esz: entry size in bytes
2168  * @start_id: the ID of the first entry in the table
2169  * (non zero for 2d level tables)
2170  * @fn: function to apply on each entry
2171  *
2172  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2173  * (the last element may not be found on second level tables)
2174  */
2175 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2176 			  int start_id, entry_fn_t fn, void *opaque)
2177 {
2178 	struct kvm *kvm = its->dev->kvm;
2179 	unsigned long len = size;
2180 	int id = start_id;
2181 	gpa_t gpa = base;
2182 	char entry[ESZ_MAX];
2183 	int ret;
2184 
2185 	memset(entry, 0, esz);
2186 
2187 	while (true) {
2188 		int next_offset;
2189 		size_t byte_offset;
2190 
2191 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2192 		if (ret)
2193 			return ret;
2194 
2195 		next_offset = fn(its, id, entry, opaque);
2196 		if (next_offset <= 0)
2197 			return next_offset;
2198 
2199 		byte_offset = next_offset * esz;
2200 		if (byte_offset >= len)
2201 			break;
2202 
2203 		id += next_offset;
2204 		gpa += byte_offset;
2205 		len -= byte_offset;
2206 	}
2207 	return 1;
2208 }
2209 
2210 /**
2211  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2212  */
2213 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2214 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2215 {
2216 	u32 next_offset;
2217 	u64 val;
2218 
2219 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2220 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2221 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2222 		ite->collection->collection_id;
2223 	val = cpu_to_le64(val);
2224 
2225 	return vgic_its_write_entry_lock(its, gpa, val, ite_esz);
2226 }
2227 
2228 /**
2229  * vgic_its_restore_ite - restore an interrupt translation entry
2230  * @event_id: id used for indexing
2231  * @ptr: pointer to the ITE entry
2232  * @opaque: pointer to the its_device
2233  */
2234 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2235 				void *ptr, void *opaque)
2236 {
2237 	struct its_device *dev = opaque;
2238 	struct its_collection *collection;
2239 	struct kvm *kvm = its->dev->kvm;
2240 	struct kvm_vcpu *vcpu = NULL;
2241 	u64 val;
2242 	u64 *p = (u64 *)ptr;
2243 	struct vgic_irq *irq;
2244 	u32 coll_id, lpi_id;
2245 	struct its_ite *ite;
2246 	u32 offset;
2247 
2248 	val = *p;
2249 
2250 	val = le64_to_cpu(val);
2251 
2252 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2253 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2254 
2255 	if (!lpi_id)
2256 		return 1; /* invalid entry, no choice but to scan next entry */
2257 
2258 	if (lpi_id < VGIC_MIN_LPI)
2259 		return -EINVAL;
2260 
2261 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2262 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2263 		return -EINVAL;
2264 
2265 	collection = find_collection(its, coll_id);
2266 	if (!collection)
2267 		return -EINVAL;
2268 
2269 	if (!vgic_its_check_event_id(its, dev, event_id))
2270 		return -EINVAL;
2271 
2272 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2273 	if (IS_ERR(ite))
2274 		return PTR_ERR(ite);
2275 
2276 	if (its_is_collection_mapped(collection))
2277 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2278 
2279 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2280 	if (IS_ERR(irq)) {
2281 		its_free_ite(kvm, ite);
2282 		return PTR_ERR(irq);
2283 	}
2284 	ite->irq = irq;
2285 
2286 	return offset;
2287 }
2288 
2289 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2290 			    const struct list_head *b)
2291 {
2292 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2293 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2294 
2295 	if (itea->event_id < iteb->event_id)
2296 		return -1;
2297 	else
2298 		return 1;
2299 }
2300 
2301 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2302 {
2303 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2304 	gpa_t base = device->itt_addr;
2305 	struct its_ite *ite;
2306 	int ret;
2307 	int ite_esz = abi->ite_esz;
2308 
2309 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2310 
2311 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2312 		gpa_t gpa = base + ite->event_id * ite_esz;
2313 
2314 		/*
2315 		 * If an LPI carries the HW bit, this means that this
2316 		 * interrupt is controlled by GICv4, and we do not
2317 		 * have direct access to that state without GICv4.1.
2318 		 * Let's simply fail the save operation...
2319 		 */
2320 		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2321 			return -EACCES;
2322 
2323 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2324 		if (ret)
2325 			return ret;
2326 	}
2327 	return 0;
2328 }
2329 
2330 /**
2331  * vgic_its_restore_itt - restore the ITT of a device
2332  *
2333  * @its: its handle
2334  * @dev: device handle
2335  *
2336  * Return 0 on success, < 0 on error
2337  */
2338 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2339 {
2340 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2341 	gpa_t base = dev->itt_addr;
2342 	int ret;
2343 	int ite_esz = abi->ite_esz;
2344 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2345 
2346 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2347 			     vgic_its_restore_ite, dev);
2348 
2349 	/* scan_its_table returns +1 if all ITEs are invalid */
2350 	if (ret > 0)
2351 		ret = 0;
2352 
2353 	return ret;
2354 }
2355 
2356 /**
2357  * vgic_its_save_dte - Save a device table entry at a given GPA
2358  *
2359  * @its: ITS handle
2360  * @dev: ITS device
2361  * @ptr: GPA
2362  */
2363 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2364 			     gpa_t ptr, int dte_esz)
2365 {
2366 	u64 val, itt_addr_field;
2367 	u32 next_offset;
2368 
2369 	itt_addr_field = dev->itt_addr >> 8;
2370 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2371 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2372 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2373 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2374 		(dev->num_eventid_bits - 1));
2375 	val = cpu_to_le64(val);
2376 
2377 	return vgic_its_write_entry_lock(its, ptr, val, dte_esz);
2378 }
2379 
2380 /**
2381  * vgic_its_restore_dte - restore a device table entry
2382  *
2383  * @its: its handle
2384  * @id: device id the DTE corresponds to
2385  * @ptr: kernel VA where the 8 byte DTE is located
2386  * @opaque: unused
2387  *
2388  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2389  * next dte otherwise
2390  */
2391 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2392 				void *ptr, void *opaque)
2393 {
2394 	struct its_device *dev;
2395 	u64 baser = its->baser_device_table;
2396 	gpa_t itt_addr;
2397 	u8 num_eventid_bits;
2398 	u64 entry = *(u64 *)ptr;
2399 	bool valid;
2400 	u32 offset;
2401 	int ret;
2402 
2403 	entry = le64_to_cpu(entry);
2404 
2405 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2406 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2407 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2408 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2409 
2410 	if (!valid)
2411 		return 1;
2412 
2413 	/* dte entry is valid */
2414 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2415 
2416 	if (!vgic_its_check_id(its, baser, id, NULL))
2417 		return -EINVAL;
2418 
2419 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2420 	if (IS_ERR(dev))
2421 		return PTR_ERR(dev);
2422 
2423 	ret = vgic_its_restore_itt(its, dev);
2424 	if (ret) {
2425 		vgic_its_free_device(its->dev->kvm, dev);
2426 		return ret;
2427 	}
2428 
2429 	return offset;
2430 }
2431 
2432 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2433 			       const struct list_head *b)
2434 {
2435 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2436 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2437 
2438 	if (deva->device_id < devb->device_id)
2439 		return -1;
2440 	else
2441 		return 1;
2442 }
2443 
2444 /**
2445  * vgic_its_save_device_tables - Save the device table and all ITT
2446  * into guest RAM
2447  *
2448  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2449  * returns the GPA of the device entry
2450  */
2451 static int vgic_its_save_device_tables(struct vgic_its *its)
2452 {
2453 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2454 	u64 baser = its->baser_device_table;
2455 	struct its_device *dev;
2456 	int dte_esz = abi->dte_esz;
2457 
2458 	if (!(baser & GITS_BASER_VALID))
2459 		return 0;
2460 
2461 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2462 
2463 	list_for_each_entry(dev, &its->device_list, dev_list) {
2464 		int ret;
2465 		gpa_t eaddr;
2466 
2467 		if (!vgic_its_check_id(its, baser,
2468 				       dev->device_id, &eaddr))
2469 			return -EINVAL;
2470 
2471 		ret = vgic_its_save_itt(its, dev);
2472 		if (ret)
2473 			return ret;
2474 
2475 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2476 		if (ret)
2477 			return ret;
2478 	}
2479 	return 0;
2480 }
2481 
2482 /**
2483  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2484  *
2485  * @its: its handle
2486  * @id: index of the entry in the L1 table
2487  * @addr: kernel VA
2488  * @opaque: unused
2489  *
2490  * L1 table entries are scanned by steps of 1 entry
2491  * Return < 0 if error, 0 if last dte was found when scanning the L2
2492  * table, +1 otherwise (meaning next L1 entry must be scanned)
2493  */
2494 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2495 			 void *opaque)
2496 {
2497 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2498 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2499 	u64 entry = *(u64 *)addr;
2500 	int dte_esz = abi->dte_esz;
2501 	gpa_t gpa;
2502 	int ret;
2503 
2504 	entry = le64_to_cpu(entry);
2505 
2506 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2507 		return 1;
2508 
2509 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2510 
2511 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2512 			     l2_start_id, vgic_its_restore_dte, NULL);
2513 
2514 	return ret;
2515 }
2516 
2517 /**
2518  * vgic_its_restore_device_tables - Restore the device table and all ITT
2519  * from guest RAM to internal data structs
2520  */
2521 static int vgic_its_restore_device_tables(struct vgic_its *its)
2522 {
2523 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2524 	u64 baser = its->baser_device_table;
2525 	int l1_esz, ret;
2526 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2527 	gpa_t l1_gpa;
2528 
2529 	if (!(baser & GITS_BASER_VALID))
2530 		return 0;
2531 
2532 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2533 
2534 	if (baser & GITS_BASER_INDIRECT) {
2535 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2536 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2537 				     handle_l1_dte, NULL);
2538 	} else {
2539 		l1_esz = abi->dte_esz;
2540 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2541 				     vgic_its_restore_dte, NULL);
2542 	}
2543 
2544 	/* scan_its_table returns +1 if all entries are invalid */
2545 	if (ret > 0)
2546 		ret = 0;
2547 
2548 	if (ret < 0)
2549 		vgic_its_free_device_list(its->dev->kvm, its);
2550 
2551 	return ret;
2552 }
2553 
2554 static int vgic_its_save_cte(struct vgic_its *its,
2555 			     struct its_collection *collection,
2556 			     gpa_t gpa, int esz)
2557 {
2558 	u64 val;
2559 
2560 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2561 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2562 	       collection->collection_id);
2563 	val = cpu_to_le64(val);
2564 
2565 	return vgic_its_write_entry_lock(its, gpa, val, esz);
2566 }
2567 
2568 /*
2569  * Restore a collection entry into the ITS collection table.
2570  * Return +1 on success, 0 if the entry was invalid (which should be
2571  * interpreted as end-of-table), and a negative error value for generic errors.
2572  */
2573 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2574 {
2575 	struct its_collection *collection;
2576 	struct kvm *kvm = its->dev->kvm;
2577 	u32 target_addr, coll_id;
2578 	u64 val;
2579 	int ret;
2580 
2581 	ret = vgic_its_read_entry_lock(its, gpa, &val, esz);
2582 	if (ret)
2583 		return ret;
2584 	val = le64_to_cpu(val);
2585 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2586 		return 0;
2587 
2588 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2589 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2590 
2591 	if (target_addr != COLLECTION_NOT_MAPPED &&
2592 	    target_addr >= atomic_read(&kvm->online_vcpus))
2593 		return -EINVAL;
2594 
2595 	collection = find_collection(its, coll_id);
2596 	if (collection)
2597 		return -EEXIST;
2598 
2599 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2600 		return -EINVAL;
2601 
2602 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2603 	if (ret)
2604 		return ret;
2605 	collection->target_addr = target_addr;
2606 	return 1;
2607 }
2608 
2609 /**
2610  * vgic_its_save_collection_table - Save the collection table into
2611  * guest RAM
2612  */
2613 static int vgic_its_save_collection_table(struct vgic_its *its)
2614 {
2615 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2616 	u64 baser = its->baser_coll_table;
2617 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2618 	struct its_collection *collection;
2619 	size_t max_size, filled = 0;
2620 	int ret, cte_esz = abi->cte_esz;
2621 
2622 	if (!(baser & GITS_BASER_VALID))
2623 		return 0;
2624 
2625 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2626 
2627 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2628 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2629 		if (ret)
2630 			return ret;
2631 		gpa += cte_esz;
2632 		filled += cte_esz;
2633 	}
2634 
2635 	if (filled == max_size)
2636 		return 0;
2637 
2638 	/*
2639 	 * table is not fully filled, add a last dummy element
2640 	 * with valid bit unset
2641 	 */
2642 	return vgic_its_write_entry_lock(its, gpa, 0, cte_esz);
2643 }
2644 
2645 /**
2646  * vgic_its_restore_collection_table - reads the collection table
2647  * in guest memory and restores the ITS internal state. Requires the
2648  * BASER registers to be restored before.
2649  */
2650 static int vgic_its_restore_collection_table(struct vgic_its *its)
2651 {
2652 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2653 	u64 baser = its->baser_coll_table;
2654 	int cte_esz = abi->cte_esz;
2655 	size_t max_size, read = 0;
2656 	gpa_t gpa;
2657 	int ret;
2658 
2659 	if (!(baser & GITS_BASER_VALID))
2660 		return 0;
2661 
2662 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2663 
2664 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2665 
2666 	while (read < max_size) {
2667 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2668 		if (ret <= 0)
2669 			break;
2670 		gpa += cte_esz;
2671 		read += cte_esz;
2672 	}
2673 
2674 	if (ret > 0)
2675 		return 0;
2676 
2677 	if (ret < 0)
2678 		vgic_its_free_collection_list(its->dev->kvm, its);
2679 
2680 	return ret;
2681 }
2682 
2683 /**
2684  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2685  * according to v0 ABI
2686  */
2687 static int vgic_its_save_tables_v0(struct vgic_its *its)
2688 {
2689 	int ret;
2690 
2691 	ret = vgic_its_save_device_tables(its);
2692 	if (ret)
2693 		return ret;
2694 
2695 	return vgic_its_save_collection_table(its);
2696 }
2697 
2698 /**
2699  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2700  * to internal data structs according to V0 ABI
2701  *
2702  */
2703 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2704 {
2705 	int ret;
2706 
2707 	ret = vgic_its_restore_collection_table(its);
2708 	if (ret)
2709 		return ret;
2710 
2711 	ret = vgic_its_restore_device_tables(its);
2712 	if (ret)
2713 		vgic_its_free_collection_list(its->dev->kvm, its);
2714 	return ret;
2715 }
2716 
2717 static int vgic_its_commit_v0(struct vgic_its *its)
2718 {
2719 	const struct vgic_its_abi *abi;
2720 
2721 	abi = vgic_its_get_abi(its);
2722 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2723 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2724 
2725 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2726 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2727 
2728 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2729 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2730 	return 0;
2731 }
2732 
2733 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2734 {
2735 	/* We need to keep the ABI specific field values */
2736 	its->baser_coll_table &= ~GITS_BASER_VALID;
2737 	its->baser_device_table &= ~GITS_BASER_VALID;
2738 	its->cbaser = 0;
2739 	its->creadr = 0;
2740 	its->cwriter = 0;
2741 	its->enabled = 0;
2742 	vgic_its_free_device_list(kvm, its);
2743 	vgic_its_free_collection_list(kvm, its);
2744 }
2745 
2746 static int vgic_its_has_attr(struct kvm_device *dev,
2747 			     struct kvm_device_attr *attr)
2748 {
2749 	switch (attr->group) {
2750 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2751 		switch (attr->attr) {
2752 		case KVM_VGIC_ITS_ADDR_TYPE:
2753 			return 0;
2754 		}
2755 		break;
2756 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2757 		switch (attr->attr) {
2758 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2759 			return 0;
2760 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2761 			return 0;
2762 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2763 			return 0;
2764 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2765 			return 0;
2766 		}
2767 		break;
2768 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2769 		return vgic_its_has_attr_regs(dev, attr);
2770 	}
2771 	return -ENXIO;
2772 }
2773 
2774 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2775 {
2776 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2777 	int ret = 0;
2778 
2779 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2780 		return 0;
2781 
2782 	mutex_lock(&kvm->lock);
2783 
2784 	if (!lock_all_vcpus(kvm)) {
2785 		mutex_unlock(&kvm->lock);
2786 		return -EBUSY;
2787 	}
2788 
2789 	mutex_lock(&kvm->arch.config_lock);
2790 	mutex_lock(&its->its_lock);
2791 
2792 	switch (attr) {
2793 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2794 		vgic_its_reset(kvm, its);
2795 		break;
2796 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2797 		ret = abi->save_tables(its);
2798 		break;
2799 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2800 		ret = abi->restore_tables(its);
2801 		break;
2802 	}
2803 
2804 	mutex_unlock(&its->its_lock);
2805 	mutex_unlock(&kvm->arch.config_lock);
2806 	unlock_all_vcpus(kvm);
2807 	mutex_unlock(&kvm->lock);
2808 	return ret;
2809 }
2810 
2811 /*
2812  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2813  * without the running VCPU when dirty ring is enabled.
2814  *
2815  * The running VCPU is required to track dirty guest pages when dirty ring
2816  * is enabled. Otherwise, the backup bitmap should be used to track the
2817  * dirty guest pages. When vgic/its tables are being saved, the backup
2818  * bitmap is used to track the dirty guest pages due to the missed running
2819  * VCPU in the period.
2820  */
2821 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2822 {
2823 	struct vgic_dist *dist = &kvm->arch.vgic;
2824 
2825 	return dist->table_write_in_progress;
2826 }
2827 
2828 static int vgic_its_set_attr(struct kvm_device *dev,
2829 			     struct kvm_device_attr *attr)
2830 {
2831 	struct vgic_its *its = dev->private;
2832 	int ret;
2833 
2834 	switch (attr->group) {
2835 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2836 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2837 		unsigned long type = (unsigned long)attr->attr;
2838 		u64 addr;
2839 
2840 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2841 			return -ENODEV;
2842 
2843 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2844 			return -EFAULT;
2845 
2846 		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2847 					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2848 		if (ret)
2849 			return ret;
2850 
2851 		return vgic_register_its_iodev(dev->kvm, its, addr);
2852 	}
2853 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2854 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2855 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2856 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2857 		u64 reg;
2858 
2859 		if (get_user(reg, uaddr))
2860 			return -EFAULT;
2861 
2862 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2863 	}
2864 	}
2865 	return -ENXIO;
2866 }
2867 
2868 static int vgic_its_get_attr(struct kvm_device *dev,
2869 			     struct kvm_device_attr *attr)
2870 {
2871 	switch (attr->group) {
2872 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2873 		struct vgic_its *its = dev->private;
2874 		u64 addr = its->vgic_its_base;
2875 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2876 		unsigned long type = (unsigned long)attr->attr;
2877 
2878 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2879 			return -ENODEV;
2880 
2881 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2882 			return -EFAULT;
2883 		break;
2884 	}
2885 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2886 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2887 		u64 reg;
2888 		int ret;
2889 
2890 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2891 		if (ret)
2892 			return ret;
2893 		return put_user(reg, uaddr);
2894 	}
2895 	default:
2896 		return -ENXIO;
2897 	}
2898 
2899 	return 0;
2900 }
2901 
2902 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2903 	.name = "kvm-arm-vgic-its",
2904 	.create = vgic_its_create,
2905 	.destroy = vgic_its_destroy,
2906 	.set_attr = vgic_its_set_attr,
2907 	.get_attr = vgic_its_get_attr,
2908 	.has_attr = vgic_its_has_attr,
2909 };
2910 
2911 int kvm_vgic_register_its_device(void)
2912 {
2913 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2914 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2915 }
2916