xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-its.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 *
100 	 * Should any of these fail, behave as if we couldn't create the LPI
101 	 * by dropping the refcount and returning the error.
102 	 */
103 	ret = update_lpi_config(kvm, irq, NULL, false);
104 	if (ret) {
105 		vgic_put_irq(kvm, irq);
106 		return ERR_PTR(ret);
107 	}
108 
109 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 	if (ret) {
111 		vgic_put_irq(kvm, irq);
112 		return ERR_PTR(ret);
113 	}
114 
115 	return irq;
116 }
117 
118 struct its_device {
119 	struct list_head dev_list;
120 
121 	/* the head for the list of ITTEs */
122 	struct list_head itt_head;
123 	u32 num_eventid_bits;
124 	gpa_t itt_addr;
125 	u32 device_id;
126 };
127 
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129 
130 struct its_collection {
131 	struct list_head coll_list;
132 
133 	u32 collection_id;
134 	u32 target_addr;
135 };
136 
137 #define its_is_collection_mapped(coll) ((coll) && \
138 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139 
140 struct its_ite {
141 	struct list_head ite_list;
142 
143 	struct vgic_irq *irq;
144 	struct its_collection *collection;
145 	u32 event_id;
146 };
147 
148 struct vgic_translation_cache_entry {
149 	struct list_head	entry;
150 	phys_addr_t		db;
151 	u32			devid;
152 	u32			eventid;
153 	struct vgic_irq		*irq;
154 };
155 
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168 	int cte_esz;
169 	int dte_esz;
170 	int ite_esz;
171 	int (*save_tables)(struct vgic_its *its);
172 	int (*restore_tables)(struct vgic_its *its);
173 	int (*commit)(struct vgic_its *its);
174 };
175 
176 #define ABI_0_ESZ	8
177 #define ESZ_MAX		ABI_0_ESZ
178 
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 	[0] = {
181 	 .cte_esz = ABI_0_ESZ,
182 	 .dte_esz = ABI_0_ESZ,
183 	 .ite_esz = ABI_0_ESZ,
184 	 .save_tables = vgic_its_save_tables_v0,
185 	 .restore_tables = vgic_its_restore_tables_v0,
186 	 .commit = vgic_its_commit_v0,
187 	},
188 };
189 
190 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191 
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 	return &its_table_abi_versions[its->abi_rev];
195 }
196 
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 	const struct vgic_its_abi *abi;
200 
201 	its->abi_rev = rev;
202 	abi = vgic_its_get_abi(its);
203 	return abi->commit(its);
204 }
205 
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 	struct its_device *device;
213 
214 	list_for_each_entry(device, &its->device_list, dev_list)
215 		if (device_id == device->device_id)
216 			return device;
217 
218 	return NULL;
219 }
220 
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 				  u32 event_id)
228 {
229 	struct its_device *device;
230 	struct its_ite *ite;
231 
232 	device = find_its_device(its, device_id);
233 	if (device == NULL)
234 		return NULL;
235 
236 	list_for_each_entry(ite, &device->itt_head, ite_list)
237 		if (ite->event_id == event_id)
238 			return ite;
239 
240 	return NULL;
241 }
242 
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247 
248 #define GIC_LPI_OFFSET 8192
249 
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254 
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 	struct its_collection *collection;
262 
263 	list_for_each_entry(collection, &its->collection_list, coll_list) {
264 		if (coll_id == collection->collection_id)
265 			return collection;
266 	}
267 
268 	return NULL;
269 }
270 
271 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273 
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 	u8 prop;
285 	int ret;
286 	unsigned long flags;
287 
288 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 				  &prop, 1);
290 
291 	if (ret)
292 		return ret;
293 
294 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295 
296 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 		irq->priority = LPI_PROP_PRIORITY(prop);
298 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299 
300 		if (!irq->hw) {
301 			vgic_queue_irq_unlock(kvm, irq, flags);
302 			return 0;
303 		}
304 	}
305 
306 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307 
308 	if (irq->hw)
309 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310 
311 	return 0;
312 }
313 
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 	struct vgic_dist *dist = &kvm->arch.vgic;
322 	struct vgic_irq *irq;
323 	unsigned long flags;
324 	u32 *intids;
325 	int irq_count, i = 0;
326 
327 	/*
328 	 * There is an obvious race between allocating the array and LPIs
329 	 * being mapped/unmapped. If we ended up here as a result of a
330 	 * command, we're safe (locks are held, preventing another
331 	 * command). If coming from another path (such as enabling LPIs),
332 	 * we must be careful not to overrun the array.
333 	 */
334 	irq_count = READ_ONCE(dist->lpi_list_count);
335 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 	if (!intids)
337 		return -ENOMEM;
338 
339 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 		if (i == irq_count)
342 			break;
343 		/* We don't need to "get" the IRQ, as we hold the list lock. */
344 		if (vcpu && irq->target_vcpu != vcpu)
345 			continue;
346 		intids[i++] = irq->intid;
347 	}
348 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349 
350 	*intid_ptr = intids;
351 	return i;
352 }
353 
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 	int ret = 0;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 	irq->target_vcpu = vcpu;
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	if (irq->hw) {
364 		struct its_vlpi_map map;
365 
366 		ret = its_get_vlpi(irq->host_irq, &map);
367 		if (ret)
368 			return ret;
369 
370 		if (map.vpe)
371 			atomic_dec(&map.vpe->vlpi_count);
372 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 		atomic_inc(&map.vpe->vlpi_count);
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383  * is targeting) to the VGIC's view, which deals with target VCPUs.
384  * Needs to be called whenever either the collection for a LPIs has
385  * changed or the collection itself got retargeted.
386  */
387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 	struct kvm_vcpu *vcpu;
390 
391 	if (!its_is_collection_mapped(ite->collection))
392 		return;
393 
394 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 	update_affinity(ite->irq, vcpu);
396 }
397 
398 /*
399  * Updates the target VCPU for every LPI targeting this collection.
400  * Must be called with the its_lock mutex held.
401  */
402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 				       struct its_collection *coll)
404 {
405 	struct its_device *device;
406 	struct its_ite *ite;
407 
408 	for_each_lpi_its(device, ite, its) {
409 		if (!ite->collection || coll != ite->collection)
410 			continue;
411 
412 		update_affinity_ite(kvm, ite);
413 	}
414 }
415 
416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 	int nr_idbits = (propbaser & 0x1f) + 1;
419 
420 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422 
423 /*
424  * Sync the pending table pending bit of LPIs targeting @vcpu
425  * with our own data structures. This relies on the LPI being
426  * mapped before.
427  */
428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 	struct vgic_irq *irq;
432 	int last_byte_offset = -1;
433 	int ret = 0;
434 	u32 *intids;
435 	int nr_irqs, i;
436 	unsigned long flags;
437 	u8 pendmask;
438 
439 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 	if (nr_irqs < 0)
441 		return nr_irqs;
442 
443 	for (i = 0; i < nr_irqs; i++) {
444 		int byte_offset, bit_nr;
445 
446 		byte_offset = intids[i] / BITS_PER_BYTE;
447 		bit_nr = intids[i] % BITS_PER_BYTE;
448 
449 		/*
450 		 * For contiguously allocated LPIs chances are we just read
451 		 * this very same byte in the last iteration. Reuse that.
452 		 */
453 		if (byte_offset != last_byte_offset) {
454 			ret = kvm_read_guest_lock(vcpu->kvm,
455 						  pendbase + byte_offset,
456 						  &pendmask, 1);
457 			if (ret) {
458 				kfree(intids);
459 				return ret;
460 			}
461 			last_byte_offset = byte_offset;
462 		}
463 
464 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 		irq->pending_latch = pendmask & (1U << bit_nr);
467 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 		vgic_put_irq(vcpu->kvm, irq);
469 	}
470 
471 	kfree(intids);
472 
473 	return ret;
474 }
475 
476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 					      struct vgic_its *its,
478 					      gpa_t addr, unsigned int len)
479 {
480 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 	u64 reg = GITS_TYPER_PLPIS;
482 
483 	/*
484 	 * We use linear CPU numbers for redistributor addressing,
485 	 * so GITS_TYPER.PTA is 0.
486 	 * Also we force all PROPBASER registers to be the same, so
487 	 * CommonLPIAff is 0 as well.
488 	 * To avoid memory waste in the guest, we keep the number of IDBits and
489 	 * DevBits low - as least for the time being.
490 	 */
491 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494 
495 	return extract_bytes(reg, addr & 7, len);
496 }
497 
498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 					     struct vgic_its *its,
500 					     gpa_t addr, unsigned int len)
501 {
502 	u32 val;
503 
504 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 	return val;
507 }
508 
509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 					    struct vgic_its *its,
511 					    gpa_t addr, unsigned int len,
512 					    unsigned long val)
513 {
514 	u32 rev = GITS_IIDR_REV(val);
515 
516 	if (rev >= NR_ITS_ABIS)
517 		return -EINVAL;
518 	return vgic_its_set_abi(its, rev);
519 }
520 
521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 					       struct vgic_its *its,
523 					       gpa_t addr, unsigned int len)
524 {
525 	switch (addr & 0xffff) {
526 	case GITS_PIDR0:
527 		return 0x92;	/* part number, bits[7:0] */
528 	case GITS_PIDR1:
529 		return 0xb4;	/* part number, bits[11:8] */
530 	case GITS_PIDR2:
531 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 	case GITS_PIDR4:
533 		return 0x40;	/* This is a 64K software visible page */
534 	/* The following are the ID registers for (any) GIC. */
535 	case GITS_CIDR0:
536 		return 0x0d;
537 	case GITS_CIDR1:
538 		return 0xf0;
539 	case GITS_CIDR2:
540 		return 0x05;
541 	case GITS_CIDR3:
542 		return 0xb1;
543 	}
544 
545 	return 0;
546 }
547 
548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 					       phys_addr_t db,
550 					       u32 devid, u32 eventid)
551 {
552 	struct vgic_translation_cache_entry *cte;
553 
554 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 		/*
556 		 * If we hit a NULL entry, there is nothing after this
557 		 * point.
558 		 */
559 		if (!cte->irq)
560 			break;
561 
562 		if (cte->db != db || cte->devid != devid ||
563 		    cte->eventid != eventid)
564 			continue;
565 
566 		/*
567 		 * Move this entry to the head, as it is the most
568 		 * recently used.
569 		 */
570 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 			list_move(&cte->entry, &dist->lpi_translation_cache);
572 
573 		return cte->irq;
574 	}
575 
576 	return NULL;
577 }
578 
579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 					     u32 devid, u32 eventid)
581 {
582 	struct vgic_dist *dist = &kvm->arch.vgic;
583 	struct vgic_irq *irq;
584 	unsigned long flags;
585 
586 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
588 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
589 
590 	return irq;
591 }
592 
593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
594 				       u32 devid, u32 eventid,
595 				       struct vgic_irq *irq)
596 {
597 	struct vgic_dist *dist = &kvm->arch.vgic;
598 	struct vgic_translation_cache_entry *cte;
599 	unsigned long flags;
600 	phys_addr_t db;
601 
602 	/* Do not cache a directly injected interrupt */
603 	if (irq->hw)
604 		return;
605 
606 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
607 
608 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
609 		goto out;
610 
611 	/*
612 	 * We could have raced with another CPU caching the same
613 	 * translation behind our back, so let's check it is not in
614 	 * already
615 	 */
616 	db = its->vgic_its_base + GITS_TRANSLATER;
617 	if (__vgic_its_check_cache(dist, db, devid, eventid))
618 		goto out;
619 
620 	/* Always reuse the last entry (LRU policy) */
621 	cte = list_last_entry(&dist->lpi_translation_cache,
622 			      typeof(*cte), entry);
623 
624 	/*
625 	 * Caching the translation implies having an extra reference
626 	 * to the interrupt, so drop the potential reference on what
627 	 * was in the cache, and increment it on the new interrupt.
628 	 */
629 	if (cte->irq)
630 		__vgic_put_lpi_locked(kvm, cte->irq);
631 
632 	vgic_get_irq_kref(irq);
633 
634 	cte->db		= db;
635 	cte->devid	= devid;
636 	cte->eventid	= eventid;
637 	cte->irq	= irq;
638 
639 	/* Move the new translation to the head of the list */
640 	list_move(&cte->entry, &dist->lpi_translation_cache);
641 
642 out:
643 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
644 }
645 
646 void vgic_its_invalidate_cache(struct kvm *kvm)
647 {
648 	struct vgic_dist *dist = &kvm->arch.vgic;
649 	struct vgic_translation_cache_entry *cte;
650 	unsigned long flags;
651 
652 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
653 
654 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
655 		/*
656 		 * If we hit a NULL entry, there is nothing after this
657 		 * point.
658 		 */
659 		if (!cte->irq)
660 			break;
661 
662 		__vgic_put_lpi_locked(kvm, cte->irq);
663 		cte->irq = NULL;
664 	}
665 
666 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
667 }
668 
669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
670 			 u32 devid, u32 eventid, struct vgic_irq **irq)
671 {
672 	struct kvm_vcpu *vcpu;
673 	struct its_ite *ite;
674 
675 	if (!its->enabled)
676 		return -EBUSY;
677 
678 	ite = find_ite(its, devid, eventid);
679 	if (!ite || !its_is_collection_mapped(ite->collection))
680 		return E_ITS_INT_UNMAPPED_INTERRUPT;
681 
682 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
683 	if (!vcpu)
684 		return E_ITS_INT_UNMAPPED_INTERRUPT;
685 
686 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
687 		return -EBUSY;
688 
689 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
690 
691 	*irq = ite->irq;
692 	return 0;
693 }
694 
695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
696 {
697 	u64 address;
698 	struct kvm_io_device *kvm_io_dev;
699 	struct vgic_io_device *iodev;
700 
701 	if (!vgic_has_its(kvm))
702 		return ERR_PTR(-ENODEV);
703 
704 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
705 		return ERR_PTR(-EINVAL);
706 
707 	address = (u64)msi->address_hi << 32 | msi->address_lo;
708 
709 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
710 	if (!kvm_io_dev)
711 		return ERR_PTR(-EINVAL);
712 
713 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
714 		return ERR_PTR(-EINVAL);
715 
716 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
717 	if (iodev->iodev_type != IODEV_ITS)
718 		return ERR_PTR(-EINVAL);
719 
720 	return iodev->its;
721 }
722 
723 /*
724  * Find the target VCPU and the LPI number for a given devid/eventid pair
725  * and make this IRQ pending, possibly injecting it.
726  * Must be called with the its_lock mutex held.
727  * Returns 0 on success, a positive error value for any ITS mapping
728  * related errors and negative error values for generic errors.
729  */
730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
731 				u32 devid, u32 eventid)
732 {
733 	struct vgic_irq *irq = NULL;
734 	unsigned long flags;
735 	int err;
736 
737 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
738 	if (err)
739 		return err;
740 
741 	if (irq->hw)
742 		return irq_set_irqchip_state(irq->host_irq,
743 					     IRQCHIP_STATE_PENDING, true);
744 
745 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
746 	irq->pending_latch = true;
747 	vgic_queue_irq_unlock(kvm, irq, flags);
748 
749 	return 0;
750 }
751 
752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
753 {
754 	struct vgic_irq *irq;
755 	unsigned long flags;
756 	phys_addr_t db;
757 
758 	db = (u64)msi->address_hi << 32 | msi->address_lo;
759 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
760 
761 	if (!irq)
762 		return -1;
763 
764 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
765 	irq->pending_latch = true;
766 	vgic_queue_irq_unlock(kvm, irq, flags);
767 
768 	return 0;
769 }
770 
771 /*
772  * Queries the KVM IO bus framework to get the ITS pointer from the given
773  * doorbell address.
774  * We then call vgic_its_trigger_msi() with the decoded data.
775  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
776  */
777 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
778 {
779 	struct vgic_its *its;
780 	int ret;
781 
782 	if (!vgic_its_inject_cached_translation(kvm, msi))
783 		return 1;
784 
785 	its = vgic_msi_to_its(kvm, msi);
786 	if (IS_ERR(its))
787 		return PTR_ERR(its);
788 
789 	mutex_lock(&its->its_lock);
790 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
791 	mutex_unlock(&its->its_lock);
792 
793 	if (ret < 0)
794 		return ret;
795 
796 	/*
797 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
798 	 * if the guest has blocked the MSI. So we map any LPI mapping
799 	 * related error to that.
800 	 */
801 	if (ret)
802 		return 0;
803 	else
804 		return 1;
805 }
806 
807 /* Requires the its_lock to be held. */
808 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
809 {
810 	list_del(&ite->ite_list);
811 
812 	/* This put matches the get in vgic_add_lpi. */
813 	if (ite->irq) {
814 		if (ite->irq->hw)
815 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
816 
817 		vgic_put_irq(kvm, ite->irq);
818 	}
819 
820 	kfree(ite);
821 }
822 
823 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
824 {
825 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
826 }
827 
828 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
829 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
830 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
831 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
832 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
833 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
834 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
835 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
836 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
837 
838 /*
839  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
840  * Must be called with the its_lock mutex held.
841  */
842 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
843 				       u64 *its_cmd)
844 {
845 	u32 device_id = its_cmd_get_deviceid(its_cmd);
846 	u32 event_id = its_cmd_get_id(its_cmd);
847 	struct its_ite *ite;
848 
849 	ite = find_ite(its, device_id, event_id);
850 	if (ite && its_is_collection_mapped(ite->collection)) {
851 		/*
852 		 * Though the spec talks about removing the pending state, we
853 		 * don't bother here since we clear the ITTE anyway and the
854 		 * pending state is a property of the ITTE struct.
855 		 */
856 		vgic_its_invalidate_cache(kvm);
857 
858 		its_free_ite(kvm, ite);
859 		return 0;
860 	}
861 
862 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
863 }
864 
865 /*
866  * The MOVI command moves an ITTE to a different collection.
867  * Must be called with the its_lock mutex held.
868  */
869 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
870 				    u64 *its_cmd)
871 {
872 	u32 device_id = its_cmd_get_deviceid(its_cmd);
873 	u32 event_id = its_cmd_get_id(its_cmd);
874 	u32 coll_id = its_cmd_get_collection(its_cmd);
875 	struct kvm_vcpu *vcpu;
876 	struct its_ite *ite;
877 	struct its_collection *collection;
878 
879 	ite = find_ite(its, device_id, event_id);
880 	if (!ite)
881 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
882 
883 	if (!its_is_collection_mapped(ite->collection))
884 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
885 
886 	collection = find_collection(its, coll_id);
887 	if (!its_is_collection_mapped(collection))
888 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
889 
890 	ite->collection = collection;
891 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
892 
893 	vgic_its_invalidate_cache(kvm);
894 
895 	return update_affinity(ite->irq, vcpu);
896 }
897 
898 /*
899  * Check whether an ID can be stored into the corresponding guest table.
900  * For a direct table this is pretty easy, but gets a bit nasty for
901  * indirect tables. We check whether the resulting guest physical address
902  * is actually valid (covered by a memslot and guest accessible).
903  * For this we have to read the respective first level entry.
904  */
905 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
906 			      gpa_t *eaddr)
907 {
908 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
909 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
910 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
911 	int esz = GITS_BASER_ENTRY_SIZE(baser);
912 	int index, idx;
913 	gfn_t gfn;
914 	bool ret;
915 
916 	switch (type) {
917 	case GITS_BASER_TYPE_DEVICE:
918 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
919 			return false;
920 		break;
921 	case GITS_BASER_TYPE_COLLECTION:
922 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
923 		if (id >= BIT_ULL(16))
924 			return false;
925 		break;
926 	default:
927 		return false;
928 	}
929 
930 	if (!(baser & GITS_BASER_INDIRECT)) {
931 		phys_addr_t addr;
932 
933 		if (id >= (l1_tbl_size / esz))
934 			return false;
935 
936 		addr = base + id * esz;
937 		gfn = addr >> PAGE_SHIFT;
938 
939 		if (eaddr)
940 			*eaddr = addr;
941 
942 		goto out;
943 	}
944 
945 	/* calculate and check the index into the 1st level */
946 	index = id / (SZ_64K / esz);
947 	if (index >= (l1_tbl_size / sizeof(u64)))
948 		return false;
949 
950 	/* Each 1st level entry is represented by a 64-bit value. */
951 	if (kvm_read_guest_lock(its->dev->kvm,
952 			   base + index * sizeof(indirect_ptr),
953 			   &indirect_ptr, sizeof(indirect_ptr)))
954 		return false;
955 
956 	indirect_ptr = le64_to_cpu(indirect_ptr);
957 
958 	/* check the valid bit of the first level entry */
959 	if (!(indirect_ptr & BIT_ULL(63)))
960 		return false;
961 
962 	/* Mask the guest physical address and calculate the frame number. */
963 	indirect_ptr &= GENMASK_ULL(51, 16);
964 
965 	/* Find the address of the actual entry */
966 	index = id % (SZ_64K / esz);
967 	indirect_ptr += index * esz;
968 	gfn = indirect_ptr >> PAGE_SHIFT;
969 
970 	if (eaddr)
971 		*eaddr = indirect_ptr;
972 
973 out:
974 	idx = srcu_read_lock(&its->dev->kvm->srcu);
975 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
976 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
977 	return ret;
978 }
979 
980 static int vgic_its_alloc_collection(struct vgic_its *its,
981 				     struct its_collection **colp,
982 				     u32 coll_id)
983 {
984 	struct its_collection *collection;
985 
986 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
987 		return E_ITS_MAPC_COLLECTION_OOR;
988 
989 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
990 	if (!collection)
991 		return -ENOMEM;
992 
993 	collection->collection_id = coll_id;
994 	collection->target_addr = COLLECTION_NOT_MAPPED;
995 
996 	list_add_tail(&collection->coll_list, &its->collection_list);
997 	*colp = collection;
998 
999 	return 0;
1000 }
1001 
1002 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1003 {
1004 	struct its_collection *collection;
1005 	struct its_device *device;
1006 	struct its_ite *ite;
1007 
1008 	/*
1009 	 * Clearing the mapping for that collection ID removes the
1010 	 * entry from the list. If there wasn't any before, we can
1011 	 * go home early.
1012 	 */
1013 	collection = find_collection(its, coll_id);
1014 	if (!collection)
1015 		return;
1016 
1017 	for_each_lpi_its(device, ite, its)
1018 		if (ite->collection &&
1019 		    ite->collection->collection_id == coll_id)
1020 			ite->collection = NULL;
1021 
1022 	list_del(&collection->coll_list);
1023 	kfree(collection);
1024 }
1025 
1026 /* Must be called with its_lock mutex held */
1027 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1028 					  struct its_collection *collection,
1029 					  u32 event_id)
1030 {
1031 	struct its_ite *ite;
1032 
1033 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1034 	if (!ite)
1035 		return ERR_PTR(-ENOMEM);
1036 
1037 	ite->event_id	= event_id;
1038 	ite->collection = collection;
1039 
1040 	list_add_tail(&ite->ite_list, &device->itt_head);
1041 	return ite;
1042 }
1043 
1044 /*
1045  * The MAPTI and MAPI commands map LPIs to ITTEs.
1046  * Must be called with its_lock mutex held.
1047  */
1048 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1049 				    u64 *its_cmd)
1050 {
1051 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1052 	u32 event_id = its_cmd_get_id(its_cmd);
1053 	u32 coll_id = its_cmd_get_collection(its_cmd);
1054 	struct its_ite *ite;
1055 	struct kvm_vcpu *vcpu = NULL;
1056 	struct its_device *device;
1057 	struct its_collection *collection, *new_coll = NULL;
1058 	struct vgic_irq *irq;
1059 	int lpi_nr;
1060 
1061 	device = find_its_device(its, device_id);
1062 	if (!device)
1063 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1064 
1065 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1066 		return E_ITS_MAPTI_ID_OOR;
1067 
1068 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1069 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1070 	else
1071 		lpi_nr = event_id;
1072 	if (lpi_nr < GIC_LPI_OFFSET ||
1073 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1074 		return E_ITS_MAPTI_PHYSICALID_OOR;
1075 
1076 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1077 	if (find_ite(its, device_id, event_id))
1078 		return 0;
1079 
1080 	collection = find_collection(its, coll_id);
1081 	if (!collection) {
1082 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1083 		if (ret)
1084 			return ret;
1085 		new_coll = collection;
1086 	}
1087 
1088 	ite = vgic_its_alloc_ite(device, collection, event_id);
1089 	if (IS_ERR(ite)) {
1090 		if (new_coll)
1091 			vgic_its_free_collection(its, coll_id);
1092 		return PTR_ERR(ite);
1093 	}
1094 
1095 	if (its_is_collection_mapped(collection))
1096 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1097 
1098 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1099 	if (IS_ERR(irq)) {
1100 		if (new_coll)
1101 			vgic_its_free_collection(its, coll_id);
1102 		its_free_ite(kvm, ite);
1103 		return PTR_ERR(irq);
1104 	}
1105 	ite->irq = irq;
1106 
1107 	return 0;
1108 }
1109 
1110 /* Requires the its_lock to be held. */
1111 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1112 {
1113 	struct its_ite *ite, *temp;
1114 
1115 	/*
1116 	 * The spec says that unmapping a device with still valid
1117 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1118 	 * since we cannot leave the memory unreferenced.
1119 	 */
1120 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1121 		its_free_ite(kvm, ite);
1122 
1123 	vgic_its_invalidate_cache(kvm);
1124 
1125 	list_del(&device->dev_list);
1126 	kfree(device);
1127 }
1128 
1129 /* its lock must be held */
1130 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1131 {
1132 	struct its_device *cur, *temp;
1133 
1134 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1135 		vgic_its_free_device(kvm, cur);
1136 }
1137 
1138 /* its lock must be held */
1139 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1140 {
1141 	struct its_collection *cur, *temp;
1142 
1143 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1144 		vgic_its_free_collection(its, cur->collection_id);
1145 }
1146 
1147 /* Must be called with its_lock mutex held */
1148 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1149 						u32 device_id, gpa_t itt_addr,
1150 						u8 num_eventid_bits)
1151 {
1152 	struct its_device *device;
1153 
1154 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1155 	if (!device)
1156 		return ERR_PTR(-ENOMEM);
1157 
1158 	device->device_id = device_id;
1159 	device->itt_addr = itt_addr;
1160 	device->num_eventid_bits = num_eventid_bits;
1161 	INIT_LIST_HEAD(&device->itt_head);
1162 
1163 	list_add_tail(&device->dev_list, &its->device_list);
1164 	return device;
1165 }
1166 
1167 /*
1168  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1169  * Must be called with the its_lock mutex held.
1170  */
1171 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1172 				    u64 *its_cmd)
1173 {
1174 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1175 	bool valid = its_cmd_get_validbit(its_cmd);
1176 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1177 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1178 	struct its_device *device;
1179 
1180 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1181 		return E_ITS_MAPD_DEVICE_OOR;
1182 
1183 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1184 		return E_ITS_MAPD_ITTSIZE_OOR;
1185 
1186 	device = find_its_device(its, device_id);
1187 
1188 	/*
1189 	 * The spec says that calling MAPD on an already mapped device
1190 	 * invalidates all cached data for this device. We implement this
1191 	 * by removing the mapping and re-establishing it.
1192 	 */
1193 	if (device)
1194 		vgic_its_free_device(kvm, device);
1195 
1196 	/*
1197 	 * The spec does not say whether unmapping a not-mapped device
1198 	 * is an error, so we are done in any case.
1199 	 */
1200 	if (!valid)
1201 		return 0;
1202 
1203 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1204 				       num_eventid_bits);
1205 
1206 	return PTR_ERR_OR_ZERO(device);
1207 }
1208 
1209 /*
1210  * The MAPC command maps collection IDs to redistributors.
1211  * Must be called with the its_lock mutex held.
1212  */
1213 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1214 				    u64 *its_cmd)
1215 {
1216 	u16 coll_id;
1217 	u32 target_addr;
1218 	struct its_collection *collection;
1219 	bool valid;
1220 
1221 	valid = its_cmd_get_validbit(its_cmd);
1222 	coll_id = its_cmd_get_collection(its_cmd);
1223 	target_addr = its_cmd_get_target_addr(its_cmd);
1224 
1225 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1226 		return E_ITS_MAPC_PROCNUM_OOR;
1227 
1228 	if (!valid) {
1229 		vgic_its_free_collection(its, coll_id);
1230 		vgic_its_invalidate_cache(kvm);
1231 	} else {
1232 		collection = find_collection(its, coll_id);
1233 
1234 		if (!collection) {
1235 			int ret;
1236 
1237 			ret = vgic_its_alloc_collection(its, &collection,
1238 							coll_id);
1239 			if (ret)
1240 				return ret;
1241 			collection->target_addr = target_addr;
1242 		} else {
1243 			collection->target_addr = target_addr;
1244 			update_affinity_collection(kvm, its, collection);
1245 		}
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * The CLEAR command removes the pending state for a particular LPI.
1253  * Must be called with the its_lock mutex held.
1254  */
1255 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1256 				     u64 *its_cmd)
1257 {
1258 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1259 	u32 event_id = its_cmd_get_id(its_cmd);
1260 	struct its_ite *ite;
1261 
1262 
1263 	ite = find_ite(its, device_id, event_id);
1264 	if (!ite)
1265 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1266 
1267 	ite->irq->pending_latch = false;
1268 
1269 	if (ite->irq->hw)
1270 		return irq_set_irqchip_state(ite->irq->host_irq,
1271 					     IRQCHIP_STATE_PENDING, false);
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * The INV command syncs the configuration bits from the memory table.
1278  * Must be called with the its_lock mutex held.
1279  */
1280 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1281 				   u64 *its_cmd)
1282 {
1283 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1284 	u32 event_id = its_cmd_get_id(its_cmd);
1285 	struct its_ite *ite;
1286 
1287 
1288 	ite = find_ite(its, device_id, event_id);
1289 	if (!ite)
1290 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1291 
1292 	return update_lpi_config(kvm, ite->irq, NULL, true);
1293 }
1294 
1295 /*
1296  * The INVALL command requests flushing of all IRQ data in this collection.
1297  * Find the VCPU mapped to that collection, then iterate over the VM's list
1298  * of mapped LPIs and update the configuration for each IRQ which targets
1299  * the specified vcpu. The configuration will be read from the in-memory
1300  * configuration table.
1301  * Must be called with the its_lock mutex held.
1302  */
1303 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1304 				      u64 *its_cmd)
1305 {
1306 	u32 coll_id = its_cmd_get_collection(its_cmd);
1307 	struct its_collection *collection;
1308 	struct kvm_vcpu *vcpu;
1309 	struct vgic_irq *irq;
1310 	u32 *intids;
1311 	int irq_count, i;
1312 
1313 	collection = find_collection(its, coll_id);
1314 	if (!its_is_collection_mapped(collection))
1315 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1316 
1317 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1318 
1319 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1320 	if (irq_count < 0)
1321 		return irq_count;
1322 
1323 	for (i = 0; i < irq_count; i++) {
1324 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1325 		if (!irq)
1326 			continue;
1327 		update_lpi_config(kvm, irq, vcpu, false);
1328 		vgic_put_irq(kvm, irq);
1329 	}
1330 
1331 	kfree(intids);
1332 
1333 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1334 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1335 
1336 	return 0;
1337 }
1338 
1339 /*
1340  * The MOVALL command moves the pending state of all IRQs targeting one
1341  * redistributor to another. We don't hold the pending state in the VCPUs,
1342  * but in the IRQs instead, so there is really not much to do for us here.
1343  * However the spec says that no IRQ must target the old redistributor
1344  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1345  * This command affects all LPIs in the system that target that redistributor.
1346  */
1347 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1348 				      u64 *its_cmd)
1349 {
1350 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1351 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1352 	struct kvm_vcpu *vcpu1, *vcpu2;
1353 	struct vgic_irq *irq;
1354 	u32 *intids;
1355 	int irq_count, i;
1356 
1357 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1358 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1359 		return E_ITS_MOVALL_PROCNUM_OOR;
1360 
1361 	if (target1_addr == target2_addr)
1362 		return 0;
1363 
1364 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1365 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1366 
1367 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1368 	if (irq_count < 0)
1369 		return irq_count;
1370 
1371 	for (i = 0; i < irq_count; i++) {
1372 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1373 
1374 		update_affinity(irq, vcpu2);
1375 
1376 		vgic_put_irq(kvm, irq);
1377 	}
1378 
1379 	vgic_its_invalidate_cache(kvm);
1380 
1381 	kfree(intids);
1382 	return 0;
1383 }
1384 
1385 /*
1386  * The INT command injects the LPI associated with that DevID/EvID pair.
1387  * Must be called with the its_lock mutex held.
1388  */
1389 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1390 				   u64 *its_cmd)
1391 {
1392 	u32 msi_data = its_cmd_get_id(its_cmd);
1393 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1394 
1395 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1396 }
1397 
1398 /*
1399  * This function is called with the its_cmd lock held, but the ITS data
1400  * structure lock dropped.
1401  */
1402 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1403 				   u64 *its_cmd)
1404 {
1405 	int ret = -ENODEV;
1406 
1407 	mutex_lock(&its->its_lock);
1408 	switch (its_cmd_get_command(its_cmd)) {
1409 	case GITS_CMD_MAPD:
1410 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1411 		break;
1412 	case GITS_CMD_MAPC:
1413 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1414 		break;
1415 	case GITS_CMD_MAPI:
1416 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1417 		break;
1418 	case GITS_CMD_MAPTI:
1419 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1420 		break;
1421 	case GITS_CMD_MOVI:
1422 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1423 		break;
1424 	case GITS_CMD_DISCARD:
1425 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1426 		break;
1427 	case GITS_CMD_CLEAR:
1428 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1429 		break;
1430 	case GITS_CMD_MOVALL:
1431 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1432 		break;
1433 	case GITS_CMD_INT:
1434 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1435 		break;
1436 	case GITS_CMD_INV:
1437 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1438 		break;
1439 	case GITS_CMD_INVALL:
1440 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1441 		break;
1442 	case GITS_CMD_SYNC:
1443 		/* we ignore this command: we are in sync all of the time */
1444 		ret = 0;
1445 		break;
1446 	}
1447 	mutex_unlock(&its->its_lock);
1448 
1449 	return ret;
1450 }
1451 
1452 static u64 vgic_sanitise_its_baser(u64 reg)
1453 {
1454 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1455 				  GITS_BASER_SHAREABILITY_SHIFT,
1456 				  vgic_sanitise_shareability);
1457 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1458 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1459 				  vgic_sanitise_inner_cacheability);
1460 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1461 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1462 				  vgic_sanitise_outer_cacheability);
1463 
1464 	/* We support only one (ITS) page size: 64K */
1465 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1466 
1467 	return reg;
1468 }
1469 
1470 static u64 vgic_sanitise_its_cbaser(u64 reg)
1471 {
1472 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1473 				  GITS_CBASER_SHAREABILITY_SHIFT,
1474 				  vgic_sanitise_shareability);
1475 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1476 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1477 				  vgic_sanitise_inner_cacheability);
1478 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1479 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1480 				  vgic_sanitise_outer_cacheability);
1481 
1482 	/* Sanitise the physical address to be 64k aligned. */
1483 	reg &= ~GENMASK_ULL(15, 12);
1484 
1485 	return reg;
1486 }
1487 
1488 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1489 					       struct vgic_its *its,
1490 					       gpa_t addr, unsigned int len)
1491 {
1492 	return extract_bytes(its->cbaser, addr & 7, len);
1493 }
1494 
1495 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1496 				       gpa_t addr, unsigned int len,
1497 				       unsigned long val)
1498 {
1499 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1500 	if (its->enabled)
1501 		return;
1502 
1503 	mutex_lock(&its->cmd_lock);
1504 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1505 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1506 	its->creadr = 0;
1507 	/*
1508 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1509 	 * it to CREADR to make sure we start with an empty command buffer.
1510 	 */
1511 	its->cwriter = its->creadr;
1512 	mutex_unlock(&its->cmd_lock);
1513 }
1514 
1515 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1516 #define ITS_CMD_SIZE			32
1517 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1518 
1519 /* Must be called with the cmd_lock held. */
1520 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1521 {
1522 	gpa_t cbaser;
1523 	u64 cmd_buf[4];
1524 
1525 	/* Commands are only processed when the ITS is enabled. */
1526 	if (!its->enabled)
1527 		return;
1528 
1529 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1530 
1531 	while (its->cwriter != its->creadr) {
1532 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1533 					      cmd_buf, ITS_CMD_SIZE);
1534 		/*
1535 		 * If kvm_read_guest() fails, this could be due to the guest
1536 		 * programming a bogus value in CBASER or something else going
1537 		 * wrong from which we cannot easily recover.
1538 		 * According to section 6.3.2 in the GICv3 spec we can just
1539 		 * ignore that command then.
1540 		 */
1541 		if (!ret)
1542 			vgic_its_handle_command(kvm, its, cmd_buf);
1543 
1544 		its->creadr += ITS_CMD_SIZE;
1545 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1546 			its->creadr = 0;
1547 	}
1548 }
1549 
1550 /*
1551  * By writing to CWRITER the guest announces new commands to be processed.
1552  * To avoid any races in the first place, we take the its_cmd lock, which
1553  * protects our ring buffer variables, so that there is only one user
1554  * per ITS handling commands at a given time.
1555  */
1556 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1557 					gpa_t addr, unsigned int len,
1558 					unsigned long val)
1559 {
1560 	u64 reg;
1561 
1562 	if (!its)
1563 		return;
1564 
1565 	mutex_lock(&its->cmd_lock);
1566 
1567 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1568 	reg = ITS_CMD_OFFSET(reg);
1569 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1570 		mutex_unlock(&its->cmd_lock);
1571 		return;
1572 	}
1573 	its->cwriter = reg;
1574 
1575 	vgic_its_process_commands(kvm, its);
1576 
1577 	mutex_unlock(&its->cmd_lock);
1578 }
1579 
1580 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1581 						struct vgic_its *its,
1582 						gpa_t addr, unsigned int len)
1583 {
1584 	return extract_bytes(its->cwriter, addr & 0x7, len);
1585 }
1586 
1587 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1588 					       struct vgic_its *its,
1589 					       gpa_t addr, unsigned int len)
1590 {
1591 	return extract_bytes(its->creadr, addr & 0x7, len);
1592 }
1593 
1594 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1595 					      struct vgic_its *its,
1596 					      gpa_t addr, unsigned int len,
1597 					      unsigned long val)
1598 {
1599 	u32 cmd_offset;
1600 	int ret = 0;
1601 
1602 	mutex_lock(&its->cmd_lock);
1603 
1604 	if (its->enabled) {
1605 		ret = -EBUSY;
1606 		goto out;
1607 	}
1608 
1609 	cmd_offset = ITS_CMD_OFFSET(val);
1610 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1611 		ret = -EINVAL;
1612 		goto out;
1613 	}
1614 
1615 	its->creadr = cmd_offset;
1616 out:
1617 	mutex_unlock(&its->cmd_lock);
1618 	return ret;
1619 }
1620 
1621 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1622 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1623 					      struct vgic_its *its,
1624 					      gpa_t addr, unsigned int len)
1625 {
1626 	u64 reg;
1627 
1628 	switch (BASER_INDEX(addr)) {
1629 	case 0:
1630 		reg = its->baser_device_table;
1631 		break;
1632 	case 1:
1633 		reg = its->baser_coll_table;
1634 		break;
1635 	default:
1636 		reg = 0;
1637 		break;
1638 	}
1639 
1640 	return extract_bytes(reg, addr & 7, len);
1641 }
1642 
1643 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1644 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1645 				      struct vgic_its *its,
1646 				      gpa_t addr, unsigned int len,
1647 				      unsigned long val)
1648 {
1649 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1650 	u64 entry_size, table_type;
1651 	u64 reg, *regptr, clearbits = 0;
1652 
1653 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1654 	if (its->enabled)
1655 		return;
1656 
1657 	switch (BASER_INDEX(addr)) {
1658 	case 0:
1659 		regptr = &its->baser_device_table;
1660 		entry_size = abi->dte_esz;
1661 		table_type = GITS_BASER_TYPE_DEVICE;
1662 		break;
1663 	case 1:
1664 		regptr = &its->baser_coll_table;
1665 		entry_size = abi->cte_esz;
1666 		table_type = GITS_BASER_TYPE_COLLECTION;
1667 		clearbits = GITS_BASER_INDIRECT;
1668 		break;
1669 	default:
1670 		return;
1671 	}
1672 
1673 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1674 	reg &= ~GITS_BASER_RO_MASK;
1675 	reg &= ~clearbits;
1676 
1677 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1678 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1679 	reg = vgic_sanitise_its_baser(reg);
1680 
1681 	*regptr = reg;
1682 
1683 	if (!(reg & GITS_BASER_VALID)) {
1684 		/* Take the its_lock to prevent a race with a save/restore */
1685 		mutex_lock(&its->its_lock);
1686 		switch (table_type) {
1687 		case GITS_BASER_TYPE_DEVICE:
1688 			vgic_its_free_device_list(kvm, its);
1689 			break;
1690 		case GITS_BASER_TYPE_COLLECTION:
1691 			vgic_its_free_collection_list(kvm, its);
1692 			break;
1693 		}
1694 		mutex_unlock(&its->its_lock);
1695 	}
1696 }
1697 
1698 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1699 					     struct vgic_its *its,
1700 					     gpa_t addr, unsigned int len)
1701 {
1702 	u32 reg = 0;
1703 
1704 	mutex_lock(&its->cmd_lock);
1705 	if (its->creadr == its->cwriter)
1706 		reg |= GITS_CTLR_QUIESCENT;
1707 	if (its->enabled)
1708 		reg |= GITS_CTLR_ENABLE;
1709 	mutex_unlock(&its->cmd_lock);
1710 
1711 	return reg;
1712 }
1713 
1714 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1715 				     gpa_t addr, unsigned int len,
1716 				     unsigned long val)
1717 {
1718 	mutex_lock(&its->cmd_lock);
1719 
1720 	/*
1721 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1722 	 * device/collection BASER are invalid
1723 	 */
1724 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1725 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1726 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1727 		 !(its->cbaser & GITS_CBASER_VALID)))
1728 		goto out;
1729 
1730 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1731 	if (!its->enabled)
1732 		vgic_its_invalidate_cache(kvm);
1733 
1734 	/*
1735 	 * Try to process any pending commands. This function bails out early
1736 	 * if the ITS is disabled or no commands have been queued.
1737 	 */
1738 	vgic_its_process_commands(kvm, its);
1739 
1740 out:
1741 	mutex_unlock(&its->cmd_lock);
1742 }
1743 
1744 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1745 {								\
1746 	.reg_offset = off,					\
1747 	.len = length,						\
1748 	.access_flags = acc,					\
1749 	.its_read = rd,						\
1750 	.its_write = wr,					\
1751 }
1752 
1753 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1754 {								\
1755 	.reg_offset = off,					\
1756 	.len = length,						\
1757 	.access_flags = acc,					\
1758 	.its_read = rd,						\
1759 	.its_write = wr,					\
1760 	.uaccess_its_write = uwr,				\
1761 }
1762 
1763 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1764 			      gpa_t addr, unsigned int len, unsigned long val)
1765 {
1766 	/* Ignore */
1767 }
1768 
1769 static struct vgic_register_region its_registers[] = {
1770 	REGISTER_ITS_DESC(GITS_CTLR,
1771 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1772 		VGIC_ACCESS_32bit),
1773 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1774 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1775 		vgic_mmio_uaccess_write_its_iidr, 4,
1776 		VGIC_ACCESS_32bit),
1777 	REGISTER_ITS_DESC(GITS_TYPER,
1778 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1779 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1780 	REGISTER_ITS_DESC(GITS_CBASER,
1781 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1782 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1783 	REGISTER_ITS_DESC(GITS_CWRITER,
1784 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1785 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1786 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1787 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1788 		vgic_mmio_uaccess_write_its_creadr, 8,
1789 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790 	REGISTER_ITS_DESC(GITS_BASER,
1791 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1792 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1793 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1794 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1795 		VGIC_ACCESS_32bit),
1796 };
1797 
1798 /* This is called on setting the LPI enable bit in the redistributor. */
1799 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1800 {
1801 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1802 		its_sync_lpi_pending_table(vcpu);
1803 }
1804 
1805 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1806 				   u64 addr)
1807 {
1808 	struct vgic_io_device *iodev = &its->iodev;
1809 	int ret;
1810 
1811 	mutex_lock(&kvm->slots_lock);
1812 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1813 		ret = -EBUSY;
1814 		goto out;
1815 	}
1816 
1817 	its->vgic_its_base = addr;
1818 	iodev->regions = its_registers;
1819 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1820 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1821 
1822 	iodev->base_addr = its->vgic_its_base;
1823 	iodev->iodev_type = IODEV_ITS;
1824 	iodev->its = its;
1825 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1826 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1827 out:
1828 	mutex_unlock(&kvm->slots_lock);
1829 
1830 	return ret;
1831 }
1832 
1833 /* Default is 16 cached LPIs per vcpu */
1834 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1835 
1836 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1837 {
1838 	struct vgic_dist *dist = &kvm->arch.vgic;
1839 	unsigned int sz;
1840 	int i;
1841 
1842 	if (!list_empty(&dist->lpi_translation_cache))
1843 		return;
1844 
1845 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1846 
1847 	for (i = 0; i < sz; i++) {
1848 		struct vgic_translation_cache_entry *cte;
1849 
1850 		/* An allocation failure is not fatal */
1851 		cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1852 		if (WARN_ON(!cte))
1853 			break;
1854 
1855 		INIT_LIST_HEAD(&cte->entry);
1856 		list_add(&cte->entry, &dist->lpi_translation_cache);
1857 	}
1858 }
1859 
1860 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1861 {
1862 	struct vgic_dist *dist = &kvm->arch.vgic;
1863 	struct vgic_translation_cache_entry *cte, *tmp;
1864 
1865 	vgic_its_invalidate_cache(kvm);
1866 
1867 	list_for_each_entry_safe(cte, tmp,
1868 				 &dist->lpi_translation_cache, entry) {
1869 		list_del(&cte->entry);
1870 		kfree(cte);
1871 	}
1872 }
1873 
1874 #define INITIAL_BASER_VALUE						  \
1875 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1876 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1877 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1878 	 GITS_BASER_PAGE_SIZE_64K)
1879 
1880 #define INITIAL_PROPBASER_VALUE						  \
1881 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1882 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1883 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1884 
1885 static int vgic_its_create(struct kvm_device *dev, u32 type)
1886 {
1887 	struct vgic_its *its;
1888 
1889 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1890 		return -ENODEV;
1891 
1892 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1893 	if (!its)
1894 		return -ENOMEM;
1895 
1896 	if (vgic_initialized(dev->kvm)) {
1897 		int ret = vgic_v4_init(dev->kvm);
1898 		if (ret < 0) {
1899 			kfree(its);
1900 			return ret;
1901 		}
1902 
1903 		vgic_lpi_translation_cache_init(dev->kvm);
1904 	}
1905 
1906 	mutex_init(&its->its_lock);
1907 	mutex_init(&its->cmd_lock);
1908 
1909 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1910 
1911 	INIT_LIST_HEAD(&its->device_list);
1912 	INIT_LIST_HEAD(&its->collection_list);
1913 
1914 	dev->kvm->arch.vgic.msis_require_devid = true;
1915 	dev->kvm->arch.vgic.has_its = true;
1916 	its->enabled = false;
1917 	its->dev = dev;
1918 
1919 	its->baser_device_table = INITIAL_BASER_VALUE			|
1920 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1921 	its->baser_coll_table = INITIAL_BASER_VALUE |
1922 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1923 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1924 
1925 	dev->private = its;
1926 
1927 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1928 }
1929 
1930 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1931 {
1932 	struct kvm *kvm = kvm_dev->kvm;
1933 	struct vgic_its *its = kvm_dev->private;
1934 
1935 	mutex_lock(&its->its_lock);
1936 
1937 	vgic_its_free_device_list(kvm, its);
1938 	vgic_its_free_collection_list(kvm, its);
1939 
1940 	mutex_unlock(&its->its_lock);
1941 	kfree(its);
1942 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1943 }
1944 
1945 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1946 				  struct kvm_device_attr *attr)
1947 {
1948 	const struct vgic_register_region *region;
1949 	gpa_t offset = attr->attr;
1950 	int align;
1951 
1952 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1953 
1954 	if (offset & align)
1955 		return -EINVAL;
1956 
1957 	region = vgic_find_mmio_region(its_registers,
1958 				       ARRAY_SIZE(its_registers),
1959 				       offset);
1960 	if (!region)
1961 		return -ENXIO;
1962 
1963 	return 0;
1964 }
1965 
1966 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1967 				     struct kvm_device_attr *attr,
1968 				     u64 *reg, bool is_write)
1969 {
1970 	const struct vgic_register_region *region;
1971 	struct vgic_its *its;
1972 	gpa_t addr, offset;
1973 	unsigned int len;
1974 	int align, ret = 0;
1975 
1976 	its = dev->private;
1977 	offset = attr->attr;
1978 
1979 	/*
1980 	 * Although the spec supports upper/lower 32-bit accesses to
1981 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1982 	 * accesses to all 64-bit wide registers. We therefore only
1983 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1984 	 * registers
1985 	 */
1986 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1987 		align = 0x3;
1988 	else
1989 		align = 0x7;
1990 
1991 	if (offset & align)
1992 		return -EINVAL;
1993 
1994 	mutex_lock(&dev->kvm->lock);
1995 
1996 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1997 		ret = -ENXIO;
1998 		goto out;
1999 	}
2000 
2001 	region = vgic_find_mmio_region(its_registers,
2002 				       ARRAY_SIZE(its_registers),
2003 				       offset);
2004 	if (!region) {
2005 		ret = -ENXIO;
2006 		goto out;
2007 	}
2008 
2009 	if (!lock_all_vcpus(dev->kvm)) {
2010 		ret = -EBUSY;
2011 		goto out;
2012 	}
2013 
2014 	addr = its->vgic_its_base + offset;
2015 
2016 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2017 
2018 	if (is_write) {
2019 		if (region->uaccess_its_write)
2020 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2021 							len, *reg);
2022 		else
2023 			region->its_write(dev->kvm, its, addr, len, *reg);
2024 	} else {
2025 		*reg = region->its_read(dev->kvm, its, addr, len);
2026 	}
2027 	unlock_all_vcpus(dev->kvm);
2028 out:
2029 	mutex_unlock(&dev->kvm->lock);
2030 	return ret;
2031 }
2032 
2033 static u32 compute_next_devid_offset(struct list_head *h,
2034 				     struct its_device *dev)
2035 {
2036 	struct its_device *next;
2037 	u32 next_offset;
2038 
2039 	if (list_is_last(&dev->dev_list, h))
2040 		return 0;
2041 	next = list_next_entry(dev, dev_list);
2042 	next_offset = next->device_id - dev->device_id;
2043 
2044 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2045 }
2046 
2047 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2048 {
2049 	struct its_ite *next;
2050 	u32 next_offset;
2051 
2052 	if (list_is_last(&ite->ite_list, h))
2053 		return 0;
2054 	next = list_next_entry(ite, ite_list);
2055 	next_offset = next->event_id - ite->event_id;
2056 
2057 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2058 }
2059 
2060 /**
2061  * entry_fn_t - Callback called on a table entry restore path
2062  * @its: its handle
2063  * @id: id of the entry
2064  * @entry: pointer to the entry
2065  * @opaque: pointer to an opaque data
2066  *
2067  * Return: < 0 on error, 0 if last element was identified, id offset to next
2068  * element otherwise
2069  */
2070 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2071 			  void *opaque);
2072 
2073 /**
2074  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2075  * to each entry
2076  *
2077  * @its: its handle
2078  * @base: base gpa of the table
2079  * @size: size of the table in bytes
2080  * @esz: entry size in bytes
2081  * @start_id: the ID of the first entry in the table
2082  * (non zero for 2d level tables)
2083  * @fn: function to apply on each entry
2084  *
2085  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2086  * (the last element may not be found on second level tables)
2087  */
2088 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2089 			  int start_id, entry_fn_t fn, void *opaque)
2090 {
2091 	struct kvm *kvm = its->dev->kvm;
2092 	unsigned long len = size;
2093 	int id = start_id;
2094 	gpa_t gpa = base;
2095 	char entry[ESZ_MAX];
2096 	int ret;
2097 
2098 	memset(entry, 0, esz);
2099 
2100 	while (len > 0) {
2101 		int next_offset;
2102 		size_t byte_offset;
2103 
2104 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2105 		if (ret)
2106 			return ret;
2107 
2108 		next_offset = fn(its, id, entry, opaque);
2109 		if (next_offset <= 0)
2110 			return next_offset;
2111 
2112 		byte_offset = next_offset * esz;
2113 		id += next_offset;
2114 		gpa += byte_offset;
2115 		len -= byte_offset;
2116 	}
2117 	return 1;
2118 }
2119 
2120 /**
2121  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2122  */
2123 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2124 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2125 {
2126 	struct kvm *kvm = its->dev->kvm;
2127 	u32 next_offset;
2128 	u64 val;
2129 
2130 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2131 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2132 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2133 		ite->collection->collection_id;
2134 	val = cpu_to_le64(val);
2135 	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2136 }
2137 
2138 /**
2139  * vgic_its_restore_ite - restore an interrupt translation entry
2140  * @event_id: id used for indexing
2141  * @ptr: pointer to the ITE entry
2142  * @opaque: pointer to the its_device
2143  */
2144 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2145 				void *ptr, void *opaque)
2146 {
2147 	struct its_device *dev = (struct its_device *)opaque;
2148 	struct its_collection *collection;
2149 	struct kvm *kvm = its->dev->kvm;
2150 	struct kvm_vcpu *vcpu = NULL;
2151 	u64 val;
2152 	u64 *p = (u64 *)ptr;
2153 	struct vgic_irq *irq;
2154 	u32 coll_id, lpi_id;
2155 	struct its_ite *ite;
2156 	u32 offset;
2157 
2158 	val = *p;
2159 
2160 	val = le64_to_cpu(val);
2161 
2162 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2163 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2164 
2165 	if (!lpi_id)
2166 		return 1; /* invalid entry, no choice but to scan next entry */
2167 
2168 	if (lpi_id < VGIC_MIN_LPI)
2169 		return -EINVAL;
2170 
2171 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2172 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2173 		return -EINVAL;
2174 
2175 	collection = find_collection(its, coll_id);
2176 	if (!collection)
2177 		return -EINVAL;
2178 
2179 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2180 	if (IS_ERR(ite))
2181 		return PTR_ERR(ite);
2182 
2183 	if (its_is_collection_mapped(collection))
2184 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2185 
2186 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2187 	if (IS_ERR(irq))
2188 		return PTR_ERR(irq);
2189 	ite->irq = irq;
2190 
2191 	return offset;
2192 }
2193 
2194 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2195 			    struct list_head *b)
2196 {
2197 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2198 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2199 
2200 	if (itea->event_id < iteb->event_id)
2201 		return -1;
2202 	else
2203 		return 1;
2204 }
2205 
2206 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2207 {
2208 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2209 	gpa_t base = device->itt_addr;
2210 	struct its_ite *ite;
2211 	int ret;
2212 	int ite_esz = abi->ite_esz;
2213 
2214 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2215 
2216 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2217 		gpa_t gpa = base + ite->event_id * ite_esz;
2218 
2219 		/*
2220 		 * If an LPI carries the HW bit, this means that this
2221 		 * interrupt is controlled by GICv4, and we do not
2222 		 * have direct access to that state. Let's simply fail
2223 		 * the save operation...
2224 		 */
2225 		if (ite->irq->hw)
2226 			return -EACCES;
2227 
2228 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2229 		if (ret)
2230 			return ret;
2231 	}
2232 	return 0;
2233 }
2234 
2235 /**
2236  * vgic_its_restore_itt - restore the ITT of a device
2237  *
2238  * @its: its handle
2239  * @dev: device handle
2240  *
2241  * Return 0 on success, < 0 on error
2242  */
2243 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2244 {
2245 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2246 	gpa_t base = dev->itt_addr;
2247 	int ret;
2248 	int ite_esz = abi->ite_esz;
2249 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2250 
2251 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2252 			     vgic_its_restore_ite, dev);
2253 
2254 	/* scan_its_table returns +1 if all ITEs are invalid */
2255 	if (ret > 0)
2256 		ret = 0;
2257 
2258 	return ret;
2259 }
2260 
2261 /**
2262  * vgic_its_save_dte - Save a device table entry at a given GPA
2263  *
2264  * @its: ITS handle
2265  * @dev: ITS device
2266  * @ptr: GPA
2267  */
2268 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2269 			     gpa_t ptr, int dte_esz)
2270 {
2271 	struct kvm *kvm = its->dev->kvm;
2272 	u64 val, itt_addr_field;
2273 	u32 next_offset;
2274 
2275 	itt_addr_field = dev->itt_addr >> 8;
2276 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2277 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2278 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2279 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2280 		(dev->num_eventid_bits - 1));
2281 	val = cpu_to_le64(val);
2282 	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2283 }
2284 
2285 /**
2286  * vgic_its_restore_dte - restore a device table entry
2287  *
2288  * @its: its handle
2289  * @id: device id the DTE corresponds to
2290  * @ptr: kernel VA where the 8 byte DTE is located
2291  * @opaque: unused
2292  *
2293  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2294  * next dte otherwise
2295  */
2296 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2297 				void *ptr, void *opaque)
2298 {
2299 	struct its_device *dev;
2300 	gpa_t itt_addr;
2301 	u8 num_eventid_bits;
2302 	u64 entry = *(u64 *)ptr;
2303 	bool valid;
2304 	u32 offset;
2305 	int ret;
2306 
2307 	entry = le64_to_cpu(entry);
2308 
2309 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2310 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2311 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2312 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2313 
2314 	if (!valid)
2315 		return 1;
2316 
2317 	/* dte entry is valid */
2318 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2319 
2320 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2321 	if (IS_ERR(dev))
2322 		return PTR_ERR(dev);
2323 
2324 	ret = vgic_its_restore_itt(its, dev);
2325 	if (ret) {
2326 		vgic_its_free_device(its->dev->kvm, dev);
2327 		return ret;
2328 	}
2329 
2330 	return offset;
2331 }
2332 
2333 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2334 			       struct list_head *b)
2335 {
2336 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2337 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2338 
2339 	if (deva->device_id < devb->device_id)
2340 		return -1;
2341 	else
2342 		return 1;
2343 }
2344 
2345 /**
2346  * vgic_its_save_device_tables - Save the device table and all ITT
2347  * into guest RAM
2348  *
2349  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2350  * returns the GPA of the device entry
2351  */
2352 static int vgic_its_save_device_tables(struct vgic_its *its)
2353 {
2354 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2355 	u64 baser = its->baser_device_table;
2356 	struct its_device *dev;
2357 	int dte_esz = abi->dte_esz;
2358 
2359 	if (!(baser & GITS_BASER_VALID))
2360 		return 0;
2361 
2362 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2363 
2364 	list_for_each_entry(dev, &its->device_list, dev_list) {
2365 		int ret;
2366 		gpa_t eaddr;
2367 
2368 		if (!vgic_its_check_id(its, baser,
2369 				       dev->device_id, &eaddr))
2370 			return -EINVAL;
2371 
2372 		ret = vgic_its_save_itt(its, dev);
2373 		if (ret)
2374 			return ret;
2375 
2376 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2377 		if (ret)
2378 			return ret;
2379 	}
2380 	return 0;
2381 }
2382 
2383 /**
2384  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2385  *
2386  * @its: its handle
2387  * @id: index of the entry in the L1 table
2388  * @addr: kernel VA
2389  * @opaque: unused
2390  *
2391  * L1 table entries are scanned by steps of 1 entry
2392  * Return < 0 if error, 0 if last dte was found when scanning the L2
2393  * table, +1 otherwise (meaning next L1 entry must be scanned)
2394  */
2395 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2396 			 void *opaque)
2397 {
2398 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2399 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2400 	u64 entry = *(u64 *)addr;
2401 	int dte_esz = abi->dte_esz;
2402 	gpa_t gpa;
2403 	int ret;
2404 
2405 	entry = le64_to_cpu(entry);
2406 
2407 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2408 		return 1;
2409 
2410 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2411 
2412 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2413 			     l2_start_id, vgic_its_restore_dte, NULL);
2414 
2415 	return ret;
2416 }
2417 
2418 /**
2419  * vgic_its_restore_device_tables - Restore the device table and all ITT
2420  * from guest RAM to internal data structs
2421  */
2422 static int vgic_its_restore_device_tables(struct vgic_its *its)
2423 {
2424 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2425 	u64 baser = its->baser_device_table;
2426 	int l1_esz, ret;
2427 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2428 	gpa_t l1_gpa;
2429 
2430 	if (!(baser & GITS_BASER_VALID))
2431 		return 0;
2432 
2433 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2434 
2435 	if (baser & GITS_BASER_INDIRECT) {
2436 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2437 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2438 				     handle_l1_dte, NULL);
2439 	} else {
2440 		l1_esz = abi->dte_esz;
2441 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2442 				     vgic_its_restore_dte, NULL);
2443 	}
2444 
2445 	/* scan_its_table returns +1 if all entries are invalid */
2446 	if (ret > 0)
2447 		ret = 0;
2448 
2449 	return ret;
2450 }
2451 
2452 static int vgic_its_save_cte(struct vgic_its *its,
2453 			     struct its_collection *collection,
2454 			     gpa_t gpa, int esz)
2455 {
2456 	u64 val;
2457 
2458 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2459 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2460 	       collection->collection_id);
2461 	val = cpu_to_le64(val);
2462 	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2463 }
2464 
2465 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2466 {
2467 	struct its_collection *collection;
2468 	struct kvm *kvm = its->dev->kvm;
2469 	u32 target_addr, coll_id;
2470 	u64 val;
2471 	int ret;
2472 
2473 	BUG_ON(esz > sizeof(val));
2474 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2475 	if (ret)
2476 		return ret;
2477 	val = le64_to_cpu(val);
2478 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2479 		return 0;
2480 
2481 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2482 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2483 
2484 	if (target_addr != COLLECTION_NOT_MAPPED &&
2485 	    target_addr >= atomic_read(&kvm->online_vcpus))
2486 		return -EINVAL;
2487 
2488 	collection = find_collection(its, coll_id);
2489 	if (collection)
2490 		return -EEXIST;
2491 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2492 	if (ret)
2493 		return ret;
2494 	collection->target_addr = target_addr;
2495 	return 1;
2496 }
2497 
2498 /**
2499  * vgic_its_save_collection_table - Save the collection table into
2500  * guest RAM
2501  */
2502 static int vgic_its_save_collection_table(struct vgic_its *its)
2503 {
2504 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2505 	u64 baser = its->baser_coll_table;
2506 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2507 	struct its_collection *collection;
2508 	u64 val;
2509 	size_t max_size, filled = 0;
2510 	int ret, cte_esz = abi->cte_esz;
2511 
2512 	if (!(baser & GITS_BASER_VALID))
2513 		return 0;
2514 
2515 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2516 
2517 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2518 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2519 		if (ret)
2520 			return ret;
2521 		gpa += cte_esz;
2522 		filled += cte_esz;
2523 	}
2524 
2525 	if (filled == max_size)
2526 		return 0;
2527 
2528 	/*
2529 	 * table is not fully filled, add a last dummy element
2530 	 * with valid bit unset
2531 	 */
2532 	val = 0;
2533 	BUG_ON(cte_esz > sizeof(val));
2534 	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2535 	return ret;
2536 }
2537 
2538 /**
2539  * vgic_its_restore_collection_table - reads the collection table
2540  * in guest memory and restores the ITS internal state. Requires the
2541  * BASER registers to be restored before.
2542  */
2543 static int vgic_its_restore_collection_table(struct vgic_its *its)
2544 {
2545 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2546 	u64 baser = its->baser_coll_table;
2547 	int cte_esz = abi->cte_esz;
2548 	size_t max_size, read = 0;
2549 	gpa_t gpa;
2550 	int ret;
2551 
2552 	if (!(baser & GITS_BASER_VALID))
2553 		return 0;
2554 
2555 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2556 
2557 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2558 
2559 	while (read < max_size) {
2560 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2561 		if (ret <= 0)
2562 			break;
2563 		gpa += cte_esz;
2564 		read += cte_esz;
2565 	}
2566 
2567 	if (ret > 0)
2568 		return 0;
2569 
2570 	return ret;
2571 }
2572 
2573 /**
2574  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2575  * according to v0 ABI
2576  */
2577 static int vgic_its_save_tables_v0(struct vgic_its *its)
2578 {
2579 	int ret;
2580 
2581 	ret = vgic_its_save_device_tables(its);
2582 	if (ret)
2583 		return ret;
2584 
2585 	return vgic_its_save_collection_table(its);
2586 }
2587 
2588 /**
2589  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2590  * to internal data structs according to V0 ABI
2591  *
2592  */
2593 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2594 {
2595 	int ret;
2596 
2597 	ret = vgic_its_restore_collection_table(its);
2598 	if (ret)
2599 		return ret;
2600 
2601 	return vgic_its_restore_device_tables(its);
2602 }
2603 
2604 static int vgic_its_commit_v0(struct vgic_its *its)
2605 {
2606 	const struct vgic_its_abi *abi;
2607 
2608 	abi = vgic_its_get_abi(its);
2609 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2610 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2611 
2612 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2613 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2614 
2615 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2616 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2617 	return 0;
2618 }
2619 
2620 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2621 {
2622 	/* We need to keep the ABI specific field values */
2623 	its->baser_coll_table &= ~GITS_BASER_VALID;
2624 	its->baser_device_table &= ~GITS_BASER_VALID;
2625 	its->cbaser = 0;
2626 	its->creadr = 0;
2627 	its->cwriter = 0;
2628 	its->enabled = 0;
2629 	vgic_its_free_device_list(kvm, its);
2630 	vgic_its_free_collection_list(kvm, its);
2631 }
2632 
2633 static int vgic_its_has_attr(struct kvm_device *dev,
2634 			     struct kvm_device_attr *attr)
2635 {
2636 	switch (attr->group) {
2637 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2638 		switch (attr->attr) {
2639 		case KVM_VGIC_ITS_ADDR_TYPE:
2640 			return 0;
2641 		}
2642 		break;
2643 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2644 		switch (attr->attr) {
2645 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2646 			return 0;
2647 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2648 			return 0;
2649 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2650 			return 0;
2651 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2652 			return 0;
2653 		}
2654 		break;
2655 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2656 		return vgic_its_has_attr_regs(dev, attr);
2657 	}
2658 	return -ENXIO;
2659 }
2660 
2661 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2662 {
2663 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2664 	int ret = 0;
2665 
2666 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2667 		return 0;
2668 
2669 	mutex_lock(&kvm->lock);
2670 	mutex_lock(&its->its_lock);
2671 
2672 	if (!lock_all_vcpus(kvm)) {
2673 		mutex_unlock(&its->its_lock);
2674 		mutex_unlock(&kvm->lock);
2675 		return -EBUSY;
2676 	}
2677 
2678 	switch (attr) {
2679 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2680 		vgic_its_reset(kvm, its);
2681 		break;
2682 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2683 		ret = abi->save_tables(its);
2684 		break;
2685 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2686 		ret = abi->restore_tables(its);
2687 		break;
2688 	}
2689 
2690 	unlock_all_vcpus(kvm);
2691 	mutex_unlock(&its->its_lock);
2692 	mutex_unlock(&kvm->lock);
2693 	return ret;
2694 }
2695 
2696 static int vgic_its_set_attr(struct kvm_device *dev,
2697 			     struct kvm_device_attr *attr)
2698 {
2699 	struct vgic_its *its = dev->private;
2700 	int ret;
2701 
2702 	switch (attr->group) {
2703 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2704 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2705 		unsigned long type = (unsigned long)attr->attr;
2706 		u64 addr;
2707 
2708 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2709 			return -ENODEV;
2710 
2711 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2712 			return -EFAULT;
2713 
2714 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2715 					addr, SZ_64K);
2716 		if (ret)
2717 			return ret;
2718 
2719 		return vgic_register_its_iodev(dev->kvm, its, addr);
2720 	}
2721 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2722 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2723 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2724 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2725 		u64 reg;
2726 
2727 		if (get_user(reg, uaddr))
2728 			return -EFAULT;
2729 
2730 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2731 	}
2732 	}
2733 	return -ENXIO;
2734 }
2735 
2736 static int vgic_its_get_attr(struct kvm_device *dev,
2737 			     struct kvm_device_attr *attr)
2738 {
2739 	switch (attr->group) {
2740 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2741 		struct vgic_its *its = dev->private;
2742 		u64 addr = its->vgic_its_base;
2743 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2744 		unsigned long type = (unsigned long)attr->attr;
2745 
2746 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2747 			return -ENODEV;
2748 
2749 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2750 			return -EFAULT;
2751 		break;
2752 	}
2753 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2754 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2755 		u64 reg;
2756 		int ret;
2757 
2758 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2759 		if (ret)
2760 			return ret;
2761 		return put_user(reg, uaddr);
2762 	}
2763 	default:
2764 		return -ENXIO;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2771 	.name = "kvm-arm-vgic-its",
2772 	.create = vgic_its_create,
2773 	.destroy = vgic_its_destroy,
2774 	.set_attr = vgic_its_set_attr,
2775 	.get_attr = vgic_its_get_attr,
2776 	.has_attr = vgic_its_has_attr,
2777 };
2778 
2779 int kvm_vgic_register_its_device(void)
2780 {
2781 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2782 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2783 }
2784